CS 473: Algorithms

Ruta Mehta

University of Illinois, Urbana-Champaign

Spring 2021

Introduction to Linear Programming

Lecture 18 April 1, 2021

Ruta (UIUC) CS473 2 Spring 2021 2 / 49

Part I

Introduction to Linear Programming

Today ...

Recap: Linear Programming and Standard Formulation

Geometry

Vertex Solution

Simplex Method

A Factory Example

Problem

Can produce Laptop and iPhone, using resources *A*, *B*, *C*.

- \bullet A, C \rightarrow Laptop
- \bigcirc $B, C \rightarrow iPhone$
- Have A: 200, B: 300, and C: 400.
- Price of L: \$1, and iP: \$6.

How many units to manufacture to max profit?

A Factory Example

Problem

Can produce Laptop and iPhone, using resources *A*, *B*, *C*.

- \bullet $A, C \rightarrow Laptop$
- \bigcirc B, $C \rightarrow iPhone$
- Have A: 200, B: 300, and C: 400.
- Price of L: \$1, and iP: \$6.

How many units to manufacture to max profit?

Suppose x_1 units of Laptop and x_2 units of iPhone.

A Factory Example

Problem

Can produce Laptop and iPhone, using resources *A*, *B*, *C*.

- \bullet **A**, **C** \rightarrow Laptop
- $\mathbf{0}$ \mathbf{B} , $\mathbf{C} \rightarrow \mathrm{iPhone}$
- Have A: 200, B: 300, and C: 400.
- Price of L: **\$1**, and iP: **\$6**.

How many units to manufacture to max profit?

Suppose x_1 units of Laptop and x_2 units of iPhone.

$$\begin{array}{lll} \text{max} & x_1 + 6x_2 \\ \text{s.t.} & x_1 \leq 200 & \text{(A)} \\ & x_2 \leq 300 & \text{(B)} \\ & x_1 + x_2 \leq 400 & \text{(C)} \\ & x_1 \geq 0 \\ & x_2 \geq 0 \end{array}$$

Linear Programming (LP)

```
Variables: x_1, \dots, x_n

max/min: linear-function of x_1, \dots, x_n

subject to

linear inequalities/constraints over x_1, \dots, x_n
```

Ruta (UIUC) CS473 6 Spring 2021 6 / 49

Linear Programming Formulation

Let us produce x_1 units of Laptop and x_2 units of iPhone. Our profit can be computed by solving

maximize
$$x_1 + 6x_2$$
 subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 > 0$

Ruta (UIUC) CS473 7 Spring 2021 7 / 49

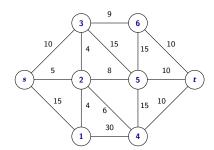
Linear Programming Formulation

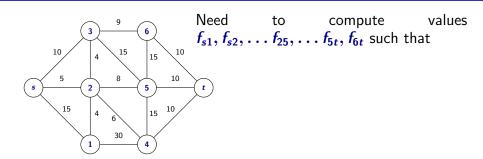
Let us produce x_1 units of Laptop and x_2 units of iPhone. Our profit can be computed by solving

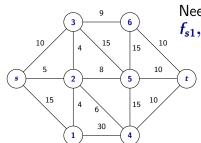
maximize
$$x_1+6x_2$$
 subject to $x_1\leq 200$ $x_2\leq 300$ $x_1+x_2\leq 400$ $x_1,x_2\geq 0$

What is the solution?

Ruta (UIUC) CS473 7 Spring 2021 7 / 49

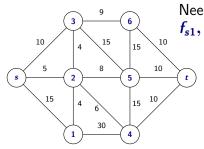






Need to compute values $f_{s1}, f_{s2}, \dots f_{25}, \dots f_{5t}, f_{6t}$ such that

$$f_{s1} \le 15$$
 $f_{s2} \le 5$ $f_{s3} \le 10$
 $f_{14} \le 30$ $f_{21} \le 4$ $f_{25} \le 8$
 $f_{32} \le 4$ $f_{35} \le 15$ $f_{36} \le 9$
 $f_{42} \le 6$ $f_{4t} \le 10$ $f_{54} \le 15$
 $f_{5t} < 10$ $f_{65} < 15$ $f_{6t} < 10$



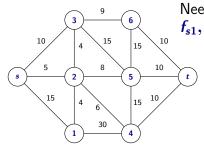
Need to compute values $f_{s1}, f_{s2}, \dots f_{25}, \dots f_{5t}, f_{6t}$ such that

$$f_{s1} \le 15$$
 $f_{s2} \le 5$ $f_{s3} \le 10$
 $f_{14} \le 30$ $f_{21} \le 4$ $f_{25} \le 8$
 $f_{32} \le 4$ $f_{35} \le 15$ $f_{36} \le 9$
 $f_{42} \le 6$ $f_{4t} \le 10$ $f_{54} \le 15$
 $f_{5t} < 10$ $f_{65} < 15$ $f_{6t} < 10$

and

$$f_{s1} + f_{21} = f_{14}$$
 $f_{s2} + f_{32} = f_{21} + f_{25}$ $f_{s3} = f_{32} + f_{35} + f_{36}$
 $f_{14} + f_{54} = f_{42} + f_{4t}$ $f_{25} + f_{35} + f_{65} = f_{54} + f_{5t}$ $f_{36} = f_{65} + f_{6t}$

Ruta (UIUC) CS473 8 Spring 2021 8 / 49



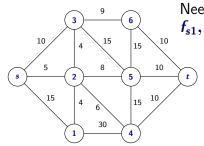
Need to compute values $f_{s1}, f_{s2}, \dots f_{25}, \dots f_{5t}, f_{6t}$ such that

$$f_{s1} \le 15$$
 $f_{s2} \le 5$ $f_{s3} \le 10$
 $f_{14} \le 30$ $f_{21} \le 4$ $f_{25} \le 8$
 $f_{32} \le 4$ $f_{35} \le 15$ $f_{36} \le 9$
 $f_{42} \le 6$ $f_{4t} \le 10$ $f_{54} \le 15$
 $f_{5t} < 10$ $f_{65} < 15$ $f_{6t} < 10$

and

$$\begin{array}{lll} f_{s1} + f_{21} = f_{14} & f_{s2} + f_{32} = f_{21} + f_{25} & f_{s3} = f_{32} + f_{35} + f_{36} \\ f_{14} + f_{54} = f_{42} + f_{4t} & f_{25} + f_{35} + f_{65} = f_{54} + f_{5t} & f_{36} = f_{65} + f_{6t} \\ f_{s1} \geq 0 & f_{s2} \geq 0 & f_{s3} \geq 0 & \cdots & f_{4t} \geq 0 & f_{5t} \geq 0 & f_{6t} \geq 0 \end{array}$$

Ruta (UIUC) CS473 8 Spring 2021 8 / 49



Need to compute values $f_{s1}, f_{s2}, \dots f_{25}, \dots f_{5t}, f_{6t}$ such that

$$egin{array}{lll} f_{s1} \leq 15 & f_{s2} \leq 5 & f_{s3} \leq 10 \\ f_{14} \leq 30 & f_{21} \leq 4 & f_{25} \leq 8 \\ f_{32} \leq 4 & f_{35} \leq 15 & f_{36} \leq 9 \\ f_{42} \leq 6 & f_{4t} \leq 10 & f_{54} \leq 15 \\ f_{5t} \leq 10 & f_{65} \leq 15 & f_{6t} \leq 10 \\ \hline \end{array}$$

and

$$\begin{array}{lll} f_{s1}+f_{21}=f_{14} & f_{s2}+f_{32}=f_{21}+f_{25} & f_{s3}=f_{32}+f_{35}+f_{36} \\ f_{14}+f_{54}=f_{42}+f_{4t} & f_{25}+f_{35}+f_{65}=f_{54}+f_{5t} & f_{36}=f_{65}+f_{6t} \\ f_{s1}\geq 0 & f_{s2}\geq 0 & f_{s3}\geq 0 & \cdots & f_{4t}\geq 0 & f_{5t}\geq 0 & f_{6t}\geq 0 \end{array}$$

maximize: $f_{s1} + f_{s2} + f_{s3}$.

Maximum Flow as a Linear Program

For a general flow network G = (V, E) with capacities c_e on edge $e \in E$, we have variables f_e indicating flow on edge e

Maximize
$$\sum_{e \text{ out of } s} f_e$$
 subject to $f_e \leq c_e$ for each $e \in E$ $\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e = 0$ $\forall v \in V \setminus \{s,t\}$ for each $e \in E$.

Ruta (UIUC) CS473 9 Spring 2021 9 / 49

Maximum Flow as a Linear Program

For a general flow network G = (V, E) with capacities c_e on edge $e \in E$, we have variables f_e indicating flow on edge e

Maximize
$$\sum_{e \text{ out of } s} f_e$$
 subject to $f_e \leq c_e$ for each $e \in E$ $\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e = 0$ $\forall v \in V \setminus \{s,t\}$ for each $e \in E$.

Number of variables: m, one for each edge. Number of constraints: m + n - 2 + m.

Minimum Cost Flow with Lower Bounds

... as a Linear Program

For a general flow network G = (V, E) with capacities c_e , lower bounds ℓ_e , and costs w_e , we have variables f_e indicating flow on edge e. Suppose we want a min-cost flow of value at least F.

Minimize
$$\sum_{e \in E} w_e f_e$$
 subject to $\sum_{e \text{ out of } s} f_e \geq F$ $f_e \leq c_e$ $f_e \geq \ell_e$ for each $e \in E$ $\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e = 0$ for each $v \in V - \{s, t\}$ $f_e \geq 0$ for each $e \in E$.

Ruta (UIUC) CS473 10 Spring 2021 10 / 49

Minimum Cost Flow with Lower Bounds

... as a Linear Program

For a general flow network G = (V, E) with capacities c_e , lower bounds ℓ_e , and costs w_e , we have variables f_e indicating flow on edge e. Suppose we want a min-cost flow of value at least F.

Minimize
$$\sum_{e \in E} w_e f_e$$
 subject to $\sum_{e \text{ out of } s} f_e \geq F$ $f_e \leq c_e$ $f_e \geq \ell_e$ for each $e \in E$ $\sum_{e \text{ out of } v} f_e - \sum_{e \text{ into } v} f_e = \mathbf{0}$ for each $v \in V - \{s, t\}$ for each $e \in E$.

Number of variables: m, one for each edge Number of constraints: 1 + m + m + n - 2 + m = 3m + n - 1.

Ruta (UIUC) CS473 10 Spring 2021 10 / 49

Linear Programs

Problem

Find a vector $\mathbf{x} \in \mathbb{R}^d$ that

$$\begin{array}{ll} \text{maximize/minimize} & \sum_{j=1}^{d} c_{j}x_{j} \\ \text{subject to} & \sum_{j=1}^{d} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1\dots p \\ & \sum_{j=1}^{d} a_{ij}x_{j} = b_{i} \quad \text{for } i=p+1\dots q \\ & \sum_{j=1}^{d} a_{ij}x_{j} \geq b_{i} \quad \text{for } i=q+1\dots n \end{array}$$

Linear Programs

Problem

Find a vector $x \in \mathbb{R}^d$ that

$$\begin{array}{ll} \text{maximize/minimize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \quad \text{for } i=1\dots p \\ & \sum_{j=1}^d a_{ij} x_j = b_i \quad \text{for } i=p+1\dots q \\ & \sum_{j=1}^d a_{ij} x_j \geq b_i \quad \text{for } i=q+1\dots n \end{array}$$

Input is matrix $A = (a_{ij}) \in \mathbb{R}^{n \times d}$, column vector $b = (b_i) \in \mathbb{R}^n$, and row vector $c = (c_i) \in \mathbb{R}^d$

Ruta (UIUC) CS473 11 Spring 2021 11 / 49

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

maximize
$$\sum_{j=1}^d c_j x_j$$
 subject to $\sum_{j=1}^d a_{ij} x_j \leq b_i$ for $i=1\ldots n$

Ruta (UIUC) CS473 12 Spring 2021 12 / 49

Canonical Form of Linear Programs

Canonical Form

A linear program is in canonical form if it has the following structure

maximize
$$\sum_{j=1}^d c_j x_j$$

subject to $\sum_{j=1}^d a_{ij} x_j \leq b_i$ for $i=1\ldots n$

Conversion to Canonical Form

• Replace $\sum_{j} a_{ij} x_j = b_i$ by

$$\sum_i a_{ij} x_j \leq b_i$$
 and $-\sum_i a_{ij} x_j \leq -b_i$

2 Replace $\sum_i a_{ij}x_j \geq b_i$ by $-\sum_i a_{ij}x_j \leq -b_i$

Ruta (UIUC) CS473 12 Spring 2021 12 / 49

Matrix Representation of Linear Programs

A linear program in canonical form can be written as

maximize
$$c \cdot x$$
 subject to $Ax \leq b$

where $A = (a_{ij}) \in \mathbb{R}^{n \times d}$, column vector $b = (b_i) \in \mathbb{R}^n$, row vector $c = (c_j) \in \mathbb{R}^d$, and column vector $x = (x_j) \in \mathbb{R}^d$

- Number of variable is d
- 2 Number of constraints is *n*

Other Standard Forms for Linear Programs

$$\begin{array}{lll} \text{maximize} & c \cdot x & \text{minimize} & c \cdot x \\ \text{subject to} & Ax \leq b & \text{subject to} & Ax \geq b \\ & x \geq 0 & x \geq 0 \end{array}$$

minimize
$$c \cdot x$$

subject to $Ax = b$
 $x \ge 0$

- First formal application to problems in economics by Leonid Kantorovich in the 1930s
 - However, work was ignored behind the Iron Curtain and unknown in the West

- First formal application to problems in economics by Leonid Kantorovich in the 1930s
 - However, work was ignored behind the Iron Curtain and unknown in the West
- Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics

Ruta (UIUC) CS473 15 Spring 2021 15 / 49

- First formal application to problems in economics by Leonid Kantorovich in the 1930s
 - However, work was ignored behind the Iron Curtain and unknown in the West
- Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
- First algorithm (Simplex) to solve linear programs by George Dantzig in 1947

- First formal application to problems in economics by Leonid Kantorovich in the 1930s
 - However, work was ignored behind the Iron Curtain and unknown in the West
- Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
- First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
- Kantorovich and Koopmans receive Nobel Prize for economics in 1975; Dantzig, however, was ignored
 - Koopmans contemplated refusing the Nobel Prize to protest Dantzig's exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as "a means for apologists of capitalism"

Back to the Factory example

Produce x_1 units of product 1 and x_2 units of product 2. Our profit can be computed by solving

maximize
$$x_1 + 6x_2$$
 subject to $x_1 \le 200$ $x_2 \le 300$ $x_1 + x_2 \le 400$ $x_1, x_2 > 0$

Ruta (UIUC) CS473 16 Spring 2021 16 / 49

Back to the Factory example

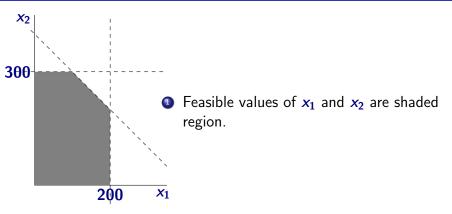
Produce x_1 units of product 1 and x_2 units of product 2. Our profit can be computed by solving

maximize
$$x_1+6x_2 \\ \text{subject to} \quad x_1 \leq 200 \quad x_2 \leq 300 \quad x_1+x_2 \leq 400 \\ x_1,x_2 \geq 0$$

What is the solution?

Ruta (UIUC) CS473 16 Spring 2021 16 / 49

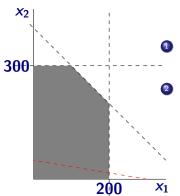
Solving the Factory Example



maximize
$$x_1+6x_2$$
 subject to $x_1\leq 200$ $x_2\leq 300$ $x_1+x_2\leq 400$ $x_1,x_2\geq 0$

Ruta (UIUC) CS473 17 Spring 2021 17 / 49

Solving the Factory Example



• Feasible values of x_1 and x_2 are shaded region.

Objective (Cost) function is a direction the line represents all points with same value of the function

maximize
$$x_1+6x_2$$
 subject to $x_1\leq 200$ $x_2\leq 300$ $x_1+x_2\leq 400$ $x_1,x_2>0$

Solving the Factory Example



• Feasible values of x_1 and x_2 are shaded region.

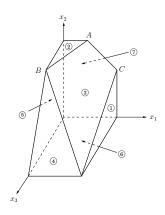
Objective (Cost) function is a direction the line represents all points with same value of the function; moving the line until it just leaves the feasible region, gives optimal values.

maximize
$$x_1+6x_2$$
 subject to $x_1\leq 200$ $x_2\leq 300$ $x_1+x_2\leq 400$ $x_1,x_2>0$

Linear Programming in 2-d

- Each constraint a half plane
- Feasible region is intersection of finitely many half planes it forms a polygon.
- Solution For a fixed value of objective function, we get a line. Parallel lines correspond to different values for objective function.
- Optimum achieved when objective function line just leaves the feasible region

An Example in 3-d



$$\begin{array}{cccc} \max & x_1 + 6x_2 + 13x_3 \\ & x_1 \leq 200 & & \textcircled{1} \\ & x_2 \leq 300 & & \textcircled{2} \\ & x_1 + x_2 + x_3 \leq 400 & & \textcircled{3} \\ & x_2 + 3x_3 \leq 600 & & \textcircled{4} \\ & x_1 \geq 0 & & \textcircled{5} \\ & x_2 \geq 0 & & \textcircled{6} \\ & x_3 \geq 0 & & \textcircled{7} \end{array}$$

Polytope

Figure from Dasgupta et al book.

Part II

Simple Algorithm

Factory Example: Alternate View

Original Problem

Recall we have,

maximize
$$x_1+6x_2$$
 subject to $x_1\leq 200$ $x_2\leq 300$ $x_1+x_2\leq 400$ $x_1,x_2\geq 0$

Ruta (UIUC) CS473 21 Spring 2021 21 / 49

Factory Example: Alternate View

Original Problem

Recall we have,

maximize
$$x_1+6x_2$$
 subject to $x_1 \leq 200$ $x_2 \leq 300$ $x_1+x_2 \leq 400$ $x_1,x_2 \geq 0$

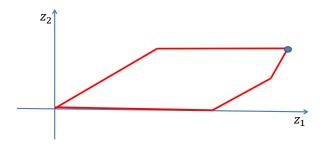
Transformation

Consider new variable z_1 and z_2 , such that $z_1 = x_1 + 6x_2$ and $z_2 = x_2$. Then $x_1 = z_1 - 6z_2$. In terms of the new variables we have

maximize
$$z_1$$
 subject to $z_1 - 6z_2 \leq 200$ $z_2 \leq 300$ $z_1 - 5z_2 \leq 400$ $z_1 - 6z_2 > 0$ $z_2 > 0$

Ruta (UIUC) CS473 21 Spring 2021 21 / 49

Transformed Picture



Feasible region rotated, and optimal value at the right-most point on polygon

Ruta (UIUC) CS473 22 Spring 2021 22 / 49

Observations about the Transformation

Observations

- Linear program can always be transformed to get a linear program where the optimal value is achieved at the point in the feasible region with highest x-coordinate
- Optimum value attained at a vertex of the polygon
- Since feasible region is convex, and objective function linear, every local optimum is a global optimum

A Simple Algorithm in 2-d

- optimum solution is at a vertex of the feasible region
- a vertex is defined by the intersection of two lines (constraints)

Ruta (UIUC) CS473 24 Spring 2021 24 / 49

A Simple Algorithm in 2-d

- optimum solution is at a vertex of the feasible region
- a vertex is defined by the intersection of two lines (constraints)

Algorithm:

- find all intersections between the n lines at most n^2 points
- ② for each intersection point $p = (p_1, p_2)$
 - check if **p** is in feasible region (how?)
 - if p is feasible evaluate objective function at p: $val(p) = c_1p_1 + c_2p_2$
- Output the feasible point with the largest value

A Simple Algorithm in 2-d

- optimum solution is at a vertex of the feasible region
- 2 a vertex is defined by the intersection of two lines (constraints)

Algorithm:

- find all intersections between the n lines at most n^2 points
- ② for each intersection point $p = (p_1, p_2)$
 - check if **p** is in feasible region (how?)
 - if p is feasible evaluate objective function at p: $val(p) = c_1p_1 + c_2p_2$
- Output the feasible point with the largest value

Running time: $O(n^3)$.

maximize
$$\sum_{j=1}^{d} c_j x_j$$
 subject to $\sum_{j=1}^{d} a_{ij} x_j \leq b_i$ for $i=1\ldots n$

Q: The set of points defined by a linear constraint

$$\{x \in \mathbb{R}^d \mid \sum_{j=1}^d a_{ij} x_j \leq b_i \}$$
 is,

- convex
- non-convex

maximize
$$\sum_{j=1}^{d} c_j x_j$$
 subject to $\sum_{j=1}^{d} a_{ij} x_j \leq b_i$ for $i=1\ldots n$

Q: The set of points defined by a linear constraint

$$\{x \in \mathbb{R}^d \mid \sum_{j=1}^d a_{ij} x_j \leq b_i \}$$
 is,

- convex
- on-convex

This is also called a halfspace.

Ruta (UIUC) CS473 25 Spring 2021 25 / 49

maximize
$$\sum_{j=1}^{d} c_j x_j$$
 subject to $\sum_{j=1}^{d} a_{ij} x_j \leq b_i$ for $i=1\ldots n$

- Q: Intersection of a finitely many convex sets is,
 - convex
 - 2 non-convex

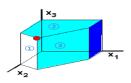
maximize
$$\sum_{j=1}^{d} c_j x_j$$
 subject to $\sum_{j=1}^{d} a_{ij} x_j \leq b_i$ for $i=1\ldots n$

- **Q**: Intersection of a finitely many convex sets is,
 - convex
 - 2 non-convex

Thus feasible set, $\{x \mid \sum_{j=1}^d a_{ij}x_j \leq b_i \text{ for } i=1\ldots n\}$, is convex. Defines a polytope.

Ruta (UIUC) CS473 26 Spring 2021 26 / 49

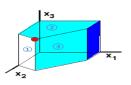
$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \\ & \text{for } i = 1 \dots n \end{array}$$



Caratheodory Theorem. Every point x in a d-dimensional polytope can be written as a *convex combination* of (d + 1) vertices.

Ruta (UIUC) CS473 27 Spring 2021 27 / 49

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \\ & \text{for } i = 1 \dots n \end{array}$$

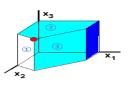


Caratheodory Theorem. Every point x in a d-dimensional polytope can be written as a *convex combination* of (d + 1) vertices.

Q: If x is a convex combination of vertices v_1, \ldots, v_k , then for a constant vector c which of the following holds

$$(c \cdot x) \leq \max_{i=1}^k (c \cdot v_i)$$

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \\ & \text{for } i = 1 \dots n \end{array}$$



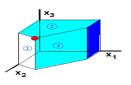
Caratheodory Theorem. Every point x in a d-dimensional polytope can be written as a *convex combination* of (d+1) vertices.

Q: If x is a convex combination of vertices v_1, \ldots, v_k , then for a constant vector c which of the following holds

$$(c \cdot x) \leq \max_{i=1}^k (c \cdot v_i)$$

There exists a vertex solution.

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \\ & \text{for } i = 1 \dots n \end{array}$$



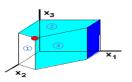
Caratheodory Theorem. Every point x in a d-dimensional polytope can be written as a *convex combination* of (d + 1) vertices.

If x is a convex combination of vertices v_1, \ldots, v_k , then

$$\min_{i=1}^k (c \cdot v_i) \leq (c \cdot x) \leq \max_{i=1}^k (c \cdot v_i)$$

There exists a vertex solution.

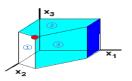
$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \\ & \text{for } i = 1 \dots n \end{array}$$



Each linear constraint defines a halfspace – Convex set.

Ruta (UIUC) CS473 29 Spring 2021 29 / 49

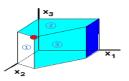
$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \\ & \text{for } i = 1 \dots n \end{array}$$



- Each linear constraint defines a halfspace Convex set.
- Feasible region is an intersection of halfspaces Convex polytope.

Ruta (UIUC) CS473 29 Spring 2021 29 / 49

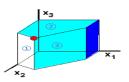
$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \\ & \text{for } i = 1 \dots n \end{array}$$



- Each linear constraint defines a halfspace Convex set.
- Peasible region is an intersection of halfspaces Convex polytope.
- Optimal value attained at a vertex of the polyhedron.
 - Using the Caratheodory Theorem. (Or the transformation)

Ruta (UIUC) CS473 29 Spring 2021 29 / 49

$$\begin{array}{ll} \text{maximize} & \sum_{j=1}^d c_j x_j \\ \text{subject to} & \sum_{j=1}^d a_{ij} x_j \leq b_i \\ & \text{for } i = 1 \dots n \end{array}$$



- Each linear constraint defines a halfspace Convex set.
- Feasible region is an intersection of halfspaces Convex polytope.
- Optimal value attained at a vertex of the polyhedron.
 - Using the Caratheodory Theorem. (Or the transformation)
- **1** Tight inequality $\sum_{j=1}^{d} a_{ij}x_j = b_i$ defines hyperplane of (d-1) dim.
- \odot A vertex is defined by intersection of d hyperplanes.
 - Solution of $\hat{A}x = \hat{b}$, where \hat{A} is $d \times d$.
 - Â has non-zero determinant linear independence.

Real problem: **d**-dimensions, **n**-constraints

Ruta (UIUC) CS473 30 Spring 2021 30 / 49

Real problem: d-dimensions, n-constraints

- optimum solution is at a vertex of the feasible region
- $oldsymbol{0}$ a vertex is defined by the intersection of $oldsymbol{d}$ hyperplanes
- number of vertices can be

Real problem: **d**-dimensions, **n**-constraints

- optimum solution is at a vertex of the feasible region
- ② a vertex is defined by the intersection of d hyperplanes
- **1** number of vertices can be $\Omega(n^d)$

Running time: $O(dn^{d+1})$ which is not polynomial since problem size is at most O(nd). Also not practical.

How do we find the intersection point of d hyperplanes in \mathbb{R}^d ?

Ruta (UIUC) CS473 30 Spring 2021 30 / 49

Real problem: **d**-dimensions, **n**-constraints

- optimum solution is at a vertex of the feasible region
- $oldsymbol{\circ}$ a vertex is defined by the intersection of $oldsymbol{d}$ hyperplanes
- **1** number of vertices can be $\Omega(n^d)$

Running time: $O(dn^{d+1})$ which is not polynomial since problem size is at most O(nd). Also not practical.

How do we find the intersection point of d hyperplanes in \mathbb{R}^d ? Using Gaussian elimination to solve $\hat{A}x = \hat{b}$ where \hat{A} is a $d \times d$ matrix and \hat{b} is a $d \times 1$ matrix.

Ruta (UIUC) CS473 30 Spring 2021 30 / 4

Simplex Algorithm

Simplex: Vertex hoping algorithm

Ruta (UIUC) CS473 31 Spring 2021 31 / 49

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions

- Which neighbor to move to?
- When to stop?
- How much time does it take?

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

Ruta (UIUC) CS473 32 Spring 2021 32 / 49

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

How does $(c \cdot x)$ change as we move from \hat{x} to x^* on the line joining the two?

Ruta (UIUC) CS473 32 Spring 2021 32 / 49

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

How does $(c \cdot x)$ change as we move from \hat{x} to x^* on the line joining the two?

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

How does $(c \cdot x)$ change as we move from \hat{x} to x^* on the line joining the two?

- $d = x^* \hat{x}$ is the direction from \hat{x} to x^* .
- $x = \hat{x} + \delta d$. As δ goes from 0 to 1, x moves from \hat{x} to x^* .

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

How does $(c \cdot x)$ change as we move from \hat{x} to x^* on the line joining the two?

- $d = x^* \hat{x}$ is the direction from \hat{x} to x^* .
- $x = \hat{x} + \delta d$. As δ goes from 0 to 1, x moves from \hat{x} to x^* .
- $\bullet (c \cdot d) = (c \cdot x^*) (c \cdot \hat{x}) > 0.$

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

How does $(c \cdot x)$ change as we move from \hat{x} to x^* on the line joining the two?

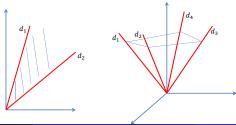
- $d = x^* \hat{x}$ is the direction from \hat{x} to x^* .
- $x = \hat{x} + \delta d$. As δ goes from 0 to 1, x moves from \hat{x} to x^* .
- $\bullet (c \cdot d) = (c \cdot x^*) (c \cdot \hat{x}) > 0.$
- $c \cdot x = c \cdot \hat{x} + \delta(c \cdot d)$. Strictly increasing with $\delta!$
- Due to convexity, all of these are feasible points.

Cone

Definition

Given a set of vectors $D = \{d_1, \ldots, d_k\}$, the cone spanned by them is just their positive linear combinations, i.e.,

$$\mathit{cone}(\mathit{D}) = \{d \mid d = \sum_{i=1}^k \lambda_i d_i, \; \mathsf{where} \; \lambda_i \geq 0, \forall i \}$$



Ruta (UIUC) CS473 33 Spring 2021 33 / 49

Cone (Contd.)

Lemma

If $d \in cone(D)$ and $(c \cdot d) > 0$, then there exists d_i such that $(c \cdot d_i) > 0$.

Proof.

To the contrary suppose $(c \cdot d_i) \leq 0$, $\forall i \leq k$. Since d is a positive linear combination of d_i 's,

$$(c \cdot d) = (c \cdot \sum_{i=1}^{k} \lambda_i d_i)$$

= $\sum_{i=1}^{k} \lambda_i (c \cdot d_i)$
< 0

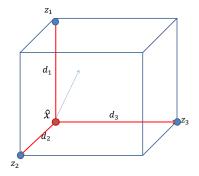
A contradiction!

Improving Direction Implies Improving Neighbor

Let z_1, \ldots, z_k be the neighboring vertices of \hat{x} . And let $d_i = z_i - \hat{x}$ be the direction from \hat{x} to z_i .

Lemma

Any feasible direction of movement d from \hat{x} is in the cone($\{d_1, \ldots, d_k\}$).



Observations

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

- $d = x^* \hat{x}$ is the direction from \hat{x} to x^* .
- $\bullet (c \cdot d) = (c \cdot x^*) (c \cdot \hat{x}) > 0.$

Observations

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

- $d = x^* \hat{x}$ is the direction from \hat{x} to x^* .
- $\bullet (c \cdot d) = (c \cdot x^*) (c \cdot \hat{x}) > 0.$
- Let d_i be the direction towards neighbor z_i .
- $d \in Cone(\{d_1,\ldots,d_k\}) \Rightarrow \exists d_i, (c \cdot d_i) > 0.$

Observations

For Simplex

Suppose we are at a non-optimal vertex $\hat{x} = (\hat{x}_1, \dots, \hat{x}_d)$ and optimal is $x^* = (x_1^*, \dots, x_d^*)$, then $c \cdot x^* > c \cdot \hat{x}$.

- $d = x^* \hat{x}$ is the direction from \hat{x} to x^* .
- $\bullet (c \cdot d) = (c \cdot x^*) (c \cdot \hat{x}) > 0.$
- Let d_i be the direction towards neighbor z_i .
- $d \in Cone(\{d_1,\ldots,d_k\}) \Rightarrow \exists d_i, \ (c \cdot d_i) > 0.$

Theorem

If vertex \hat{x} is not optimal then it has a neighbor where the objective value $(c \cdot x)$ improves.

Geometric view...

 $A \in \mathbb{R}^{n \times d}$ (n > d), $b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

Faces

- n constraints/inequalities.
 Each defines a hyperplane.
- Vertex: 0-dimensional face. Edge: 1D face. ... Hyperplane: (d-1)D face.

Geometric view...

 $A \in \mathbb{R}^{n \times d}$ (n > d), $b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

Faces

- n constraints/inequalities.
 Each defines a hyperplane.
- Vertex: 0-dimensional face. Edge: 1D face. . . . Hyperplane: (d-1)D face.
- r linearly independent hyperplanes forms d - r dimensional face.

Geometric view...

 $A \in \mathbb{R}^{n \times d} \ (n > d), \ b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

Faces

- n constraints/inequalities.
 Each defines a hyperplane.
- Vertex: 0-dimensional face. Edge: 1D face. . . . Hyperplane: (d-1)D face.
- r linearly independent hyperplanes forms d - r dimensional face.
- Vertices being of **0**D, **d** L.I. hyperplanes form a vertex.

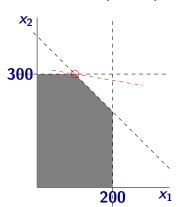
Geometric view...

 $A \in \mathbb{R}^{n \times d}$ (n > d), $b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

Faces

- n constraints/inequalities.
 Each defines a hyperplane.
- Vertex: 0-dimensional face. Edge: 1D face. ... Hyperplane: (d-1)D face.
- r linearly independent hyperplanes forms d - r dimensional face.
- Vertices being of **0**D, **d** L.I. hyperplanes form a vertex.

In 2-dimension (d = 2)



Geometric view...

 $A \in \mathbb{R}^{n \times d}$ (n > d), $b \in \mathbb{R}^{n}$, the constraints are: $Ax \leq b$

In 3-dimension (d = 3)

Faces

- n constraints/inequalities.
 Each defines a hyperplane.
- Vertex: 0-dimensional face. Edge: 1D face. . . . Hyperplane: (d-1)D face.
- r linearly independent hyperplanes forms d - r dimensional face.
- Vertices being of **0**D, **d** L.I.
 hyperplanes form a vertex.

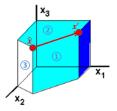


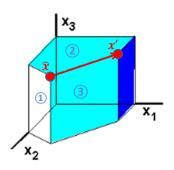
image source: webpage of Prof. Forbes W. Lewis

Ruta (UIUC) CS473 38 Spring 2021 38 / 49

Geometry view...

One neighbor per tight hyperplane. Therefore typically d.

- Suppose x' is a neighbor of \hat{x} , then on the edge joining is defined by (d-1) hyperplanes.
- hx and x' also shares these
 d 1 hyperplanes
- In addition one more hyperplane, say (Ax)_i = b_i, is tight at x̂. "Relaxing" this at x̂ leads to x'.



Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

Which neighbor to move to? One where objective value increases.

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

- Which neighbor to move to? One where objective value increases.
- When to stop? When no neighbor with better objective value.

Simplex Algorithm

Simplex: Vertex hoping algorithm

Moves from a vertex to its neighboring vertex

Questions + Answers

- Which neighbor to move to? One where objective value increases.
- When to stop? When no neighbor with better objective value.
- How much time does it take? At most d neighbors to consider in each step.

Ruta (UIUC) CS473 40 Spring 2021 40 / 49

Simplex in 2-d

Simplex Algorithm

- Start from some vertex of the feasible polygon.
- 2 Compare value of objective function at current vertex with the value at 2 "neighboring" vertices of polygon.
- If neighboring vertex improves objective function, move to this vertex, and repeat step 2.
- If no improving neighbor (local optimum), then stop.

Ruta (UIUC) CS473 41 Spring 2021 41 / 49

Simplex in Higher Dimensions

Simplex Algorithm

- Start at a vertex of the polytope.
- Compare value of objective function at each of the d "neighbors".
- Move to neighbor that improves objective function, and repeat step 2.
- If no improving neighbor, then stop.

Simplex in Higher Dimensions

Simplex Algorithm

- Start at a vertex of the polytope.
- Compare value of objective function at each of the d "neighbors".
- Move to neighbor that improves objective function, and repeat step 2.
- If no improving neighbor, then stop.

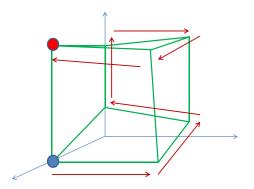
Simplex is a greedy local-improvement algorithm! Works because a local optimum is also a global optimum — convexity of polyhedra.

Solving Linear Programming in Practice

Naïve implementation of Simplex algorithm can be very inefficient

Solving Linear Programming in Practice

 Naïve implementation of Simplex algorithm can be very inefficient – Exponential number of steps!



Ruta (UIUC) CS473 43 Spring 2021 43 / 49

Solving Linear Programming in Practice

- Naïve implementation of Simplex algorithm can be very inefficient
 - Choosing which neighbor to move to can significantly affect running time
 - Very efficient Simplex-based algorithms exist
 - Simplex algorithm takes exponential time in the worst case but works extremely well in practice with many improvements over the years
- Non Simplex based methods like interior point methods work well for large problems.

Major open problem for many years: is there a polynomial time algorithm for linear programming?

Ruta (UIUC) CS473 45 Spring 2021 45 / 49

Major open problem for many years: is there a polynomial time algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm using the Ellipsoid method.

- major theoretical advance
- highly impractical algorithm, not used at all in practice
- o routinely used in theoretical proofs.

Major open problem for many years: is there a polynomial time algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm using the Ellipsoid method.

- major theoretical advance
- highly impractical algorithm, not used at all in practice
- o routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time algorithm, the interior point method.

- very practical for some large problems and beats simplex
- also revolutionized theory of interior point methods

CS473 45 Spring 2021 45 / 49

Major open problem for many years: is there a polynomial time algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm using the Ellipsoid method.

- major theoretical advance
- highly impractical algorithm, not used at all in practice
- o routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time algorithm, the interior point method.

- very practical for some large problems and beats simplex
- also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved enormously and is the method of choice.

Degeneracy

- The linear program could be infeasible: No points satisfy the constraints.
- The linear program could be unbounded: Polygon unbounded in the direction of the objective function.
- More than d hyperplanes could be tight at a vertex, forming more than d neighbors.

Ruta (UIUC) CS473 46 Spring 2021 46 / 49

Infeasibility: Example

maximize
$$x_1+6x_2$$
 subject to $x_1\leq 2$ $x_2\leq 1$ $x_1+x_2\geq 4$ $x_1,x_2\geq 0$

Infeasibility has to do only with constraints.

Infeasibility: Example

maximize
$$x_1+6x_2$$
 subject to $x_1 \leq 2$ $x_2 \leq 1$ $x_1+x_2 \geq 4$ $x_1,x_2 \geq 0$

Infeasibility has to do only with constraints.

No starting vertex for Simplex.

Infeasibility: Example

maximize
$$x_1+6x_2$$
 subject to $x_1\leq 2$ $x_2\leq 1$ $x_1+x_2\geq 4$ $x_1,x_2\geq 0$

Infeasibility has to do only with constraints.

No starting vertex for Simplex. How to detect this?

Ruta (UIUC) CS473 47 Spring 2021 47 / 49

Unboundedness: Example

$$\begin{array}{ccc} \text{maximize} & x_2 \\ x_1 + x_2 & \geq & 2 \\ x_1, x_2 & \geq & 0 \end{array}$$

Unboundedness depends on both constraints and the objective function.

Ruta (UIUC) CS473 48 Spring 2021 48 / 49

Unboundedness: Example

$$\begin{array}{ccc} \text{maximize} & x_2 \\ x_1 + x_2 & \geq & 2 \\ x_1, x_2 & \geq & 0 \end{array}$$

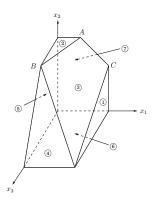
Unboundedness depends on both constraints and the objective function.

If unbounded in the direction of objective function, then Simplex detects it.

Ruta (UIUC) CS473 48 Spring 2021 48 / 49

Degeneracy and Cycling

More than **d** inequalities tight at a vertex.

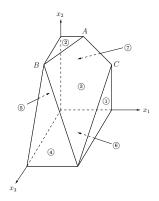


$$\begin{array}{cccc} \max & x_1 + 6x_2 + 13x_3 \\ & x_1 \leq 200 & & \text{\scriptsize \textcircled{1}} \\ & x_2 \leq 300 & & \text{\scriptsize \textcircled{2}} \\ & x_1 + x_2 + x_3 \leq 400 & & \text{\scriptsize \textcircled{3}} \\ & x_2 + 3x_3 \leq 600 & & \text{\scriptsize \textcircled{4}} \\ & x_1 \geq 0 & & \text{\scriptsize \textcircled{5}} \\ & x_2 \geq 0 & & \text{\scriptsize \textcircled{6}} \end{array}$$

 $x_3 \ge 0$

Degeneracy and Cycling

More than **d** inequalities tight at a vertex.



$$\max x_1 + 6x_2 + 13x_3$$

$$x_1 \le 200$$

$$x_2 \le 300$$

$$x_1 + x_2 + x_3 \le 400$$

$$x_2 + 3x_3 \le 600$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

 $x_3 > 0$

Depending on how Simplex is implemented, it may cycle at this vertex.