Instructions: As in Homework 1.

Problem 10.1: We are given a set of \(n \) points \(P \) in \(\mathbb{R}^2 \), and a set of \(m \) triangles \(T \). We say that a point \(p \in P \) stabs a triangle \(\Delta \in T \) if and only if \(p \in \Delta \). Each point \(p \) stabs at most \(\alpha \) triangles. We want to find \(M \subset P \) of smallest size that stabs all triangles in \(T \). Let \(\text{OPT} = |M| \).

Consider the iterative algorithm, which in each iteration, adds the point that stabs the maximum number of unstabbed triangles yet. We analyze the approximation quality of this algorithm. Let \(s_i \) be the number of triangles stabbed by the point in the \(i \)th iteration.

(a) Prove that \(s_1 \geq s_2 \geq \cdots \geq s_k \).

(b) We define an epoch as a sequence of iterations from \(u \) to \(v \) \((v \geq u)\), such that \(s_v \geq s_u / 2 \).

Find an upper bound on the length of the epoch \(v - u + 1 \) as a function of \(\text{OPT} \).

(c) Find an upper bound on the number of epochs as a function of \(\alpha \).

(d) Use the results in (b) and (c) to bound the approximation ratio of the algorithm.

Problem 10.2: We want to divide a set of indivisible items \(S = \{g_1, g_2, \ldots, g_m\} \) among \(n \) agents. Each agent \(i \) has a utility of \(u_{ij} \) for good \(g_j \). We know that \(\sum_{j \in [m]} u_{ij} = n \) for all \(i \in [n] \), and \(0 \leq u_{ij} \leq 1/2 \) for all \(i \in [n], j \in [m] \). (The notation \([n] \) stands for \(\{1, 2, \ldots, n\} \).)

Given an allocation \(X = \langle X_1, X_2, \ldots, X_n \rangle \)\(^2\) we define the max-min share (MMS) of an agent \(i \) to be the maximum over all partitions, the least valued bundle, according to the utility function of this agent, i.e.,

\[
\text{MMS}_i = \max_{X = \langle X_1, X_2, \ldots, X_n \rangle} \min_{j \in [n]} u_i(X_j)
\]

where \(u_i(X_j) = \sum_{g \in X_j} u_{ig} \). Intuitively, this is what agent \(i \) considers her fair share. Our goal is to find an allocation that gives every agent a good approximation of their MMS. An allocation \(X \) is said to be \(\alpha \)-approximate MMS if \(u_i(X_i) = \sum_{g \in X_i} u_{ig} \geq \alpha \text{MMS}_i \). In this exercise, we find a 1/2-approximate MMS allocation.

(a) Show that \(\text{MMS}_i \leq 1 \) for all agents \(i \).

(b) Consider the following iterative process: Add items iteratively into an empty bag \(B \) until one agent \(i \) values the bag at 1/2, i.e., \(u_i(B) \geq 1/2 \). Assign items in this bag to this agent \(i \), i.e., set \(X_i = B \), and continue the same process among the rest of the agents (now there is one less agent). Argue that every agent gets assigned a set of items with a total utility of 1/2.

\(^1\)More precisely, the number of triangles that are stabbed by the point in the \(i \)th iteration and not stabbed by the points from earlier iterations.

\(^2\)Each \(X_i \subseteq S \) is the bundle allocated to agent \(i \).
(c) Use (a) and (b) to argue that every agent gets at least 1/2 their MMS.

Problem 10.3: Given a directed graph $G = (V, E)$, we want to find a subgraph A that is acyclic (i.e., a dag), maximizing the number of edges in A.

(a) Show that the following deterministic algorithm yields a feasible solution with approximation ratio at least $1/2$:

1. fix an arbitrary (not random) order of the vertices v_1, \ldots, v_n
2. for $i = 2$ to n do {
3. \hspace{1em} $IN_i =$ all edges from $\{v_1, \ldots, v_{i-1}\}$ to v_i
4. \hspace{1em} $OUT_i =$ all edges from v_i to $\{v_1, \ldots, v_{i-1}\}$
5. \hspace{1em} if $|IN_i| \geq |OUT_i|$ then insert IN_i to A else insert OUT_i to A
}

(b) Show that the following randomized algorithm yields a feasible solution and analyze its expected approximation ratio:

1. take a random order of the vertices v_1, \ldots, v_n
2. for each edge $(v_i, v_j) \in E$ do
3. \hspace{1em} if $i < j$ then insert (v_i, v_j) to A