cs473 Algorithms		Out: Fri., 2022-04-15 17:00
	Problem Set #9	
Prof. Michael A. Forbes	,,,	
Dr. Bhaskar Chaudhury		Due: Fri., 2022-04-22 17:00

All problems are of equal value.

1. Consider the polyhedra defined by

$$P = \{(x, y) \mid x + 2y \le 12, \\ -x + 3y \le 9, \\ 2x - 3y \le 8, \\ x, y > 0 \}$$

- (a) Prove that P is a *polytope*, in that P is contained in a finite volume bounding box $P \subseteq [-B, B]^2$ for some sufficiently large B > 0.
- (b) Give a list of all vertices of the polytope P. Prove that the list is correct.
- (c) Draw P as a subset of \mathbb{R}^2 .
- (d) Solve the linear program $\Pi = \max_{(x,y)\in P} 2x + y$. Give a proof of correctness, assuming facts stated in lecture.
- (e) Derive the canonical form dual \coprod to Π .
- 2. Consider (again) the polyhedra P defined above. **Showing your work**, use Fourier-Motzkin elimination to compute the following quantities.
 - (a) Compute the projection $\pi_x(P)$ of P onto the x-axis.
 - (b) Compute the projection $\pi_y(P)$ of P onto the y-axis.
 - (c) Solve the linear program $\Pi = \max_{(x,y)\in P} 2x + y$.
- 3. Alice and Bob play the following game. Alice chooses a number $i \in \{1, ..., n\}$, while Bob simultaneously chooses a number $j \in \{1, ..., m\}$. The game is governed by the payoff-matrix $A \in \mathbb{Z}^{n \times m}$, so that Alice wins $A_{i,j}$ and Bob wins $-A_{i,j}$ (hence this is a zero sum game).
 - (a) Suppose that Alice has a probabilistic strategy, where $i \in [n]$ is played with probability p_i . Thus, $p_i \geq 0$ and $\sum_{i \in [n]} p_i = 1$. Suppose further that Bob knows this strategy. Write a linear program to determine the probabilities $(q_j)_{1 \leq j \leq m}$ that Bob should play to maximize his expected payoff.
 - (b) Write the dual of the above LP.
 - (c) Suppose now that while Bob is playing against Alice, Bob is also playing the same game against Charlie. However, the payoff matrix against Charlie is now $C \in \mathbb{Z}^{n \times m}$, so that if Charlie plays $k \in [n]$ and Bob plays $j \in [m]$ that Charlie wins $C_{k,j}$ and Bob wins $-C_{k,j}$. Suppose that Bob is constrained to play the *same* strategy in both games. Supposing that Alice plays the probabilistic strategy $(p_i)_{i \in [n]}$, Charlie plays the probabilistic strategy $(r_k)_{k \in [n]}$, write an LP to determine the best probabilistic strategy for Bob that maximizes the minimum of the expected payoffs in the two games.