
It is a very sad thing that nowadays there is so little useless information.
— Oscar Wilde, “A Few Maxims for the Instruction Of The Over-Educated” (1894)

Ninety percent of science fiction is crud. But then, ninety percent of everything is crud,
and it’s the ten percent that isn’t crud that is important.

— [Theodore] Sturgeon’s Law (1953)

Dis-moi ce que tu manges, je te dirai ce que tu es.
— Jean Anthelme Brillat-Savarin, Physiologie du Gout (1825)

D
Advanced Dynamic Programming

[Read Chapter 3 first.]
Status: Alpha

Dynamic programming is a powerful technique for efficiently solving recursive
problems, but it’s hardly the end of the story. In many cases, once we have a basic
dynamic programming algorithm in place, we can make further improvements to bring
down the running time or the space usage. We saw one example in the Fibonacci
number algorithm. Buried inside the naïve iterative Fibonacci algorithm is a recursive
problem—computing a power of a matrix—that can be solved more efficiently by dynamic
programming techniques—in this case, repeated squaring.

D.1 Saving Space: Divide and Conquer

Just as we did for the Fibonacci recurrence, we can reduce the space complexity of our
edit distance algorithm from O(mn) to O(m+n) by only storing the current and previous
rows of the memoization table. This “sliding window” technique provides an easy space
improvement for most (but not all) dynamic programming algorithm.

© 2020 Jeff Erickson http://algorithms.wtf 1

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://algorithms.wtf

D. ADVANCED DYNAMIC PROGRAMMING

Unfortunately, this technique seems to be useful only if we are interested in the cost
of the optimal edit sequence, not if we want the optimal edit sequence itself. By throwing
away most of the table, we apparently lose the ability to walk backward through the
table to recover the optimal sequence.

Fortunately for memory-misers, it is possible to compute the optimal edit sequence in
O(mn) time, using just O(m+n) space, by combining dynamic programming with divide
and conquer. I’ll describe two such algorithms, the first proposed in 1975 Dan Hirschberg,
and the second proposed by Rezaul Alam Chowdhury and Vijaya Ramachandran in 2005.

Variants of both of these divide-and-conquer strategies can be applied to almost
any dynamic programming problem that looks for an optimal path in the dependency
dag. The resulting algorithms return the actual path in the same time and space bounds
as computing the cost of that optimal path. Consequently, when we develop dynamic
programming algorithms to compute optimal structures, it almost always suffices to
focus on the simpler problem of computing the cost of the optimal structure, rather than
the optimal structure itself.

Hirschberg’s algorithm

Hirschberg’s main insight was to compute not only the edit distance for each pair of
prefixes, but also a single position in the middle of the optimal edit sequence for those
prefixes. Any optimal edit sequence that transforms A[1 .. m] into B[1 .. n] can be split
into two smaller edit sequences, one transforming A[1 .. m/2] into B[1 .. h] and the other
transforming A[m/2+ 1 .. m] into B[h+ 1 .. n], for some index h between 1 and n.

To compute this breakpoint index h, we define a second function Half(i, j) such that
some optimal edit sequence from A[1 .. i] into B[1 .. j] contains an optimal edit sequence
from A[1 .. m/2] to B[1 ..Half(i, j)]. We can define this function recursively as follows:

Half(i, j) =

∞ if i < m/2

j if i = m/2

Half(i − 1, j) if i > m/2 and Edit(i, j) = Edit(i − 1, j) + 1

Half(i, j − 1) if i > m/2 and Edit(i, j) = Edit(i, j − 1) + 1

Half(i − 1, j − 1) otherwise

(Because there there may be more than one optimal edit sequence, this is not the only
correct definition.) A simple inductive argument implies that Half(m, n) is indeed the
correct value of h. We can easily modify our earlier algorithm so that it computes
Half(m, n) at the same time as the edit distance Edit(m, n), all in O(mn) time, using only
O(m) space.

Finally, to compute the optimal sequence of edit operations that transforms A
into B, we recursively compute the optimal sequences transforming A[1 .. m/2] into
B[1 ..Half(m, n)] and transforming A[m/2 + 1 .. m] into B[Half(m, n) + 1 .. n]. The
recursion bottoms out when one string has only constant length, in which case we can

2

D.1. Saving Space: Divide and Conquer

Edit A L G O R I T H M

0 1 2 3 4 5 6 7 8 9
A 1 0 1 2 3 4 5 6 7 8
L 2 1 0 1 2 3 4 5 6 7
T 3 2 1 1 2 3 4 4 5 6
R 4 3 2 2 2 2 3 4 5 6
U 5 4 3 3 3 3 3 4 5 6
I 6 5 4 4 4 4 3 4 5 6
S 7 6 5 5 5 5 4 4 5 6
T 8 7 6 6 6 6 5 4 5 6
I 9 8 7 7 7 7 6 5 5 6
C 10 9 8 8 8 8 7 6 6 6

Half A L G O R I T H M

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

A ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

L ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

T ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

R ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

U 0 1 2 3 4 5 6 7 8 9
I 0 1 2 3 4 5 5 5 5 5
S 0 1 2 3 4 5 5 5 5 5
T 0 1 2 3 4 5 5 5 5 5
I 0 1 2 3 4 5 5 5 5 5
C 0 1 2 3 4 5 5 5 5 5

Figure D.1. Memoization tables for Edit (showing an optimal edit path) and Half.

determine the optimal edit sequence in linear time using our old dynamic programming
algorithm. The running time of the resulting algorithm satisfies the following recurrence:

T (m, n) =

O(n) if m≤ 1

O(m) if n≤ 1

O(mn) + T (m/2, h) + T (m/2, n− h) otherwise

It’s easy to prove inductively that T (m, n) = O(mn), no matter what the value of h is.
Specifically, the entire algorithm’s running time is at most twice the time for the initial
dynamic programming phase, or about four times the running time of the textbook
dynamic programming algorithm to compute edit distance alone.

T (m, n)≤ αmn+ T (m/2, h) + T (m/2, n− h)

≤ αmn+ 2αmh/2+ 2αm(n− h)/2 [inductive hypothesis]
= 2αmn

A similar inductive argument implies that the algorithm uses only O(n+m) space.

Chowdhury and Ramachandran’s algorithm

Choudhury and Ramachandran pushed Hirschberg’s divide-and-conquer idea further,
developing another algorithm with the same O(mn) time and O(n+m) space bounds,
but which in practice appears to be at least twice as fast on relatively small instances,
and even faster on large instances because of improved cache performance.1 Instead of

1In 2004, Joon-Sang Park, Michael Penner, and Viktor K. Prasanna proposed a similar divide-and-
conquer strategy for improving the cache performance of the Floyd-Warshall all-pairs-shortest-path algorithm.
Already in 1987, Alberto Apostolico, Mikhail J. Atallah, Lawrence L. Larmore, and Scott McFaddin described
an efficient parallel algorithm for computing edit distance, which uses a similar divide-and-conquer strategy
as Choudhury and Ramachandran’s EditBoundary.

3

D. ADVANCED DYNAMIC PROGRAMMING

repeatedly sweeping through the entire memoization array to determine the recursive
subproblems, their algorithm intuitively consists of two divide-and-conquer phases: a
forward phase to compute optimal edit distances, followed by a backward phase to
calculate the actual edit sequence. To simplify presentation, I’ll assume that both
strings have the same length (m= n) and that length is a power of 2; neither of these
assumptions is significant.

First I’ll describe the forward algorithm EditBoundary, which is itself an efficient
replacement for the usual dynamic programming algorithm. A block is a square subarray
of the memoization array of the form Edit[i .. i +w, j .. j +w], described by the index i of
the top row, the index j of the left column, and the integer w (which is always a power
of 2).

The input to EditBoundary consists of a triple (i, j, w) that describes an active block,
along with two arrays T[0 .. w] and L[0 .. w] that contain the values in the top row (i)
and leftmost column (j) of the active block. The output of EditBoundary consists of
two arrays B[0 .. w] and R[0 .. w] that contain the values of the bottom row (i +w) and
rightmost column (j +w) of the active block. The algorithm has two cases:
• If r = 0, we compute the only unknown output value Edit[i, j] in O(1) time using

the edit distance recurrence.
• Otherwise, we split the active block into quadrants with half as many rows and

columns. We recursively process the upper left quadrant, then the upper-right
quadrant, then the lower left quadrant, and finally the lower right quadrant, using
the outputs from earlier quadrants as inputs to later quadrants.

Our top-level function call is EditBoundary(0,0, n, T[0 .. n], L[0 .. n]), where T[i] =
L[i] = i for every index i, as required by the base cases of the edit-distance recurrence.

EditBoundary(i, j, w, T[0 .. w], L[0 .. w]):
if w= 1

B[0]← L[1]; R[0]← T[1]
compute B[1] using the edit distance recurrence
R[1]← B[1]
return R[0 .. 1], B[0 .. 1]

else
T11← T[0 .. w/2]; T12← T[w/2 .. w]
L11← L[0 .. w/2]; L21← L[w/2 .. w]
T21, L12← EditBoundary(i, j, w/2, T11, L11)
T22, R12← EditBoundary(i, j +w/2, w/2, T12, L12)
B21, L22← EditBoundary(i +w/2, j, w/2, T21, L21)
B22, R22← EditBoundary(i +w/2, j +w/2, w/2, T22, L22)
return B21 · B22, R12 · R22 〈〈Concatenation〉〉

The running time of this algorithm obeys the recurrence T (n) = 4T (n/2) +O(1),
and its space usage obeys the recurrence S(n) = O(n) + S(n/2). We conclude that the
algorithm runs in O(n2) time and uses O(n) space.

4

D.1. Saving Space: Divide and Conquer

Edit A L G O R I T H

0 1 2 3 4 5 6 7 8
A 1
L 2
T 3
R 4
U 5
I 6
S 7
T 8

Edit A L G O R I T H

0 1 2 3 4 5 6 7 8
A 1 3
L 2 2
T 3 2
R 4 3 2 2 2
U 5
I 6
S 7
T 8

Edit A L G O R I T H

0 1 2 3 4 5 6 7 8
A 1 3 7
L 2 2 6
T 3 2 5
R 4 3 2 2 2 2 3 4 5
U 5
I 6
S 7
T 8

Edit A L G O R I T H

0 1 2 3 4 5 6 7 8
A 1 3 7
L 2 2 6
T 3 2 5
R 4 3 2 2 2 2 3 4 5
U 5 3
I 6 4
S 7 5
T 8 7 6 6 6

Edit A L G O R I T H

0 1 2 3 4 5 6 7 8
A 1 3 7
L 2 2 6
T 3 2 5
R 4 3 2 2 2 2 3 4 5
U 5 3 5
I 6 4 5
S 7 5 5
T 8 7 6 6 6 6 5 4 5

Edit A L G O R I T H

8
A 7
L 6
T 5
R 5
U 5
I 5
S 5
T 8 7 6 6 6 6 5 4 5

Figure D.2. Chowdhury and Ramachandran’s edit distance algorithm: input, four recursive calls, and output.

Choudhury and Ramachandran’s more complex algorithm EditSequence actually
computes an optimal path through the memoization array. This algorithm takes two
additional input parameters: the indices (t i, tj) of a cell on the right or bottom boundary
of the active block. The algorithm returns the indices (si, s j) of a cell on the left
or top boundary of the active block, along with an optimal path through the block
from (si, s j) to (t i, tj). To compute the optimal edit sequence for two strings, we call
EditSequence(0, 0, n, T[0 .. n], L[0 .. n], n, n), where again T[i] = L[i] = i for every
index i.

Each recursive call in EditSequence updates the indices t i and tj and returns a
subpath Zab; the final path is the concatenation of these subpaths. The key observation
is that a recursive calls to EditSequence is non-trivial if and only if the optimal
edit path intersects the corresponding quadrant. Thus, the running time obeys the
recurrence T (n) = O(n2) + 3T (n/2), and the space usage still satisfies the recurrence
S(n) = O(n) + S(n/2). We conclude that Chowdhury and Ramachandran’s algorithm
computes the optimal edit sequence in O(n2) time and uses O(n) space.

More careful analysis implies that EditSequence makes at most 2(n/2r) recursive
calls on blocks of size 2r , namely, one call for each block that the optimal edit path
intersects. Each call to EditSequence invokes EditBoundary on only three of the four
quadrants of its active block. It follows that the running time of EditSequence is at
most three times the running time of EditBoundary.

lg n
∑

r=0

�

2
n
2r
·

3
4

22r
�

= 3n
lg n
∑

r=0

2r−1 < 3n2

5

D. ADVANCED DYNAMIC PROGRAMMING

EditSequence(i, j, w, T[0 .. w], L[0 .. w], t i, tj):
if w= 1
〈〈Base case: Brute force〉〉
compute operation Z and indices si, s j using the edit distance recurrence
return Z , si, s j

else if (t i ≤ i or t i ≥ i +w or tj≤ j or tj≥ j +w or (t i < i +w and tj< j +w))
〈〈Trivial case: target indices are not on the outer block boundary〉〉
return ε, t i, tj

else
〈〈Forward phase: Set up inputs for recursive subproblems〉〉
T11← T[0 .. w/2]; T12← T[w/2 .. w];
L11← L[0 .. w/2]; L21← L[w/2 .. w]
T21, L12← EditBoundary(i, j, w/2, T11, L11)
T22, R12← EditBoundary(i, j +w/2, w/2, T12, L12)
B21, L22← EditBoundary(i +w/2, j, w/2, T21, L21)

〈〈Backward phase: Recursively backtrack along the optimal edit path.〉〉
〈〈At most three of these recursive calls actually do anything.〉〉
〈〈Each nontrivial recursive call updates t i and tj.〉〉
Z22, t i, tj← EditSequence(i +w/2, j +w/2, w/2, T22, L22, t i, tj)
Z21, t i, tj← EditSequence(i +w/2, j, w/2, T21, L21, t i, tj)
Z12, t i, tj← EditSequence(i, j +w/2, w/2, T12, L12, t i, tj)
Z11, t i, tj← EditSequence(i, j, w/2, T11, L11, t i, tj)
return Z11 · Z12 · Z21 · Z22, t i, tj

Figure D.3. Chowdhury and Ramachandran’s algorithm for recursively computing an optimal edit sequence.

Edit D I S T A N C E

0 1 2 3 4 5 6 7 8
B 1
R 2
A 3
N 4
C 5
H 6
E 7
D 8

Edit D I S T A N C E

0 1 2 3 4 5 6 7 8
B 1 4
R 2 4
A 3 4
N 4 4 4 4 4 4 4 5 6
C 5 5
H 6 6
E 7 7
D 8 8

Edit D I S T A N C E

0 1 2 3 4 5 6 7 8
B 1 4
R 2 4
A 3 4
N 4 4 4 4 4 4
C 5 4
H 6 5
E 7 5
D 8 6

Edit D I S T A N C E

0 1 2 3 4 5 6 7 8
B 1 4
R 2 4
A 3 4
N 4 4 4
C 4
H 5
E 5
D 6

Edit D I S T A N C E

0 1 2 3 4
B 1
R 2 4
A 3 4
N 4 4
C 4
H 5
E 5
D 6

Edit D I S T A N C E

0
B 1
R 2 3 4
A 4
N 4
C 4
H 5
E 5
D 6

Figure D.4. Chowdhury and Ramachandran’s algorithm in action: Input, EDITBOUNDARY calls in three quadrants,
recursive calls in all four quadrants, and output. The bottom left recursive call is trivial.

6

D.2. Saving Time: Four Russians

D.2 Saving Time: Four Russians

ÆÆÆThis is still very rough. Figures would probably help.

The idea of breaking the memoization table and its iterative evaluation into blocks
was already proposed in a brief note published in 1970 by Vladimir Arlazarov, Yefim
Dinitz, Alexander Kronrod, and Igor Faradžev. These four Russians made two important
observations. First, the entire input (upper left boundary) and output (lower left
boundary) values of any sufficiently small block can be encoded to fit into a single
machine word. Second, the number of distinct blocks with width w is only(!) exponential
in w. Thus, we can precompute and store all blocks of sufficiently small width w in a
lookup table in O(n) time, and then evaluate blocks of width w in the actual memoization
array in O(1) time using that lookup table. This speedup is now commonly known as the
“Four Russians” technique.

The Four Russians technique was first applied to computing the edit distance between
two strings by William Masek and Mike Paterson in 1980. To make their algorithm
concrete, and to simplify the presentation and analysis, I’ll make two explicit assumptions:
• Each machine word (that is, each integer or pointer variable) holds Θ(log n) bits.2

• The input strings are drawn from an alphabet Σ of constant size.3

Masek and Paterson observed that any two adjacent entries in the memoization table
differ by at most 1. For example, deleting B[j] from the optimal edit motif for strings
A[1 .. i] and B[1 .. j] either changes a replacement into a deletion, or removes an insertion.
In both cases, we conclude that Edit[i, j − 1] ≤ Edit[i, j] + 1. On the other hand, the
inequality Edit[i, j]≤ Edit[i, j − 1] + 1 follows directly from the recurrence.

It follows that the w×w block Edit[i .. i +w, j .. j +w] is completely determined by
the following data:
• the top-left edit distance Edit[i, j],

• two substrings α= A[i + 1 .. i +w] and β = B[j + 1 .. j +w],

• a left offset array δL[1 .. w], where δL[k] = Edit[i + k, j] − Edit[i + k − 1, j] ∈
{−1,0,+1}, and

• a top offset array δT[1 .. w], where δT[`] = Edit[i, j + `] − Edit[i, j + ` − 1] ∈
{−1,0,+1}.

Even without knowing Edit[i, j], we can compute offset vectors for the bottom row and
right column of the block in O(w2) time using the standard dynamic programming

2This is actually a standard technical assumption in most algorithm analysis. In particular, this
assumption implies that the entries in the memoization table each fit in a single machine word, and that
each of the array lookups, comparisons, and arithmetic operations necessary to fill the table require only
constant time.

3This restriction can be removed using additional preprocessing, but the resulting algorithm is slower
by a factor of O(log2 log n).

7

D. ADVANCED DYNAMIC PROGRAMMING

algorithm for edit distance (with different base cases). If we are then given the top left
distance Edit[i, j], we can compute the bottom-right distance Edit[i +w, j +w] in O(w)
time by adding all the left and bottom (or top and right) offsets.

There are trivially at most |Σ|w distinct strings α, at most |Σ|w distinct strings β , at
most 3w distinct offset vectors δL, and at most 3w distinct offset vectors δT . Thus, in
O((3|Σ|)2ww2) time, we can preprocess all possible blocks. If we set w= 1

2 logb n, where
b = (3|Σ|)2, the entire preprocessing takes O(

p
n log2 n) time—less time than reading

the input strings!
Moreover, for each pair of strings and pair of input offset vectors, the resulting

pair of output offset vectors, as well as the sum of the left and bottom offsets, can be
encoded in (2 lg3) ·w+O(log w) = O(log n) bits, and therefore in a constant number of
machine words. We can store this data for all possible blocks in a lookup table of size
O((3|Σ|)2w) = O(

p
n). Accessing the data for any particular block, given its determining

substrings and offset vectors, takes only constant time.
Now partition the n× n memoization table into n2/w2 blocks, each of size w× w.

After computing the top and left offset vectors for the entire table in O(n) time, we can
compute the final edit distance Edit[n, n] in O(n2/w2) time, by performing one table
lookup per block in row-major order. The overall algorithm runs in O(n2/ log2 n) time;
the time bound is dominated by two nested loops of table lookups.

Finally, it is possible to combine Masek and Paterson’s “Four Russian” optimization
with Chowdhury and Ramachandran’s divide-and-conquer algorithm to compute the
optimal edit sequence between two strings of length n in O(n2/ log2 n) time and
O(n/ log n) space (not including the output sequence itself).

D.3 Saving Time: Sparseness

In many applications of dynamic programming, we are faced with instances where almost
every recursive subproblem will be resolved exactly the same way. We call such instances
sparse. For example, we might want to compute the edit distance between two strings
that have few characters in common, which means there are few “free” substitutions
anywhere in the table. Most of the table has exactly the same structure. If we can
reconstruct the entire table from just a few key entries, then why compute the entire
table?

To better illustrate how to exploit sparseness, let’s consider a simplification of the
edit distance problem, in which substitutions are not allowed (or equivalently, where a
substitution counts as two operations instead of one). Now our goal is to maximize the
number of “free” substitutions, or equivalently, to find the longest common subsequence of
the two input strings.

Fix the two input strings A[1 .. n] and B[1 .. m]. For any indices i and j, let LCS(i, j)
denote the length of the longest common subsequence of the prefixes A[1 .. i] and B[1 .. j].

8

D.3. Saving Time: Sparseness

This function can be defined recursively as follows:

LCS(i, j) =

0 if i = 0 or j = 0

LCS(i − 1, j − 1) + 1 if A[i] = B[j]
max {LCS(i, j − 1), LCS(i − 1, j)} otherwise

This recursive definition directly translates into an O(mn)-time dynamic programming
algorithm.

LCS « A L G O R I T H M S »

« 0 0 0 0 0 0 0 0 0 0 0 0
A 0 1 1 1 1 1 1 1 1 1 1 1
L 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 2 2 2 3 3 3 3 3
R 0 1 2 2 2 3 3 3 3 3 3 3
U 0 1 2 2 3 3 3 3 3 3 3 3
I 0 1 2 2 3 3 4 4 4 4 4 4
S 0 1 2 2 3 3 4 4 4 4 5 5
T 0 1 2 2 3 3 4 5 5 5 5 5
I 0 1 2 2 3 3 4 5 5 5 5 5
C 0 1 2 2 3 3 4 5 5 5 5 5
» 0 1 2 2 3 3 4 5 5 5 5 6

Figure D.5. The LCS memoization table for the strings ALGORITHMS and ALTRUISTIC; the brackets « and » are
sentinel characters. Match points are indicated in red.

Call an index pair (i, j) a match point if A[i] = B[j]. In some sense, match points
are the only “interesting” locations in the memoization table. Given a list of the match
points, we can reconstruct the entire table using the following recurrence:

LCS(i, j) =

0 if i = j = 0

max
�

LCS(i′, j′)
�

� A[i′] = B[j′] and i′ < i and j′ < j
	

+ 1 if A[i] = B[j]

max
�

LCS(i′, j′)
�

� A[i′] = B[j′] and i′ ≤ i and j′ ≤ j
	

otherwise

(Notice that the inequalities are strict in the second case, but not in the third.) To simplify
boundary issues, we add unique sentinel characters A[0] = B[0] and A[m+1] = B[n+1]
to both strings (brackets « and » in the example above). These sentinels ensure that the
sets on the right side of the recurrence equation are non-empty, and that we only have to
consider match points to compute LCS(m, n) = LCS(m+ 1, n+ 1)− 1.

If there are K match points, we can actually compute them in O(m log m+n log n+ K)
time. Sort the characters in each input string, remembering the original index of each
character, and then essentially merge the two sorted arrays, as shown in Figure D.6.

To efficiently evaluate our modified recurrence, we once again turn to dynamic
programming. We consider the match points in lexicographic order—the order they
would be encountered in a standard row-major traversal of the m× n table—so that

9

D. ADVANCED DYNAMIC PROGRAMMING

FindMatches(A[1 .. m], B[1 .. n]):
for i← 1 to m

I[i]← i
for j← 1 to n

J[j]← j

sort A and permute I to match
sort B and permute J to match

i← 1; j← 1
while i < m and j < n

if A[i]< B[j]
i← i + 1

else if A[i]> B[j]
j← j + 1

else 〈〈Found a match!〉〉
ii← i
while A[ii] = A[i]

j j← j
while B[j j] = B[j]

report (I[i i], J[j j])
j j← j j + 1

ii← i + 1
i← ii; j← j j

Figure D.6. Computing matches between characters in two strings.

when we need to evaluate LCS(i, j), all match points (i′, j′) with i′ < i and j′ < j have
already been evaluated.

SparseLCS(A[1 .. m], B[1 .. n]):
Match[1 .. K]← FindMatches(A, B)
Match[K + 1]← (m+ 1, n+ 1) 〈〈Add end sentinel〉〉
Sort M lexicographically
for k← 1 to K

(i, j)←Match[k]
LCS[k]← 1 〈〈From start sentinel〉〉
for `← 1 to k− 1

(i′, j′)←Match[`]
if i′ < i and j′ < j

LCS[k]←min{LCS[k], 1+ LCS[`]}
return LCS[K + 1]− 1

Figure D.7. Computing the longest common subsequence in O(m log m+ n log n+ K2) time.

The overall running time of this algorithm is O(m log m+n log n+K2). Thus, provided
K = o(

p
mn), this algorithm is faster than naïve dynamic programming. With some

additional work, the running time can be further improved to O(m log m + n log n +
K log K).

10

D.4. Saving Time: Monotonicity

D.4 Saving Time: Monotonicity

Recall the optimal binary search tree problem from the previous lecture. Given an array
f [1 .. n] of access frequencies for n items, we want to compute the binary search tree that
minimizes the cost of all accesses. A relatively straightforward dynamic programming
algorithm solves this problem in O(n3) time.

Once again, this algorithm can be improved by exploiting structure in thememoization
table. In this case, however, the relevant structure isn’t in the table of costs, but rather in
an auxiliary table used to reconstruct the actual optimal tree. Let OptRoot[i, j] denote
the index of the root of the optimal search tree for the frequencies f [i .. j]; this is always
an integer between i and j. Donald Knuth proved the following nice monotonicity
property for optimal subtrees: If we move either end of the subarray, the optimal root
moves in the same direction or not at all. More formally:

OptRoot[i, j − 1]≤ OptRoot[i, j]≤ OptRoot[i + 1, j] for all i and j.

In other words, every row and column in the array OptRoot[1 .. n, 1 .. n] is sorted.

Cost 3 1 4 1 5 9 2 6 5
3 3 5 13 15 26 47 53 67 82
1 0 1 6 8 19 37 43 57 72
4 0 4 6 16 34 39 53 68
1 0 1 7 22 26 40 55
5 0 5 19 23 37 52
9 0 9 13 27 40
2 0 2 10 20
6 0 6 16
5 0 5

Root 3 1 4 1 5 9 2 6 5
3 1 1 3 3 3 5 5 6 6
1 2 3 3 3 5 5 6 6
4 3 3 5 5 6 6 6
1 4 5 6 6 6 6
5 5 6 6 6 6
9 6 6 6 6
2 7 8 8
6 8 8
5 9

Figure D.8. Optimal costs and optimal roots for the frequency array [3,1, 4,1, 5,9, 2,6, 5].

This (nontrivial!) observation suggests the following more efficient algorithm. The
only differences from our previous diagonal-by-diagonal dynamic programming algorithm
are the lines in red. In particular, the main loop in ComputeCostAndRoot only runs
from OptRoot[i, j − 1] to OptRoot[i + 1, j], instead of the wider range from i to j.

FasterOptimalSearchTree(f [1 .. n]):
InitF(f [1 .. n])
for i← 1 to n

OptCost[i, i − 1]← 0
OptRoot[i, i − 1]← i

for d ← 0 to n
for i← 1 to n− d

ComputeCostAndRoot(i, i + d)
return OptCost[1, n]

11

D. ADVANCED DYNAMIC PROGRAMMING

ComputeCostAndRoot(i, j):
OptCost[i, j]←∞

for r ← OptRoot[i, j − 1] to OptRoot[i + 1, j]
tmp← OptCost[i, r − 1] +OptCost[r + 1, j]
if OptCost[i, j]> tmp

OptCost[i, j]← tmp
OptRoot[i, j]← r

OptCost[i, j]← OptCost[i, j] + F[i, j]

It’s not hard to see that the loop index r increases monotonically from 1 to n during
each iteration of the outermost for loop of FasterOptimalSearchTree. Consequently,
the total cost of all calls to ComputeCostAndRoot is only O(n2).

If we formulate the problem slightly differently, this algorithm can be improved even
further. Suppose we require the optimum external binary tree, where the keys A[1 .. n]
are all stored at the leaves, and intermediate pivot values are stored at the internal nodes.
An algorithm discovered by Ching Hu and Alan Tucker4 computes the optimal binary
search tree in this setting in only O(n log n) time!

D.5 Saving Time: More Monotoniticy

Knuth’s algorithm can be significantly generalized by considering a more subtle form
of monotonicity in the cost array. A common (but often implicit) operation in many
dynamic programming algorithms is finding the minimum element in every row of a
two-dimensional array. For example, consider a single iteration of the outer loop in
FasterOptimalSearchTree, for some fixed value of d. Define an array M by setting

M[i, r] =

¨

OptCost[i, r − 1] +OptCost[r + 1, i + d] if i ≤ r ≤ i + d

∞ otherwise

Each call to ComputeCostAndRoot(i, i + d) computes the smallest element in the ith
row of this array M .

Let M[1 .. m, 1 .. n] be an arbitrary two-dimensional array. We say that M ismonotone
if the leftmost smallest element in any row is either directly above or to the left of the
leftmost smallest element in any later row. To state this condition more formally, let
LM(i) denote the index of the smallest item in the ith row M[i, ·]; if there is more than
one smallest item, choose the one furthest to the left. Then M is monotone if and only if

4T. C. Hu and A. C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM
J. Applied Math. 21:514–532, 1971. For a slightly simpler algorithm with the same running time, see A. M.
Garsia and M. L. Wachs, A new algorithms for minimal binary search trees, SIAM J. Comput. 6:622–642,
1977. The original correctness proofs for both algorithms are rather intricate; for simpler proofs, see Marek
Karpinski, Lawrence L. Larmore, and Wojciech Rytter, Correctness of constructing optimal alphabetic trees
revisited, Theoretical Computer Science, 180:309-324, 1997.

12

D.5. Saving Time: More Monotoniticy

LM(i)≤ LM(i + 1) for every index i. For example, the following 5× 5 array is monotone
(as shown by the hilighted row minima).

12 21 38 76 27
74 14 14 29 60
21 8 25 10 71
68 45 29 15 76
97 8 12 2 6

Given a monotone m × n array M , we can compute the array LM[i] containing
the index of the leftmost minimum element using the following algorithm, which I’ll
call Filter. We begin by recursively computing the leftmost minimum elements in all
odd-indexed rows of M . Then for each even index 2i, the monotonicity of M implies the
bounds

LM[2i − 1]≤ LM[2i]≤ LM[2i + 1],

so we can compute LM[2i] by brute force by searching only within that range of
indices. This search requires exactly LM[2i + 1] − LM[2i − 1] comparisons, because
finding the minimum of k numbers requires k − 1 comparisons. In particular, if
LM[2i − 1] = LM[2i + 1], then we don’t need to perform any comparisons on row 2i.
Summing over all even indices, we find that the total number of comparisons is

m/2
∑

i=1

LM[2i + 1]− LM[2i − 1] = LM[m+ 1]− LM[1] ≤ n.

We also need to spend constant time on each row, as overhead for the main loop, so the
total running time of Filter is O(n+m) plus the time for the recursive call. Because the
number of rows is halved in the recursive call, the running time satisfies the recurrence

T (m, n) = T (m/2, n) +O(n+m),

which implies that Filter runs in O(m + n log m) time.
Alternatively, we could use the following divide-and-conquer procedure, similar

in spirit to Hirschberg’s divide-and-conquer algorithm. Compute the middle leftmost-
minimum index h= LM[m/2] by brute force in O(n) time, and then recursively find the
leftmost minimum entries in the following submatrices:

M [1 .. m/2− 1, 1 .. h] M [m/2+ 1 .. m, h .. n]

The worst-case running time T (m, n) for this algorithm obeys the following recurrence
(after removing some irrelevant ±1s from the recursive arguments, as usual):

T (m, n) =

(

0 if m< 1

O(n) +max
k

�

T (m/2, k) + T (m/2, n− k)
�

otherwise

13

D. ADVANCED DYNAMIC PROGRAMMING

The recursion tree for this recurrence is a balanced binary tree of depth log2 m, and
therefore with O(m) nodes. The total number of comparisons performed at each level
of the recursion tree is O(n), but we also need to spend at least constant time at each
node in the recursion tree. Thus, this divide-and-conquer formulation also runs in
O(m + n log m) time.

In fact, these two algorithms are morally identical. Both algorithms examine the
same subset of array entries and perform the same pairwise comparisons, although
in different orders. Specifically, the divide-and-conquer algorithm performs the usual
depth-first traversal of its recursion tree. The even-odd algorithm actually performs a
breadth-first traversal of the exactly the same recursion tree, handling each level of the
recursion tree in a single for-loop. The breadth-first formulation of the algorithm will
prove more useful in the long run.

D.6 Total Monotonicity

A more general technique for exploiting structure in dynamic programming arrays was
discovered by Alok Aggarwal, Maria Klawe, Shlomo Moran, Peter Shor, and Robert Wilber
in 1987; their algorithm is now universally known as SMAWK (pronounced “smoke”)
after their suitably-permuted initials.

SMAWK requires a stricter form of monotonicity in the input array. We say that M is
totally monotone if the subarray defined by any subset of (not necessarily consecutive)
rows and columns is monotone. For example, the following 5× 5 array is monotone (as
shown by the highlighted row minima), but not totally monotone (as shown by the gray
2× 2 subarray).

12 21 38 76 27
74 14 14 29 60
21 8 25 10 71
68 45 29 15 76
97 8 12 2 6

On the other hand, the following array is totally monotone:

12 21 38 76 89
47 14 14 29 60
21 8 20 10 71
68 16 29 15 76
97 8 12 2 6

Given a totally monotone n×n array as input, SMAWK finds the leftmost smallest element
of every row in only O(n) time.

14

D.6. Total Monotonicity

The Monge property

Before we go into the details of the SMAWK algorithm, it’s useful to consider the most
common special case of totally monotone matrices. AMonge array5 is a two-dimensional
array M where

M[i, j] +M[i′, j′]≤ M[i, j′] +M[i′, j]

for all row indices i < i′ and all column indices j < j′. This inequality (sometimes with
additional retrictions on the indices) is sometimes called the Monge property or concavity
or the quadrangle inequality or submodularity.

Lemma D.1. Every Monge array is totally monotone.

Proof: Let M be a two-dimensional array that is not totally monotone. Then there must
be row indices i < i′ and column indices j < j′ such that M[i, j]> M[i, j′] and M[i′, j]≤
M[i′, j′]. These two inequalities imply that M[i, j]+M[i′, j′]> M[i, j′]+M[i′, j], from
which it follows immediately that M is not Monge. �

The converse of this lemma is false; for example, the totally monotone array on the
bottom of the previous page is not Monge.

Monge arrays have several useful properties that make identifying them easier.
For example, an easy inductive argument implies that we do not need to check every
quadruple of indices; in fact, we can determine whether an m× n array is Monge in just
O(mn) time.

Lemma D.2. An array M is Monge if and only if M[i, j]+M[i+1, j+1]≤ M[i, j+1]+
M[i + 1, j] for all indices i and j.

Monge arrays arise naturally in geometric settings; the following canonical example
of a Monge array was suggested by Monge himself in 1781. Fix two parallel lines ` and `′

in the plane. Let p1, p2, . . . , pm be points on `, and let q1, q2, . . . , qn be points on `′, with
each set indexed in order along their respective lines. Let M[1 .. m, 1 .. n] be the array of
Euclidean distances between these points:

M[i, j] := |piq j|=
Æ

(pi .x − qi .x)2 + (pi .y − qi .y)2

An easy argument with the triangle inequality implies that this array is Monge. Fix
arbitrary indices i < i′ and j < j′, and let x denote the intersection point of segments

5Monge arrays are named after Gaspard Monge, a French geometer who was one of the first to consider
problems related to flows and cuts, in his 1781 Mémoire sur la Théorie des Déblais et des Remblais, which
translates loosely as “Treatise on the Theory of Holes and Dirt”. (Civil engineers are perhaps more familiar
with the terminology “cut and fill”, but let’s not overload the word “cut”.)

15

D. ADVANCED DYNAMIC PROGRAMMING

piq j′ and pi′q j .

M[i, j] +M[i′, j′] = |piq j|+ |pi′q j′ |
≤ |pi x |+ |xq j|+ |pi′ x |+ |xq j′ | [triangle inequality]

=
�

|pi x |+ |xq j′ |
�

+
�

|pi′ x |+ |xq j|
�

= |piq j′ |+ |pi′q j|
= M[i, j′] +M[i′, j]

Figure D.9. The cheapest way to move two specks of dirt (on the left) into two tiny holes (on the right). From
Monge’s 1781 treatise on the theory of holes and dirt.

There are also several easy ways to construct and combine Monge arrays, either from
scratch or by manipulating other Monge arrays.

Lemma D.3. The following arrays are Monge:
(a) Any array with constant rows.
(b) Any array with constant columns.
(c) Any array that is all 0s except for an upper-right rectangular block of 1s.
(d) Any array that is all 0s except for an lower-left rectangular block of 1s.
(e) Any positive multiple of any Monge array.
(f) The sum of any two Monge arrays.
(g) The transpose of any Monge array.

Each of these properties follows from straightforward definition chasing. For example,
to prove part (f), let X and Y be arbitrary Monge arrays, and let Z = X + Y . For all row
indices i < i′ and column indices j < j′, we immediately have

Z[i, j] + Z[i′, j′] = X [i, j] + X [i′, j′] + Y [i, j] + Y [i′, j′]

≤ X [i′, j] + X [i, j′] + Y [i′, j] + Y [i, j′]

= Z[i′, j] + Z[i, j′].

The other properties have similarly elementary proofs.
In fact, the properties listed in the previous lemma precisely characterize Monge

arrays: Every Monge array (including the geometric example above) is a positive linear
combination of row-constant, column-constant, and upper-right block arrays. (This
characterization was proved independently by Rudolf and Woeginger in 1995, Bein and
Pathak in 1990, Burdyok and Trofimov in 1976, and possibly others.)

16

D.7. The SMAWK algorithm

D.7 The SMAWK algorithm

The SMAWK algorithm alternates between two different subroutines, one for “tall” arrays
with more rows than columns, the other for “wide” arrays with more columns than rows.
The “tall” subroutine is just the divide-and-conquer algorithm Filter described in the
previous section—recursively compute the leftmost row minima in every other row, and
then fill in the remaining row minima in O(n+m) time. The secret to SMAWK’s success
is its handling of “wide” arrays.

REDUCE-ing wide arrays

For any row index i and any two column indices p < q, the definition of total monotonizity
implies the following observations:
• If M[i, p] ≤ M[i, q], then for all h ≤ i, we have M[h, p] ≤ M[h, q] and thus

LM[h] 6= q.

• If M[i, p]> M[i, q], then for all j ≥ i, we have M[j, p]> M[j, q] and thus LM[j] 6= p.
Call an array entry M[i, j] dead if we have enough information to conclude that
LM[i] 6= j. Then after we compare any two entries in the same row, either the left entry
and everything below it is dead, or the right entry and everything above it is dead.

≤
≤

∗ ≤ ∗

∗ > ∗
>

>

The Reduce algorithm shown in Figure D.10 maintains a stack of column indices in an
array S[1 .. m] (yes, really m, the number of rows) and an index t indicating the number
of indices on this stack.

Reduce(M[1 .. m, 1 .. n]):
t ← 1
S[t]← 1
for k← 1 to n

while t > 0 and M[t, S[t]]≥ M[t, k]
t ← t − 1 〈〈pop〉〉

if t < m
t ← t + 1
S[t]← k 〈〈push k〉〉

return S[1 .. t]

Figure D.10. The SMAWK algorithm to REDUCE wide arrays

17

D. ADVANCED DYNAMIC PROGRAMMING

The Reduce algorithm maintains three important invariants:
• S[1 .. t] is sorted in increasing order.
• For all 1≤ j ≤ t, the top j − 1 entires of column S[j] are dead.
• If j < k and j is not on the stack, then every entry in column j is dead.

The first invariant follows immediately from the fact that indices are pushed onto
the stack in increasing order. The second and third are more subtle, but both follow
inductively from the total monotonicity of the array. Figure D.11 shows a typical state of
the algorithm when it is about to compare M[t, S[t]] and M[t, k].

S[1] S[2] S[3] S[4] S[5] S[6] k

∗ ∗

Figure D.11. A typical state of REDUCE, just before comparing the starred entries. Dead entries are gray.

There are two cases to consider:
• If M[t, S[t]] < M[t, k], then M[t, k] and every cell above it are dead, so we can

safely push column k onto the stack (unless we already have t = m, in which case
every entry in column k is dead) and then increment k. See Figure D.12.

S[1] S[2] S[3] S[4] S[5] S[6] S[7] k

∗ ≤ ∗

Figure D.12. Case 1: Push column k and increment k.

• On the other hand, if M[t, S[t]] > M[t, k], then we know that M[t, S[t]] and
everything below it is dead. But by the inductive hypothesis, every entry above
M[t, S[t]] is already dead. Thus, the entire column S[t] is dead, so we can safely
pop it off the stack. See Figure D.13.

18

D.7. The SMAWK algorithm

S[1] S[2] S[3] S[4] S[5] k

∗ > ∗

Figure D.13. Case 2: Kill column S[t] and decrement t .

In both cases, all three invariants are maintained.
Immediately after every comparison M[t, S[t]]≥ M[t, k]? in the Reduce algorithm,

we either increment the column index k or declare column S[t] to be dead; each of
these events can happen at most once per column. It follows that Reduce performs at
most 2n comparisons and thus runs in O(n) time overall.

Moreover, when Reduce ends, every column whose index is not on the stack is
completely dead. Thus, to compute the leftmost minimum element in every row of M , it
suffices to examine only the t < m columns with indices in the output array S[1 .. t].

Combining the Algorithms

Finally, given any totally monotone m× n array, the main SMAWK algorithm proceeds as
follows:
• If m= 1, find the leftmost minimum element in the only row by brute force in O(n)

time.

• Otherwise, if the array is wide (m< n), Reduce the input array in O(m+ n) = O(n)
time, and then recursively compute row minima in the resulting array, which is always
tall.

• Finally, if the array is tall (m ≥ n), Filter out the odd-indexed rows, recursively
compute the row minima in the resulting smaller array, and then compute the
remaining row minima in O(m+ n) = O(m) time.

The running time of the combined algorithm obeys the following recurrence:

T (m, n)≤

O(n) if m= 1

O(n) + T (m, m) if 1< m< n

O(m) + T (m/2, n) if n≤ m

If the input array is tall, we may need to call several levels of Filter recursion to reduce
to a wide array, but since the running time of each level is dominated by O(m) and each

19

D. ADVANCED DYNAMIC PROGRAMMING

level of recursion halves m, the total time for this reduction is O(m). It follows that we
can modify our recurrence to

T (m, n)≤

O(n) if m= 1

O(n) + T (m, m) if 1< m< n

O(m) + T (n/2, n) if n≤ m

Conversely, if the input array is wide, a single call to Reduce extracts a square subarray
in O(n) time. Once the array becomes square, the algorithm alternates between wide
arrays and tall arrays, halving both the height and width of the array every two levels of
recursion. So again we can modify the recurrence as follows:

T (m, n)≤

¨

O(n) if m= 1

O(m+ n) + T (n/2, n/2) otherwise

We conclude that the overall SMAWK algorithm runs in O(m + n) time.
Later variants of SMAWK can compute row minima in totally monotone arrays in

O(m+ n) time even when the rows are revealed one by one, and we require the smallest
element in each row before we are given the next. These later variants can be used
to speed up many dynamic programming algorithms by a factor of n when the final
memoization table is totally monotone.

D.8 Using SMAWK

Finally, let’s consider some examples of dynamic programming algorithms that can be
improved by SMAWK.

Minimum Weight Subsequence

Suppose we are given a sorted array S[1 .. n] of values, which we’d like to partition
into exactly K intervals of roughly equal span, where the span of the interval S[i .. j]
is defined as span(i, j) = S[j] − S[i]. Specifically, we want to choose a sorted array
B[0 .. K] of K breakpoint indices, where B[0] = 1 and B[k] = n, such that the sum of the
squared spans

K
∑

i=1

�

span(B[i], B[i + 1])
�2
=

K
∑

i=1

�

S[B[i]]− S[B[i + 1]]
�2

is as small as possible.
The standard dynamic programming algorithm for this problem runs in O(n2K) time.

For any indices j and k, let OptCost(j, k) denote the optimal cost of a partition of A[1 .. j]

20

D.8. Using SMAWK

into k intervals. This function satisfies the following recurrence:

OptCost(j, k) =

0 if k = 0 and j = 0

∞ if k < j

min
�

(span(i, j))2 +OptCost(i − 1, k)
�

� 1≤ i < j
	

otherwise

We can memoize this function into an n× K array, which we can fill by increasing k in
the outer loop and considering i in any order in the inner loop. Finally, we need O(n)
time to fill each entry, so the overall running time is O(n2K), as claimed.

We can improve the running time by a factor of n by applying SMAWK, as follows.
For any fixed k, define an n× n upper-triangular array Costk[1 .. n, 1 .. n] by setting

Costk[i, j] :=

¨

(span(i, j))2 +OptCost(i − 1, k) if i < j

∞ if i = j

and leaving Costk[i, j] undefined when i > j. In the kth iteration of the outer loop of our
dynamic programming algorithm, we are setting OptCost[j, k] to the smallest element
in the jth column of Costk, for every index j. This is almost the problem that SMAWK is
designed to solve! As we will see shortly, every 2× 2 subarray of Costk whose elements
are defined satisfies the Monge inequality. And we’re looking for column minima instead
of row minima, but that transposition is straightforward.

Unfortunately, SMAWK requires a full rectangular array, so we need to fill in the
missing values. Naively replacing each undefined value with∞ doesn’t work; the
resulting rectangular array is not totally monotone. Instead, we consider the behavior of
the following modified array in the limit, as the variable X grows to infinity:

Costk[i, j] :=

¨

(span(i, j))2 +OptCost(i − 1, k) if i < j

(2i − 2 j + 1)X otherwise

This array has value X in every cell of the main diagonal, 3X along the next lower
diagonal, 5X along the next lower diagonal, and so on.

Lemma D.4. Costk is Monge, for all sufficiently large X .

Proof: We can write Costk = A+ Ck, where

A[i, j] =

¨

(span(i, j))2 if i < j

(2i − 2 j + 1)X otherwise,
and Ck[i, j] = OptCost(i − 1, k).

Array Ck has constant rows and is therefore Monge by Lemma D.3(b). Lemma D.3(f)
implies that to complete the proof, it suffices to show that the array A is also Monge.

Fix arbitrary indices i and j. To simplify calculation, let us write w= S[i], x = S[i+1],
y = S[j], and z = S[j + 1]. There are four cases to consider.

21

D. ADVANCED DYNAMIC PROGRAMMING

X 9 16 64 81 196 529
3X X 1 25 36 121 400
5X 3X X 16 25 100 361
7X 5X 3X X 1 36 225
9X 7X 5X 3X X 25 196
11X 9X 7X 5X 3X X 81
13X 11X 9X 7X 5x 3X X

Figure D.14. The squared-span array A for the input S = [0,3, 4,8, 9,14, 23]; for all sufficiently large X , this array
is Monge.

• Suppose i + 1 < j; this is the most interesting case. Because S is sorted, we know
that w< x < y < z. High-school algebra implies that

A[i, j + 1] + A[i + 1, j]− A[i, j]− A[i + 1, j + 1]

= (z −w)2 + (y − x)2 − (y −w)2 − (z − x)2

= −2zw− 2x y + 2wy + 2xz

= 2(x −w)(z − y)> 0.

• If i + 1= j, The Monge inequality becomes A[i, j] + A[i + 1, j + 1]≤ A[i, j + 1] + X ,
which holds for all sufficiently large X .

• If i = j, the Monge inequality becomes X + X ≤ A[i, j + 1] + 3X , which holds for all
X ≥ 0 (because A[i, j + 1]> 0).

• Finally, if i < j, the Monge inequality becomes

(2i − 2 j + 1)X + (2i − 2 j + 1)X ≤ (2i − 2 j + 3)X + (2i − 2 j − 1)X

the two sides of this inequality are actually equal for all X .

In all four cases, the Monge inequality A[i, j] + A[i + 1, j + 1]leA[i, j + 1] + A[i + 1, j]
holds for all sufficiently large X . In particular, it suffices to set X = 2 · (span(1, n))2. �

This lemma implies that for any sufficiently large X , we can compute the minimum
element of every column of Costk in O(n) time using SMAWK. (And for sufficiently large X ,
these column minima are always above the main diagonal!) With this optimization, our
dynamic programming algorithm runs in only O(nK) time!

An important feature of this algorithm is that it never explicitly constructs the
n × n array Costk ; constructing just one n× n array would take longer than our entire
algorithm! Instead, whenever SMAWK needs a particular entry Costk[i, j], we compute
it on the fly in O(1) time.

Moreover, we don’t need to compute an actual value for X ; we can treat X purely
symbolically, as follows. Every decision in the (transposed) SMAWK algorithm is based
on either a comparison between indices, or a comparison between two entries in the

22

D.8. Using SMAWK

same column of A. For all sufficiently large X , the latter comparisons are consistent with
the following definition:

A[i, j]� A[i′, j] ⇐⇒

¨

A[i, j]≤ A[i′, j] if i < j and i′ < j

i ≤ i′ otherwise

In short, we don’t need to define those lower array entries after all!!

Shortest Paths

As a second (admittedly somewhat artificial) example, recall the classical Bellman-Ford
algorithm for computing shortest paths:

BellmanFord(V, E, w):
dist(s)← 0
for every vertex v 6= s

dist(v)←∞
repeat V − 1 times

for every edge u�v
if dist(v)> dist(u) +w(u�v)

dist(v)← dist(u) +w(u�v)

We can rewrite this algorithm slightly; instead of relaxing every edge, we first identify the
tensest edge leading into each vertex, and then relax only those edges. (This modification
is actually closer to Bellman’s original dynamic-programming formulation.)

ModBellmanFord(V, E, w):
dist(s)← 0
for every vertex v 6= s

dist(v)←∞
repeat V − 1 times

for every vertex v
mind(v)←min

u
(dist(u) +w(u�v))

for every vertex v
dist(v)←min{dist(v),mind(v)}

The two lines in red can be interpreted as finding the minimum element in every
row of a two-dimensional array M indexed by vertices, where

M[v, u] := dist(u) +w(u�v)

Now consider the following input graph. Fix n arbitrary points p1, p2, . . . , pn on
some line ` and n more arbitrary points q1, q2, . . . , qn on another line parallel to `, with
each set indexed in order along their respective lines. Let G be the complete bipartite
graph whose vertices are the points pi or q j, whose edges are the segments piq j, and

23

D. ADVANCED DYNAMIC PROGRAMMING

where the weight of each edge is its natural Euclidean length. The standard version of
Bellman-Ford requires O(V E) = O(n3) time to compute shortest paths in this graph.

The 2n × 2n array M is not itself Monge, but we can easily decompose it into
n × n Monge arrays as follows. Index the rows and columns of M by the vertices
p1, p2, . . . , pn, q1, q2, . . . , qn in that order. Then M decomposes naturally into four n× n
blocks

M =

�

∞ U
V ∞

�

,

where every entry in the upper left and lower right blocks is∞, and the other two
blocks satisfy

U[i, j] = dist(q j) + |piq j| and V [i, j] = dist(p j) + |p jqi|

for all indices i and j. Let P, Q, and D be the n× n arrays where

P[i, j] = dist(p j) Q[i, j] = dist(q j) D[i, j] = |piq j|

for all indices i and j. Arrays P and Q are Monge, because all entries in the same column
are equal, and the matrix D is Monge by the triangle inequality. It follows that the blocks
U = Q + D and V = P + DT are both Monge. Thus, by calling SMAWK twice, once
on U and once on V , we can find all the row minima in M in O(n) time. The resulting
modification of Bellman-Ford runs in O(n2) time.6

An important feature of this algorithm is that it never explicitly constructs the
array M . Instead, whenever the SMAWK algorithm needs a particular entry M[u, v],
we compute it on the fly in O(1) time.

Exercises

1. Describe an algorithm to compute the edit distance between two strings A[1 .. m]
and B[1 ... n] in O(m log m+ n log n+ K2) time, where K is the number of match
points. [Hint: Use our earlier FindMatches algorithm as a subroutine.]

2. (a) Describe an algorithm to compute the longest increasing subsequence of a string
X [1 .. n] in O(n log n) time.

(b) Using your solution to part (a) as a subroutine, describe an algorithm to com-
pute the longest common subsequence of two strings A[1 .. m] and B[1 ... n] in
O(m log m+ n log n+ K log K) time, where K is the number of match points.

3. Describe an algorithm to compute the edit distance between two strings A[1 .. m]
and B[1 ... n] in O(m log m+ n log n+K log K) time, where K is the number of match
points. [Hint: Combine your answers for problems 1 and 2(b).]
6Yes, we could also achieve this running time using Disjktra’s algorithm with Fibonacci heaps.

24

Exercises

4. Let T be an arbitrary rooted tree, where each vertex is labeled with a positive integer.
A subset S of the nodes of T is heap-ordered if it satisfies two properties:

• S contains a node that is an ancestor of every other node in S.

• For any node v in S, the label of v is larger than the labels of any ancestor of v
in S.

3

1 4 1 5

65

7 9 3

2

8 9

8

5

9

4

3

2 3

2 7 9

6

A heap-ordered subset of nodes in a tree.

(a) Describe an algorithm to find the largest heap-ordered subset S of nodes in T
that has the heap property in O(n2) time.

(b) Modify your algorithm from part (a) so that it runs in O(n log n) time when T
is a linked list. [Hint: This special case is equivalent to a problem you’ve seen
before.]

ª(c) Describe an algorithm to find the largest subset S of nodes in T that has the heap
property, in O(n log n) time. [Hint: Find an algorithm to merge two sorted lists
of lengths k and ` in O(log

�k+`
k

�

) time.]

5. Suppose you are given a sorted array X [1 .. n] of distinct numbers and a positive
integer k. A set of k intervals covers X if every element of X lies inside one of the k
intervals. Your aim is to find k intervals [a1, z1], [a2, z2], . . . , [ak, zk] that cover X
where the function

∑k
i=1(zi − ai)2 is as small as possible. Intuitively, you are trying

to cover the points with k intervals whose lengths are as close to equal as possible.

(a) Describe an algorithm that finds k intervals with minimum total squared length
that cover X . The running time of your algorithm should be a simple function
of n and k.

(b) Consider the two-dimensional matrix M[1 .. n, 1 .. n] defined as follows:

M[i, j] =

¨

(X [j]− X [i])2 if i ≤ j

∞ otherwise

Prove that M satisfies theMonge property: M[i, j]+M[i′, j′]≤ M[i, j′]+M[i′, j]
for all indices i < i′ and j < j′.

25

D. ADVANCED DYNAMIC PROGRAMMING

(c) Describe an algorithm that finds k intervals with minimum total squared length
that cover X in O(nk) time. [Hint: Solve part (a) first, then use part (b).]

6. Suppose we want to summarize a large set S of values—for example, grade-point
averages for every student who has ever attended UIUC—using a variable-width
histogram. To construct a histogram, we choose a sorted sequence of breakpoints
b0 < b1 < · · · < bk, such that every element of S lies between b0 and bk. Then
for each interval [bi−1, bi], the histogram includes a rectangle whose height is the
number of elements of S that lie inside that interval.

0 100887872573532

A variable-width histogram with seven bins.

Unlike a standard histogram, which requires the intervals to have equal width,
we are free to choose the breakpoints arbitrarily. For statistical purposes, it is useful
for the areas of the rectangles to be as close to equal as possible. To that end, define
the cost of a histogram to be the sum of the squares of the rectangle areas; we seek a
histogram with minimum cost.

More formally, suppose we fix a sequence of breakpoints b0 < b1 < · · ·< bk. For
each index i, let ni denote the number of input values in the ith interval:

ni := #
�

x ∈ S
�

� bi−1 ≤ x < bi

	

.

Then the cost of the resulting histogram is
∑k

i=1 (ni(bi − bi−1))
2 .Wewant to compute

a histogram with minimum cost for the given set S, where every breakpoint bi is
equal to some value in S.7 In particular, b0 must be the minimum value in S, and bk
must be the maximum value in S.

Describe and analyze an algorithm to compute a variable-width histogram with
minimum cost for a given set of data values. Your input is a sorted array S[1 .. n]
of distinct real numbers and an integer k. Your algorithm should return a sorted
array B[0 .. k] of breakpoints that minimizes the cost of the resulting histogram,
where every breakpoint B[i] is equal to some input value S[j], and in particular
B[0] = S[1] and B[k] = S[n].

7Thanks to the non-linear cost function, removing this assumption makes the problem considerably
more difficult!

© 2020 Jeff Erickson http://algorithms.wtf26

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://algorithms.wtf

	Advanced Dynamic Programming
	Saving Space: Divide and Conquer
	Saving Time: Four Russians
	Saving Time: Sparseness
	Saving Time: Monotonicity
	Saving Time: More Monotoniticy
	Total Monotonicity
	The SMAWK algorithm
	Using SMAWK

