
CS 473, Spring 2023
Homework 3 (due Feb 15 Wed 9pm)

Instructions: As in Homework 1.

Problem 3.1: We are given a set P of n points in 2D, each colored red or blue. A binary space
partition (BSP) is a binary tree where each node v is associated with a (possibly unbounded)
rectangle R(v). At the root vr, the rectangle R(vr) is the entire plane. For every non-leaf
node v with children v1 and v2, the rectangles R(v1) and R(v2) do not overlap and their
union is R(v) (in other words, R(v1) and R(v2) are obtained by cutting R(v) into two by
some vertical or horizontal line).

We say that a BSP is proper if at each leaf v, the points in P ∩R(v) all have the same color.

Our problem is to find a proper BSP while minimizing the number of leaves. (The motivation
comes from decision tree learning.)

Describe a polynomial-time dynamic programming algorithm to compute the optimal value.
Include the following steps: (a) first define your subproblems precisely, (b) then derive the
recursive formula (including base cases) with brief justifications (no need for long correctness
proofs), (c) specify a valid evaluation order, and (d) analyze the running time and space (as
a function of n). For this problem, you do not need to write pseudocode if your recursive
formula and evaluation order are described clearly. And you do not need to write pseudocode
to output the optimal tree itself.

D

C

E G

F H

A C B

D E

F G

(9 leaves)

B

A I

H I

1



Problem 3.2: We are given a set S of n real numbers between 0 and 1. We are also given an
integer L ≤ n. We want to select a subset Q ⊂ S of L numbers to minimize the cost function

c(S,Q) =
∑
x∈S

min
q∈Q

δ(x, q),

where

δ(x, q) =

{
q − x if q ≥ x
q − x+ 1 if q < x

(We can think of δ(x, q) as the distance from x to q but with “wrap-around”. As an ap-
plication, imagine we want to build L hospitals (again!) on a one-way loop, but this time,
minimizing a sum rather than a max. . . )

In the following example, L = 3, and a feasible solution Q is drawn in red, where the cost is
the sum of the lengths of the blue line segments.

0 1

(a) (70 pts) First describe an O(n3 logL)-time dynamic programming algorithm for this
problem. Include the following steps: (a) first define your subproblems precisely, (b) then
derive the recursive formula (including base cases) with brief justifications (no need for
long correctness proofs), (c) specify a valid evaluation order, and (d) analyze the running
time. For this problem, you do not need to write pseudocode if your recursive formula
and evaluation order are described clearly. And you do not need to write pseudocode to
output the optimal subset itself.

(b) (20 pts) Let x1, . . . , xn be the numbers of S in increasing order. For i ≤ j, define

d(i, j) =
j−1∑
k=i

(xj − xk).

Prove that d satisfies the concave Monge property, i.e., for any i ≤ i′ ≤ j ≤ j′, we have
d(i, j) + d(i′, j′) ≤ d(i, j′) + d(i′, j).

(c) (10 pts) Using results stated in class, argue that the running time of your algorithm
from (a) can be improved to O(n2 logL).

2



Problem 3.3: Consider the following weighted directed acyclic graph (DAG) G:

� The vertices are {(i, j) : i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}} ∪ {s, t}.
� For each i ∈ {1, . . . ,m−1} and j, j′ ∈ {1, . . . , n}, there is an edge from (i, j) to (i+1, j′)

with weight f(i, j, j′), for some function f that can be evaluated in constant time.

� For each j ∈ {1, . . . , n}, there is an edge from s to (1, j) with weight gj , and an edge
from (m, j) to t with weight hj , for some given values g1, . . . , gn, h1, . . . , hn.

We want to compute a shortest path from s to t in G. Here, we really want to output an
optimal path, not just the optimal total weight.

...

(m,n)

(1, 1)

s

t

(1, n)

(m, 1)

Since G has O(mn) vertices and O(mn2) edges, we can apply a standard single-source shortest
path algorithm in DAGs to solve this problem in O(mn2) time, using O(mn) space.

Describe a more space-efficient algorithm to solve this problem, using space close to O(m+n),
up to some logarithmic factors. (Note that we can’t afford to build and store the entire
graph G explicitly, but we can call the function f whenever we need.) The running time
should remain close to O(mn2), up to some logarithmic factors.

[Hint: combine DP with divide-and-conquer to save space. Unlike in the space-saving method
for LCS from class, we may not be able to halve both the number of rows and the number of
columns when we recurse. . . ]

3


