Flow network dirgraph G vertices s, t capacities c(e)

Maximum Flow

$$
\begin{aligned}
& \text { Compnte } f: E \rightarrow R-f(u \rightarrow v) \geq 0 \\
& -f(u \rightarrow w) \leq c(u \rightarrow v) \\
& \sum_{u} f(u \rightarrow v)=\sum_{v} f(u \rightarrow w)
\end{aligned}
$$

maximize net flow ont of s
Minimum $C-t$
Comprite patition $U=S U T \quad S \cap T=\varnothing$ minimize $\sum_{n \in S} \sum_{v \in T} c(n \rightarrow i)$

Maxflow Mimant Theorem -Maxflon = Mincut
Ford-Fulkersanf $G, s, t, c)$

$$
\begin{aligned}
& F \\
& G_{f}
\end{aligned}
$$

while there is a path from stot in G_ O O angment f olong path rebuild GF to flow \checkmark alue returnf
O (E)
\rightarrow If mins algo halts, it retuins a maxflon
If all caps are integers \rightarrow integer m ax fow

$$
\rightarrow O\left(E \cdot 2 F^{*} 1\right)
$$

$E=$ \#efges L value of nax flow exponential i $\#$ \#iterations \# bits in inpit

$$
\phi=\frac{\sqrt{5}-1}{2} \approx 0.618
$$

Maxflow value $=2 x+1=21$ $x=100$

$\angle B C B A B C B A B C B A \therefore$
$1 \phi \phi \phi^{2} \phi^{2} \phi^{3} \phi^{3} \cdots$
Total flow in limit $=1+\sum_{i>0} 2 \phi i$
Why should we care?

- Integers are artifial
- Floating point errors

Flow = assignment of numbers to edges satisfying constraints
$=$ sum of paths and cycles
Flows can be combined
F, F^{\prime} flows \longrightarrow F $+f^{\prime}$ is also flow

$$
F \div F^{\prime}
$$

Residual

$$
5 F+\pi \cdot F^{1}
$$

Paths "are" Flows

Residual
Cycles "are" flows
$\rightarrow(5$

Flow Decomp: Every flow is sum of no th and cycle flows

Every circulation is sum of cycles
Proof: By induction on \#edges with $f>0$.
Let f be any circulation:

- $F=0 \Longrightarrow F$ is empty sin
- [f is a cycle \Rightarrow trivial]
- $F \neq 0 \Rightarrow$

Start at any vezex, follow edges with FOO until you repeat some vertex
Cycle inf - C
subtract flo u From every edge in C

$$
\min \{E(e) l e \in C\} \doteq F_{\min }
$$

By IH, we can decompose $F-F_{\min }: C$ into cycles
(1) Any acyclic Flow \rightarrow Epathis
(2) There is an acyclic max flow
(3) Given f, comprite Fin de comp in O(UE) tine

O(v) - Find cycle
O (E) iteration

tight in worst case

Any maxflou alg that works one path at a tine take Ω (UE) time.

Edmonds - Karp - Choose a good augmenting path ?

(1). Choose augmenting path "Fattest". with largest capacity
(2) choose augmenting path with Fewest edges
Fattest path - maximize min capacity $O(E \log V)$ time "best-First search" per iteration. ike Dijkstra's/Kruskall's
\#iterations? Assume $c(e)$ are integers.
Middle current flow F in G

$$
f^{\prime}=\text { maxim flow in } G_{f}
$$

Then $f+f^{\prime}$ is maxflow G
Flow decomposition $\Rightarrow E^{\prime}$ is the sum of \leq E paths and some cycles.
\Rightarrow fattest pate in thin decomposition caries? $\left.\right|^{\prime} \mid \% E$ Flow

$$
\Rightarrow \quad \text { has capacity } \geqslant\left|F^{\prime}\right| / E
$$

\Rightarrow Fattest pattren stat has capacity $\geqslant|F| \%$
$|F|$ increases by $\geqslant\left|f^{\prime}\right| \mid$ 三
(f^{\prime}) decreases by $\geqslant\left|F^{\prime}\right| \%$ at each teration
So after kitcrations

$$
\left.\left|f^{\prime}\right| \leq \left\lvert\, 1-\frac{1}{E}\right.\right)^{k} \cdot\left|f^{*}\right| \text { for former } k,|f|<1
$$

$k=E \cdot \ln \left|F^{*}\right|$ iterations
Tuncuキ:

$$
\begin{aligned}
\left|F^{\prime}\right| \leqslant\left(1-\frac{1}{E}\right)^{k} \cdot\left|f^{*}\right| & =\left(1-\frac{1}{E}\right)^{\left.|\cdot \ln | f^{*}\right)}\left|F^{*}\right| \\
& \leq\left(e^{-1 \mid E}\right)^{E \cdot \ln \left(f^{*}\right)} \cdot\left|F^{*}\right| \\
& =e^{-\ln \left|F^{*}\right|} \cdot\left|F^{*}\right| \\
& =\frac{1}{\left|F^{*}\right|} \cdot\left|F^{*}\right|=1
\end{aligned}
$$

$O\left(E^{2} \log V: \log \mid F * 1\right)$ time polynomial time

Shortest aug: path Use BFS instead of WFS min\#edges

Intuition: Over time, vertices get further From s. at each iteration in G_{f}

Let $G_{i}=$ residual graph aFter i augmentations $G_{0}=G$ unweighted short test path
$\operatorname{dist}_{i}(u)=$ level $I_{i}(v)=$ distance Frei s to i in G_{i}
Lemma: level $;(y) \geqslant$ leveli-i (x) for all u
Proof induction on level (v)
Lemma; Each edge nov leaves the residual graph $\leqslant O(u)$ tines Intuition:

\#iteration's $=O(U E) \Rightarrow O\left(V E^{2}\right)$ time

Orlin's algorithm [2012] O(VE) time
Use Orlin or Ford-Fulkerson invour Holexans

