
CS 473, Spring 2023
Homework 7 (due Mar 29 Wed 9pm)

Instructions: As in Homework 1.

Problem 7.1: Given an undirected graph G = (V,E) and an integer d, we want determine whether
it is possible to direct the edges so that the resulting directed graph has maximum out-
degree at most d. Describe how to solve this problem by reduction to maximum flow. Prove
correctness of your method.

Example: for the undirected graph below (left) and d = 2, the answer is yes, and one solution
is shown on the right (there are many other solutions).

=⇒

(Hint: start with a bipartite graph where the vertices on the left side are the edges in G and
the vertices on the right side are the vertices in G. Then add a source and a sink, set capacity
of each edge appropriately. . . )

Problem 7.2: Given a bipartite graph G = (V,E) with n vertices and m edges, we want to find
the largest independent set I, i.e., a subset I ⊆ V such that no two vertices in I are adjacent
in G.

One way to solve the problem is to construct a flow network (a directed graph) G′ = (V ∪
{s, t}, E′), where s is the source and t is the sink. Let VL and VR denote the left and right
side of V in G. For each u ∈ VL, we add the directed edge (s, u) to E′. For each v ∈ VR,
we add the directed edge (v, t) to E′. For each uv ∈ E with u ∈ VL and v ∈ VR, we add the
directed edge (u, v) to G′. All edges have capacity 1. (This is the same flow network we have
used to reduce maximum bipartite matching to maximum flow.)

(a) (45 pts) Prove that if there is an independent set in G of size k, then there is an (s, t)-cut
in G′ of capacity n− k.

(b) (45 pts) Conversely, prove that if there is an (s, t)-cut in G′ of capacity n−k, then there
is an independent set in G of size k.

(c) (10 pts) Conclude that there is a polynomial-time algorithm to compute a largest inde-
pendent set in G.

1



Problem 7.3: We are given a set of n axis-aligned rectangles R = {r1, . . . , rn}. The rectangles ri
all have height 1 and have integer x- and y-coordinates, and no two rectangles intersect except
along the boundaries, and their union is a rectangle U(R). We want to redraw the rectangles
as R′ = {r′1, . . . , r′n}, whose union is a new rectangle U(R′), so that the rectangles r′i still have
height 1 and have integer x- and y-coordinates, and the adjacency structure is unchanged,
i.e., if a side of the rectangle ri touches a side of rectangle rj , then the corresponding side of
r′i touches the corresponding side of r′j .

(a) (25 pts) Describe an efficient algorithm to compute a redrawing R′ that minimizes the
overall width of U(R′).

(Hint: reduce this to a shortest path problem. No need for flows!)

=⇒

a redrawing with overall width 5

(b) (75 pts) Suppose that each rectangle ri is given a cost ai. Describe a polynomial-time
algorithm to compute a redrawing S′ that minimizes

∑n
i=1 ai ·width(r′i), where width(r′i)

denotes the width of r′i.

You may assume that there is a polynomial-time algorithm for the following version of
the minimum-cost flow problem: given a directed graph G = (V,E) with source s and
sink t and a value d, where each edge e ∈ E is given numbers ℓ(e), c(e), cost(e), compute
a flow f of value d, minimizing

∑
e∈E cost(e) · f(e), such that for every e ∈ E, we have

ℓ(e) ≤ f(e) ≤ c(e), and we have conservation of flow at every vertex in V − {s, t}.
(Hint: create a vertex for each rectangle. . . )

2


