
CS 473, Spring 2023
Homework 5 (due Mar 8 Wed 9pm)

Instructions: As in Homework 1.

Problem 5.1: In this problem, we will investigate a simpler family of hash functions that satisfies
a weaker version of universality (with some extra logarithmic factors).

Let m be a given integer. Let p1, . . . , pk be the list of all prime numbers between m/2 and
m. You may assume that this list has been precomputed and you may use the known fact
that k = Θ(m/ logm) (this follows from the well-known “Prime Number Theorem”).

Pick a random index j ∈ {1, . . . , k} and define hj : {0, 1, . . . , U − 1} → {0, 1, . . . ,m− 1} by

hj(x) = x mod pj .

(a) (40 pts) For any fixed x, y ∈ {0, 1, . . . , U−1} with x ̸= y, prove that Prj [hj(x) = hj(y)] ≤
O(logUm).

(Hint: given a number z ≤ U , how many prime factors can z have that are at least
m/2?)

(b) (60 pts) Recall the 3SUM problem: Given three sets of integers A, B, and C with
|A|+ |B|+ |C| = n, we want to decide whether there exist elements a ∈ A, b ∈ B, and
c ∈ C such that a+ b = c. Prof. X claims to have discovered an O(n1.99)-time algorithm
to solve the special case of the problem when A,B,C ⊆ {0, 1, . . . , n4}. Show how to
use Prof. X’s algorithm to solve the more general case of the problem when A,B,C ⊆
{0, 1, . . . , n100} by a Monte Carlo O(n1.99)-time algorithm with error probability at most
0.01.

(Hint: use part (a). The property that hj(a)+hj(b) is equal to hj(a+b) or hj(a+b)+pj
may be helpful. . .)

Problem 5.2:

(a) (30 pts) Consider the following problem: given a directed graph G = (V,E) with n
vertices, decide whether G contains a directed cycle of length 5. Give a deterministic
algorithm that solves this problem in O(n2.81) time.

(b) (70 pts) Consider the following problem: given an undirected graph G = (V,E) with n
vertices, decide whether G contains a simple cycle of length 5. (A cycle is simple if no
vertices appear more than once in the cycle.) Give a Monte Carlo algorithm that solves
this problem in O(n2.81) time with error probability at most 0.01.

(Hint: pick a random ordering of the vertices and use (a variant of) your algorithm for
part (a).)

1

Problem 5.3: Consider the following geometric problem: given a set P of n points in 2D, with
integer coordinates from {0, 1, . . . , U − 1}, find a closest pair , i.e., two points p, q ∈ P (p ̸= q)
with the smallest Euclidean distance. Let δ(P) denote the distance of the closest pair.

We have seen an O(n log n)-time divide-and-conquer algorithm from class. In this question,
we give a different, faster randomized algorithm (which has the added advantage that it can
be extended to higher dimensions).

(a) (35 pts) First give an O(n)-expected-time (Las Vegas) algorithm for the easier decision
problem: given a value r, decide whether δ(P) < r.

(Hints: Build a uniform grid where each cell is an (r/2) × (r/2) square. Use hashing.
How many points can a grid cell have? For each grid cell, how many grid cells are of
distance at most r?)

(b) (65 pts) Now, consider the following recursive Las Vegas algorithm to compute δ(P):

Closest-Pair(P):

1. if |P | ≤ 100 then return answer by brute force
2. partition P into subsets P1, . . . , P20 each with at most ⌈n/20⌉ points
3. let S = {(i, j) | 1 ≤ i < j ≤ 20}
4. r = ∞
5. for each (i, j) ∈ S in random order do
6. if δ(Pi ∪ Pj) < r then
7. r = Closest-Pair(Pi ∪ Pj)
8. return r

Explain why the algorithm is always correct, and analyze its expected running time by
solving a recurrence.

(Hints: Where is part (a) used? What is |S|? What is the expected number of times
line 7 is performed, using facts from class?)

2

