CS 473, Spring 2023 Homework 10 (due Apr 26 Wed 9pm)

Instructions: As in Homework 1.

Problem 10.1: We are given a set of n points P in \mathbb{R}^{2}, and a set of m triangles T. We say that a point $p \in P$ stabs a triangle $\Delta \in T$ if and only if $p \in \Delta$. Each point p stabs at most α triangles. We want to find $M \subset P$ of smallest size that stabs all triangles in T. Let $O P T=|M|$.
Consider the iterative algorithm, which in each iteration, adds the point that stabs the maximum number of unstabbed triangles yet. We analyze the approximation quality of this algorithm. Let s_{i} be the number of triangles stabbed by the point in the $i^{\text {th }}$ iteration 1
(a) Prove that $s_{1} \geq s_{2} \geq \cdots \geq s_{k}$.
(b) We define an epoch as a sequence of iterations from u to $v(v \geq u)$, such that $s_{v} \geq s_{u} / 2$. Find an upper bound on the length of the epoch $v-u+1$ as a function of $O P T$.
(c) Find an upper bound on the number of epochs as a function of α.
(d) Use the results in (b) and (c) to bound the approximation ratio of the algorithm.

Problem 10.2: We want to divide a set of indivisible items $S=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ among n agents. Each agent i has a utility of $u_{i j}$ for good g_{j}. We know that $\sum_{j \in[m]} u_{i j}=n$ for all $i \in[n]$, and $0 \leq u_{i j} \leq 1 / 2$ for all $i \in[n], j \in[m]$. (The notation $[n]$ stands for $\{1,2, \ldots, n\}$.)
Given an allocation $X=\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle^{2}$, we define the max-min share (MMS) of an agent i to be the maximum over all partitions, the least valued bundle, according to the utility function of this agent, i.e.,

$$
M M S_{i}=\max _{X=\left\langle X_{1}, X_{2}, \ldots, X_{n}\right\rangle} \min _{j \in[n]} u_{i}\left(X_{j}\right)
$$

where $u_{i}\left(X_{j}\right)=\sum_{g \in X_{j}} u_{i g}$. Intuitively, this is what agent i considers her fair share. Our goal is to find an allocation that gives every agent a good approximation of their MMS. An allocation X is said to be α-approximate $M M S$ if $u_{i}\left(X_{i}\right)=\sum_{g \in X_{i}} u_{i g} \geq \alpha M M S_{i}$. In this exercise, we find a $1 / 2$-approximate MMS allocation.
(a) Show that $M M S_{i} \leq 1$ for all agents i.
(b) Consider the following iterative process: Add items iteratively into an empty bag B until one agent i values the bag at $1 / 2$, i.e., $u_{i}(B) \geq 1 / 2$. Assign items in this bag to this agent i, i.e., set $X_{i}=B$, and continue the same process among the rest of the agents (now there is one less agent). Argue that every agent gets assigned a set of items with a total utility of $1 / 2$.

[^0](c) Use (a) and (b) to argue that every agent gets at least $1 / 2$ their MMS.

Problem 10.3: Given a directed graph $G=(V, E)$, we want to find a subgraph A that is acyclic (i.e., a dag), maximizing the number of edges in A.
(a) Show that the following deterministic algorithm yields a feasible solution with approximation ratio at least $1 / 2$:

1. fix an arbitrary (not random) order of the vertices v_{1}, \ldots, v_{n}
2. for $i=2$ to n do $\{$
3. $\mathrm{IN}_{i}=$ all edges from $\left\{v_{1}, \ldots, v_{i-1}\right\}$ to v_{i}
4. $\mathrm{OUT}_{i}=$ all edges from v_{i} to $\left\{v_{1}, \ldots, v_{i-1}\right\}$
5. if $\left|\mathrm{IN}_{i}\right| \geq\left|\mathrm{OUT}_{i}\right|$ then insert IN_{i} to A else insert OUT_{i} to A \}
(b) Show that the following randomized algorithm yields a feasible solution and analyze its expected approximation ratio:
6. take a random order of the vertices v_{1}, \ldots, v_{n}
7. for each edge $\left(v_{i}, v_{j}\right) \in E$ do
8. if $i<j$ then insert $\left(v_{i}, v_{j}\right)$ to A

[^0]: ${ }^{1}$ More precisely, the number of triangles that are stabbed by the point in the $i^{\text {th }}$ iteration and not stabbed by the points from earlier iterations.
 ${ }^{2}$ Each $X_{i} \subseteq S$ is the bundle allocated to agent i.

