CS 473, Spring 2023 Homework 7 (due Mar 29 Wed 9pm)

Instructions: As in Homework 1.

Problem 7.1: Given an undirected graph G = (V, E) and an integer d, we want determine whether it is possible to direct the edges so that the resulting directed graph has maximum **out-degree** at most d. Describe how to solve this problem by reduction to maximum flow. Prove correctness of your method.

Example: for the undirected graph below (left) and d = 2, the answer is yes, and one solution is shown on the right (there are many other solutions).

(Hint: start with a bipartite graph where the vertices on the left side are the edges in G and the vertices on the right side are the vertices in G. Then add a source and a sink, set capacity of each edge appropriately...)

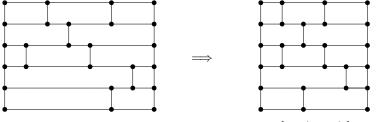
Problem 7.2: Given a bipartite graph G = (V, E) with *n* vertices and *m* edges, we want to find the largest *independent set I*, i.e., a subset $I \subseteq V$ such that no two vertices in *I* are adjacent in *G*.

One way to solve the problem is to construct a flow network (a directed graph) $G' = (V \cup \{s,t\}, E')$, where s is the source and t is the sink. Let V_L and V_R denote the left and right side of V in G. For each $u \in V_L$, we add the directed edge (s, u) to E'. For each $v \in V_R$, we add the directed edge (v, t) to E'. For each $uv \in E$ with $u \in V_L$ and $v \in V_R$, we add the directed edge (u, v) to G'. All edges have capacity 1. (This is the same flow network we have used to reduce maximum bipartite matching to maximum flow.)

- (a) (45 pts) Prove that if there is an independent set in G of size k, then there is an (s, t)-cut in G' of capacity n k.
- (b) (45 pts) Conversely, prove that if there is an (s, t)-cut in G' of capacity n k, then there is an independent set in G of size k.
- (c) (10 pts) Conclude that there is a polynomial-time algorithm to compute a largest independent set in G.

- **Problem 7.3:** We are given a set of n axis-aligned rectangles $R = \{r_1, \ldots, r_n\}$. The rectangles r_i all have height 1 and have integer x- and y-coordinates, and no two rectangles intersect except along the boundaries, and their union is a rectangle U(R). We want to redraw the rectangles as $R' = \{r'_1, \ldots, r'_n\}$, whose union is a new rectangle U(R'), so that the rectangles r'_i still have height 1 and have integer x- and y-coordinates, and the adjacency structure is unchanged, i.e., if a side of the rectangle r_i touches a side of rectangle r_j , then the corresponding side of r'_i .
 - (a) (25 pts) Describe an efficient algorithm to compute a redrawing R' that minimizes the overall width of U(R').

(Hint: reduce this to a shortest path problem. No need for flows!)



a redrawing with overall width 5

(b) (75 pts) Suppose that each rectangle r_i is given a cost a_i . Describe a polynomial-time algorithm to compute a redrawing S' that minimizes $\sum_{i=1}^{n} a_i \cdot \operatorname{width}(r'_i)$, where $\operatorname{width}(r'_i)$ denotes the width of r'_i .

You may assume that there is a polynomial-time algorithm for the following version of the *minimum-cost flow* problem: given a directed graph G = (V, E) with source s and sink t and a value d, where each edge $e \in E$ is given numbers $\ell(e), c(e), \cot(e), \cot(e)$, compute a flow f of value d, minimizing $\sum_{e \in E} \cot(e) \cdot f(e)$, such that for every $e \in E$, we have $\ell(e) \leq f(e) \leq c(e)$, and we have conservation of flow at every vertex in $V - \{s, t\}$.

(Hint: create a vertex for each rectangle...)