CS 473, Spring 2023 Homework 10 (due Apr 26 Wed 9pm)

Instructions: As in Homework 1.

Problem 10.1: We are given a set of n points P in \mathbb{R}^2 , and a set of m triangles T. We say that a point $p \in P$ stabs a triangle $\Delta \in T$ if and only if $p \in \Delta$. Each point p stabs at most α triangles. We want to find $M \subset P$ of smallest size that stabs all triangles in T. Let OPT = |M|.

Consider the iterative algorithm, which in each iteration, adds the point that stabs the maximum number of unstabled triangles yet. We analyze the approximation quality of this algorithm. Let s_i be the number of triangles stabled by the point in the i^{th} iteration.¹

- (a) Prove that $s_1 \ge s_2 \ge \cdots \ge s_k$.
- (b) We define an *epoch* as a sequence of iterations from u to v ($v \ge u$), such that $s_v \ge s_u/2$. Find an upper bound on the length of the epoch v - u + 1 as a function of *OPT*.
- (c) Find an upper bound on the number of epochs as a function of α .
- (d) Use the results in (b) and (c) to bound the approximation ratio of the algorithm.

Problem 10.2: We want to divide a set of *indivisible* items $S = \{g_1, g_2, \ldots, g_m\}$ among n agents. Each agent i has a utility of u_{ij} for good g_j . We know that $\sum_{j \in [m]} u_{ij} = n$ for all $i \in [n]$, and $0 \le u_{ij} \le 1/2$ for all $i \in [n], j \in [m]$. (The notation [n] stands for $\{1, 2, \ldots, n\}$.)

Given an allocation $X = \langle X_1, X_2, \ldots, X_n \rangle^2$, we define the *max-min share* (MMS) of an agent *i* to be the maximum over all partitions, the least valued bundle, according to the utility function of this agent, i.e.,

$$MMS_i = \max_{X = \langle X_1, X_2, \dots, X_n \rangle} \min_{j \in [n]} u_i(X_j)$$

where $u_i(X_j) = \sum_{g \in X_j} u_{ig}$. Intuitively, this is what agent *i* considers her *fair share*. Our goal is to find an allocation that gives every agent a good approximation of their MMS. An allocation X is said to be α -approximate MMS if $u_i(X_i) = \sum_{g \in X_i} u_{ig} \geq \alpha MMS_i$. In this exercise, we find a 1/2-approximate MMS allocation.

- (a) Show that $MMS_i \leq 1$ for all agents *i*.
- (b) Consider the following iterative process: Add items iteratively into an empty bag B until one agent i values the bag at 1/2, i.e., $u_i(B) \ge 1/2$. Assign items in this bag to this agent i, i.e., set $X_i = B$, and continue the same process among the rest of the agents (now there is one less agent). Argue that every agent gets assigned a set of items with a total utility of 1/2.

¹More precisely, the number of triangles that are stabled by the point in the i^{th} iteration and not stabled by the points from earlier iterations.

²Each $X_i \subseteq S$ is the bundle allocated to agent *i*.

- (c) Use (a) and (b) to argue that every agent gets at least 1/2 their MMS.
- **Problem 10.3:** Given a *directed* graph G = (V, E), we want to find a subgraph A that is acyclic (i.e., a dag), maximizing the number of edges in A.
 - (a) Show that the following deterministic algorithm yields a feasible solution with approximation ratio at least 1/2:
 - 1. fix an arbitrary (not random) order of the vertices v_1, \ldots, v_n
 - 2. for i = 2 to n do {
 - 3. IN_i = all edges from $\{v_1, \ldots, v_{i-1}\}$ to v_i
 - 4. OUT_i = all edges from v_i to $\{v_1, \ldots, v_{i-1}\}$
 - 5. if $|IN_i| \ge |OUT_i|$ then insert IN_i to A else insert OUT_i to A }
 - (b) Show that the following randomized algorithm yields a feasible solution and analyze its expected approximation ratio:
 - 1. take a random order of the vertices v_1, \ldots, v_n
 - 2. for each edge $(v_i, v_j) \in E$ do
 - 3. if i < j then insert (v_i, v_j) to A