cs473 Algorithms

Out: Fri., 2022-03-25 17:00

Problem Set #7

Prof. Michael A. Forbes				
Dr. Bhaskar Chaudhury	Due:	Fri.,	2022-04-01	17:00

All problems are of equal value.

- 1. Load Balancing. Kleinberg-Tardos Chapter 13, Problem #11.
- 2. (Multiplicative Chernoff Bound). Let X_1, \ldots, X_n be independent random variables taking values over the continuous interval [0, 1]. Let $X = \sum_i X_i$. Show the following.
 - (a) For $r \in (-\infty, \ln 2]$, prove that $\mathbb{E}[e^{rX}] \leq e^{r\mathbb{E}[X]+r^2\mathbb{E}[X]}$, where you may use (without proof) that $1 + x \leq e^x$ for all $x \in \mathbb{R}$, and $e^x \leq 1 + x + x^2$ for $x \leq \ln 2$.
 - (b) Explain how the above used the independence of the X_i .
 - (c) Apply Markov's inequality $(\Pr[Y \ge a] \le \mathbb{E}[Y]/a)$ to e^{rX} , and optimize over r, to conclude that:
 - i. For $0 \le \epsilon \le \ln 4$, $\Pr[\mathsf{X} \ge (1+\epsilon)\mathbb{E}[\mathsf{X}]] \le e^{-\epsilon^2 \mathbb{E}[\mathsf{X}]/4}$.
 - ii. For $\epsilon \ge \ln 4$, $\Pr[\mathsf{X} \ge (1+\epsilon)\mathbb{E}[\mathsf{X}]] \le 2^{-\epsilon\mathbb{E}[\mathsf{X}]/2}$.
 - iii. For $0 \le \epsilon \le 1$, $\Pr[\mathsf{X} \le (1 \epsilon)\mathbb{E}[\mathsf{X}]] \le e^{-\epsilon^2 \mathbb{E}[\mathsf{X}]/4}$.
 - iv. (Additive Chernoff Bound) For $\epsilon \geq 0$, $\Pr[|\mathsf{X} \mathbb{E}[\mathsf{X}]| \geq \epsilon \cdot n] \leq 2e^{-\epsilon^2 n/4}$.

Note: The additive Chernoff bound suffices for applications such as estimating the errors in polling, but the multiplicative bound is in general stronger and often needed (e.g. consider $\mathbb{E}[X] = \lg n$ and the resulting bound for $\Pr[X \ge 2\mathbb{E}[X]]$). Note also that the above omits one range of parameters, where one can show that $\Pr[X \ge (1 + \epsilon)\mathbb{E}[X]] \le e^{-(1+\epsilon)\ln(1+\epsilon)\mathbb{E}[X]/4}$ if $\epsilon \ge 1$.

- 3. Let G be an undirected graph G = (V, E) with n vertices and m edges. We wish to partition the vertex set V into k disjoint sets $V = V_1 \sqcup V_2 \sqcup \cdots \sqcup V_k$, while minimizing the total number of *conflicting vertices*, where two vertices are in conflict if they are adjacent in G and belong to the same set in the partition.
 - (a) Give an O(n) time randomized algorithm that outputs a partition, where the expected number of conflicts is at most $\frac{m}{k}$.
 - (b) Give an O(n + m) time deterministic algorithm that outputs a partition, where the number of conflicts is at most m/k. Hint: Use a greedy approach.