CS 473, Spring 2023
 Homework 5 (due Mar 8 Wed 9pm)

Instructions: As in Homework 1.

Problem 5.1: In this problem, we will investigate a simpler family of hash functions that satisfies a weaker version of universality (with some extra logarithmic factors).
Let m be a given integer. Let p_{1}, \ldots, p_{k} be the list of all prime numbers between $m / 2$ and m. You may assume that this list has been precomputed and you may use the known fact that $k=\Theta(m / \log m)$ (this follows from the well-known "Prime Number Theorem").
Pick a random index $j \in\{1, \ldots, k\}$ and define $h_{j}:\{0,1, \ldots, U-1\} \rightarrow\{0,1, \ldots, m-1\}$ by

$$
h_{j}(x)=x \bmod p_{j} .
$$

(a) (40 pts) For any fixed $x, y \in\{0,1, \ldots, U-1\}$ with $x \neq y$, prove that $\operatorname{Pr}_{j}\left[h_{j}(x)=h_{j}(y)\right] \leq$ $O\left(\frac{\log U}{m}\right)$.
(Hint: given a number $z \leq U$, how many prime factors can z have that are at least $m / 2$?)
(b) (60 pts) Recall the 3SUM problem: Given three sets of integers A, B, and C with $|A|+|B|+|C|=n$, we want to decide whether there exist elements $a \in A, b \in B$, and $c \in C$ such that $a+b=c$. Prof. X claims to have discovered an $O\left(n^{1.99}\right)$-time algorithm to solve the special case of the problem when $A, B, C \subseteq\left\{0,1, \ldots, n^{4}\right\}$. Show how to use Prof. X's algorithm to solve the more general case of the problem when $A, B, C \subseteq$ $\left\{0,1, \ldots, n^{100}\right\}$ by a Monte Carlo $O\left(n^{1.99}\right)$-time algorithm with error probability at most 0.01.
(Hint: use part (a). The property that $h_{j}(a)+h_{j}(b)$ is equal to $h_{j}(a+b)$ or $h_{j}(a+b)+p_{j}$ may be helpful...)

Problem 5.2:

(a) (30 pts) Consider the following problem: given a directed graph $G=(V, E)$ with n vertices, decide whether G contains a directed cycle of length 5 . Give a deterministic algorithm that solves this problem in $O\left(n^{2.81}\right)$ time.
(b) (70 pts) Consider the following problem: given an undirected graph $G=(V, E)$ with n vertices, decide whether G contains a simple cycle of length 5 . (A cycle is simple if no vertices appear more than once in the cycle.) Give a Monte Carlo algorithm that solves this problem in $O\left(n^{2.81}\right)$ time with error probability at most 0.01 .
(Hint: pick a random ordering of the vertices and use (a variant of) your algorithm for part (a).)

Problem 5.3: Consider the following geometric problem: given a set P of n points in 2D, with integer coordinates from $\{0,1, \ldots, U-1\}$, find a closest pair, i.e., two points $p, q \in P(p \neq q)$ with the smallest Euclidean distance. Let $\delta(P)$ denote the distance of the closest pair.

We have seen an $O(n \log n)$-time divide-and-conquer algorithm from class. In this question, we give a different, faster randomized algorithm (which has the added advantage that it can be extended to higher dimensions).
(a) (35 pts) First give an $O(n)$-expected-time (Las Vegas) algorithm for the easier decision problem: given a value r, decide whether $\delta(P)<r$.
(Hints: Build a uniform grid where each cell is an $(r / 2) \times(r / 2)$ square. Use hashing. How many points can a grid cell have? For each grid cell, how many grid cells are of distance at most r ?)
(b) (65 pts) Now, consider the following recursive Las Vegas algorithm to compute $\delta(P)$:

Closest-Pair (P) :

1. if $|P| \leq 100$ then return answer by brute force
2. partition P into subsets P_{1}, \ldots, P_{20} each with at most $\lceil n / 20\rceil$ points
3. let $S=\{(i, j) \mid 1 \leq i<j \leq 20\}$
4. $r=\infty$
5. for each $(i, j) \in S$ in random order do
6. if $\delta\left(P_{i} \cup P_{j}\right)<r$ then
7. $\quad r=$ Closest-Pair $\left(P_{i} \cup P_{j}\right)$
8. return r

Explain why the algorithm is always correct, and analyze its expected running time by solving a recurrence.
(Hints: Where is part (a) used? What is $|S|$? What is the expected number of times line 7 is performed, using facts from class?)

