
CS 473, Spring 2023
Homework 2 (due Feb 8 Wed 9pm)

Instructions: As in Homework 1.

Problem 2.1: We are given a list L of n locations, and a list H of n houses. For each location
p ∈ L and each house h ∈ H, we are given a distance value d(p, h). We want to find two
locations p, q ∈ L to build two hospitals so that maxh∈H min{d(p, h), d(q, h)} is as small as
possible. (The quantity min{d(p, h), d(q, h)} represents the distance of the house h to the
closer of the two hospital locations p, q. The motivation is to make the worst such distance
as small as possible.)

houses

possible hospital locations

radius
optimal

(a) (70 pts) First give a subcubic algorithm for the following decision problem: given a
value r, do there exist p, q ∈ L such that maxh∈H min{d(p, h), d(q, h)} ≤ r?

[Hint: use an algorithm from class.]

(b) (30 pts) Now give a subcubic algorithm for the original problem, using (a).

Problem 2.2: We are given a sequence of points p1 = (x1, y1), . . . , pn = (xn, yn) sorted from left
to right (i.e., x1 < x2 < · · · < xn) and a number k between 1 and n. We want to find
a minimum-error polygonal path from p1 to pn with k edges that goes from left to right,
where the error of a path is the sum of the vertical distances of the points p1, . . . , pn to the
polygonal path. (The motivation is in finding a piecewise linear function that best “fits” the
data points.)

More precisely, we want a subsequence pi0 , pi1 , pi2 , . . . , pik where 1 = i0 < i1 < i2 < · · · <
ik−1 < ik = n, minimizing the error function f(i0, i1) + f(i1, i2) + · · ·+ f(ik−1, ik), where

f(a, b) =
b−1∑

i=a+1

∣∣∣∣(yi − ya)−
(
yb − ya
xb − xa

)
(xi − xa)

∣∣∣∣
represents the sum of the vertical distances of the points pa+1, . . . , pb−1 to the line through
papb.

Describe an efficient (polynomial-time) algorithm to solve this problem using dynamic pro-
gramming. Include the following steps: (a) first define your subproblems precisely, (b) then

1

(k = 3)

derive the recursive formula (including base cases) with brief justifications (no need for long
correctness proofs), (c) write pseudocode to output the optimal value (i.e., the minimum
error), (d) write pseudocode to output the optimal subsequence, and (e) analyze the running
time and space (as a function of n and k).

Problem 2.3: We have n jobs, where job i must start at time ti (these start times are all given
in advance; you may assume they are sorted t1 < t2 < · · · < tn). We have 3 servers, each
working at different speeds: for each j ∈ {1, 2, 3}, server j requires Lj units of time to handle
each job. The goal is to choose a largest subset of jobs that can be handled by the 3 servers.
Each job can only be assigned to one server. Thus, the main constraint is that whenever two
different jobs i and i′ are assigned to the same server j, we must have |ti′ − ti| > Lj .

Describe an efficient (polynomial-time) algorithm to compute the optimal value (i.e., size of
the largest feasible subset) using dynamic programming. Include the following steps: (a) first
define your subproblems precisely, (b) then derive the recursive formula (including base cases)
with brief justifications (no need for long correctness proofs), (c) specify a valid evaluation
order, and (d) analyze the running time and space (as a function of n). For this problem, you
do not need to write pseudocode if your recursive formula and evaluation order are described
clearly. And you do not need to write pseudocode to output the optimal subset or assignment
of jobs to servers.

Example: Suppose we have 6 jobs with start times t1 = 3, t2 = 8, t3 = 11, t4 = 12, t5 = 16,
t6 = 18, and suppose we have 3 servers with L1 = 6, L2 = 7, L3 = 9. A feasible solution is
to let server 1 handle jobs 1, 3, and 6; and server 2 handle jobs 2 and 5; and server 3 handle
job 4. The optimal value is 6 (all 6 jobs can be handled).

2

