
Algorithms Lecture 31: Approximation Algorithms [Sp’16]

Le mieux est l’ennemi du bien.
[The best is the enemy of the good.]

— Voltaire, La Bégueule (1772)

Who shall forbid a wise skepticism,
seeing that there is no practical question
on which any thing more than an approximate solution can be had?

— Ralph Waldo Emerson, Representative Men (1850)

We dance round in a ring and suppose,
But the secret sits in the middle and knows.

— Robert Frost, “The Secret Sits” (1942).

Now, distrust of corporations threatens
our still-tentative economic recovery;
it turns out greed is bad, after all.

— Paul Krugman, “Greed is Bad”,
The New York Times, June 4, 2002.

31 Approximation Algorithms?

31.1 Load Balancing

On the future smash hit reality-TV game show Grunt Work, scheduled to air Thursday nights
at 3am (2am Central) on ESPNπ, the contestants are given a series of utterly pointless tasks
to perform. Each task has a predetermined time limit; for example, “Sharpen this pencil for
17 seconds,” or “Pour pig’s blood on your head and sing The Star-Spangled Banner for two
minutes,” or “Listen to this 75-minute algorithms lecture.” The directors of the show want you to
assign each task to one of the contestants, so that the last task is completed as early as possible.
When your predecessor correctly informed the directors that their problem is NP-hard, he was
immediately fired. “Time is money!” they screamed at him. “We don’t need perfection. Wake up,
dude, this is television!”

Less facetiously, suppose we have a set of n jobs, which we want to assign to m machines. We
are given an array T[1 .. n] of non-negative numbers, where T[j] is the running time of job j.
We can describe an assignment by an array A[1 .. n], where A[j] = i means that job j is assigned
to machine i. The makespan of an assignment is the maximum time that any machine is busy:

makespan(A) =max
i

∑

A[j]=i

T[j]

The load balancing problem is to compute the assignment with the smallest possible makespan.
It’s not hard to prove that the load balancing problem is NP-hard by reduction from Partition:

The array T[1 .. n] can be evenly partitioned if and only if there is an assignment to two machines
with makespan exactly

∑

i T[i]/2. A slightly more complicated reduction from 3Partition
implies that the load balancing problem is strongly NP-hard. If we really need the optimal
solution, there is a dynamic programming algorithm that runs in time O(nM m), where M is the
minimum makespan, but that’s just horrible.

There is a fairly natural and efficient greedy heuristic for load balancing: consider the jobs
one at a time, and assign each job to the machine i with the earliest finishing time Total[i].

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

GreedyLoadBalance(T[1 .. n], m):
for i← 1 to m

Total[i]← 0

for j← 1 to n
mini← arg mini Total[i]
A[j]←mini
Total[mini]← Total[mini] + T[j]

return A[1 .. m]

Theorem 1. The makespan of the assignment computed by GreedyLoadBalance is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment.
The approximation bound follows from two trivial observations. First, the makespan of any
assignment (and therefore of the optimal assignment) is at least the duration of the longest job.
Second, the makespan of any assignment is at least the total duration of all the jobs divided by
the number of machines.

OPT≥max
j

T[j] and OPT≥
1
m

n
∑

j=1

T[j]

Now consider the assignment computed by GreedyLoadBalance. Suppose machine i has the
largest total running time, and let j be the last job assigned to machine i. Our first trivial
observation implies that T[j]≤ OPT. To finish the proof, we must show that Total[i]−T[j]≤ OPT.
Job j was assigned to machine i because it had the smallest finishing time, so Total[i]− T[j]≤
Total[k] for all k. (Some values Total[k] may have increased since job j was assigned, but that
only helps us.) In particular, Total[i]− T[j] is less than or equal to the average finishing time
over all machines. Thus,

Total[i]− T[j]≤
1
m

m
∑

i=1

Total[i] =
1
m

n
∑

j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ≤ OPT

≤ OPT

i

m
a

ke
sp

a
n

Proof that GreedyLoadBalance is a 2-approximation algorithm

GreedyLoadBalance is an online algorithm: It assigns jobs to machines in the order that
the jobs appear in the input array. Online approximation algorithms are useful in settings where
inputs arrive in a stream of unknown length—for example, real jobs arriving at a real scheduling
algorithm. In this online setting, it may be impossible to compute an optimum solution, even

2

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

in cases where the offline problem (where all inputs are known in advance) can be solved in
polynomial time. The study of online algorithms could easily fill an entire one-semester course
(alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs
before piping them through the greedy algorithm.

SortedGreedyLoadBalance(T[1 .. n], m):
sort T in decreasing order
return GreedyLoadBalance(T, m)

Theorem 2. The makespan of the assignment computed by SortedGreedyLoadBalance is at most
3/2 times the makespan of the optimal assignment.

Proof: Let i be the busiest machine in the schedule computed by SortedGreedyLoadBalance.
If only one job is assigned to machine i, then the greedy schedule is actually optimal, and the
theorem is trivially true. Otherwise, let j be the last job assigned to machine i. Since each of the
first m jobs is assigned to a unique machine, we must have j ≥ m+ 1. As in the previous proof,
we know that Total[i]− T[j]≤ OPT.

In any schedule, at least two of the first m+ 1 jobs, say jobs k and `, must be assigned to the
same machine. Thus, T[k] + T[`]≤ OPT. Since max{k,`} ≤ m+ 1≤ j, and the jobs are sorted
in decreasing order by duration, we have

T[j]≤ T[m+ 1]≤ T[max{k,`}] =min {T[k], T[`]} ≤ OPT/2.

We conclude that the makespan Total[i] is at most 3 ·OPT/2, as claimed. �

In fact, neither of these analyses is tight. The exact approximation ratio of GreedyLoad-
Balance is actually 2− 1/m, and the exact approximation ratio of SortedGreedyLoadBalance
is actually 4/3− 1/(3m).

31.2 Generalities

Consider an arbitrary optimization problem. Let OPT(X) denote the value of the optimal solution
for a given input X , and let A(X) denote the value of the solution computed by algorithm A given
the same input X . We say that A is an α(n)-approximation algorithm if and only if

OPT(X)
A(X)

≤ α(n) and
A(X)

OPT(X)
≤ α(n)

for all inputs X of size n. The function α(n) is called the approximation factor for algorithm A.
For any given algorithm, only one of these two inequalities will be important. For maximization
problems, where we want to compute a solution whose cost is as small as possible, the first
inequality is trivial. For maximization problems, where we want a solution whose value is as
large as possible, the second inequality is trivial. A 1-approximation algorithm always returns
the exact optimal solution.

Especially for problems where exact optimization is NP-hard, we have little hope of completely
characterizing the optimal solution. The secret to proving that an algorithm satisfies some
approximation ratio is to find a useful function of the input that provides both lower bounds on
the cost of the optimal solution and upper bounds on the cost of the approximate solution. For
example, if OPT(X)≥ f (X)/2 and A(X)≤ 5 f (X) for any function f , then A is a 10-approximation
algorithm. Finding the right intermediate function can be a delicate balancing act.

3

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

31.3 Greedy Vertex Cover

Recall that the vertex color problem asks, given a graph G, for the smallest set of vertices of G
that cover every edge. This is one of the first NP-hard problems introduced in the first week of
class. There is a natural and efficient greedy heuristic¹ for computing a small vertex cover: mark
the vertex with the largest degree, remove all the edges incident to that vertex, and recurse.

GreedyVertexCover(G):
C ←∅
while G has at least one edge

v← vertex in G with maximum degree
G← G \ v
C ← C ∪ v

return C

Obviously this algorithm doesn’t compute the optimal vertex cover—that would imply
P=NP!—but it does compute a reasonably close approximation.

Theorem 3. GreedyVertexCover is an O(log n)-approximation algorithm.

Proof: For all i, let Gi denote the graph G after i iterations of the main loop, and let di denote
the maximum degree of any node in Gi−1. We can define these variables more directly by adding
a few extra lines to our algorithm:

GreedyVertexCover(G):
C ←∅
G0← G
i← 0
while Gi has at least one edge

i← i + 1
vi ← vertex in Gi−1 with maximum degree
di ← degGi−1

(vi)
Gi ← Gi−1 \ vi
C ← C ∪ vi

return C

Let |Gi−1| denote the number of edges in the graph Gi−1. Let C∗ denote the optimal vertex
cover of G, which consists of OPT vertices. Since C∗ is also a vertex cover for Gi−1, we have

∑

v∈C∗
degGi−1

(v)≥ |Gi−1|.

In other words, the average degree in Gi of any node in C∗ is at least |Gi−1|/OPT. It follows that
Gi−1 has at least one node with degree at least |Gi−1|/OPT. Since di is the maximum degree of
any node in Gi−1, we have

di ≥
|Gi−1|
OPT

Moreover, for any j ≥ i − 1, the subgraph G j has no more edges than Gi−1, so di ≥ |G j|/OPT.
This observation implies that

OPT
∑

i=1

di ≥
OPT
∑

i=1

|Gi−1|
OPT

≥
OPT
∑

i=1

|GOPT|
OPT

= |GOPT| = |G| −
OPT
∑

i=1

di .

¹A heuristic is an algorithm that doesn’t work.

4

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

In other words, the first OPT iterations of GreedyVertexCover remove at least half the edges
of G. Thus, after at most OPT lg|G| ≤ 2OPT lg n iterations, all the edges of G have been removed,
and the algorithm terminates. We conclude that GreedyVertexCover computes a vertex cover
of size O(OPT log n). �

So far we’ve only proved an upper bound on the approximation factor of GreedyVertexCover;
perhaps a more careful analysis would imply that the approximation factor is only O(log log n),
or even O(1). Alas, no such improvement is possible. For any integer n, a simple recursive
construction gives us an n-vertex graph for which the greedy algorithm returns a vertex cover of
size Ω(OPT · log n). Details are left as an exercise for the reader.

31.4 Set Cover and Hitting Set

The greedy algorithm for vertex cover can be applied almost immediately to two more general
problems: minimum set cover and minimum hitting set. The input for both of these problems
is a set system (X ,F), where X is a finite ground set, and F is a family of subsets of X . A set
cover of a set system (X ,F) is a subfamily of sets in F whose union is the entire ground set X . A
hitting set for (X ,F) is a subset of the ground set X that intersects every set in F .

An undirected graph can be cast as a set system in two different ways. In one formulation,
the ground set X contains the vertices, and each edge defines a set of two vertices in F . In this
formulation, a vertex cover is a hitting set. In the other formulation, the edges are the ground set,
the vertices define the family of subsets, and a vertex cover is a set cover.

Here are the natural greedy algorithms for finding a small set cover and finding a small
hitting set. Essentially the same analysis as for our greedy algorithm for vertex cover implies that
GreedySetCover finds a set cover whose size is at most O(log |F |) times the size of smallest set
cover, and that GreedyHittingSet finds a hitting set whose size is at most O(log |X|) times the
size of the smallest hitting set. These are the best approximation ratios possible (up to lower
order terms) unless P=NP.

GreedySetCover(X ,F):
C ←∅
while X 6=∅

S← argmax
S∈F

|S ∩ X |

X ← X \ S
C ←C ∪ {S}

return C

GreedyHittingSet(X ,F):
H ←∅
while F 6=∅

x ← argmax
x∈X

|{S ∈ F | x ∈ S}|

F ←F \ {S ∈ F | x ∈ S}
H ← H ∪ {x}

return H

The similarity between these two algorithms is no coincidence. For any set system (X ,F),
there is a dual set system (F , X ∗) defined as follows. For any element x ∈ X in the ground set,
let x∗ denote the subfamily of sets in F that contain x:

x∗ = {S ∈ F | x ∈ S} .

Finally, let X ∗ denote the collection of all subsets of the form x∗:

X ∗ = {x∗ | x ∈ S} .

As an example, suppose X is the set of letters of alphabet andF is the set of last names of student
taking CS 473 this semester. Then X ∗ has 26 elements, each containing the subset of CS 473

5

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

students whose last name contains a particular letter of the alphabet. For example, m∗ is the set
of students whose last names contain the letter m.

There is a natural bijection between the ground set X and the dual set family X ∗. It is a
tedious but instructive exercise to prove that the dual of the dual of any set system is isomorphic
to the original set system—(X ∗,F ∗) is essentially the same as (X ,F). It is also easy to prove
that a set cover for any set system (X ,F) is also a hitting set for the dual set system (F , X ∗),
and therefore a hitting set for any set system (X ,F) is isomorphic to (or more simply, “is”) a set
cover for the dual set system (F , X ∗).

31.5 Vertex Cover Redux

The greedy approach doesn’t always lead to the best approximation algorithms. Consider the
following obviously stupid heuristic for vertex cover:

DumbVertexCover(G):
C ←∅
while G has at least one edge

uv← any edge in G
G← G \ {u, v}
C ← C ∪ {u, v}

return C

The minimum vertex cover—in fact, every vertex cover—contains at least one of the two
vertices u and v chosen inside the while loop. It follows immediately that DumbVertexCover is
a 2-approximation algorithm! Surprisingly, this “obviously stupid” algorithm is essentially the
best polynomial-time approximation algorithm known.

The same stupid idea can be extended to approximate the minimum hitting set for any set
system (X ,F); the resulting approximation factor is equal to the size of the largest set in F .

31.6 Lightest Vertex Cover: LP Rounding

Now consider a generalization of the minimum vertex cover problem in which every vertex v of
the input graph has a non-negative weight w(v), and the goal is to compute a vertex cover C
with minimum total weight w(C) =

∑

v∈C w(v). Both the greedy and the stupid approximation
algorithms can perform arbitrarily badly in this setting. Let G be a path of length 2, where the
endpoints have weight 1 and the interior vertex has weight 10100. The lightest vertex cover has
weight 2, but the greedy vertex cover has weight 10100, and the stupid vertex cover has weight
10100 + 1.

But we can recover a 2-approximation algorithm by casting the problem as an instance of
integer linear programming. An integer linear program is just a linear program with the added
constraint that all variables are integers. Almost any of the NP-hard problems considered in the
previous lecture note can be cast as integer linear programs, which implies that integer linear
programming is NP-hard. In particular, the following integer linear program encodes the lightest
vertex cover problem. Each feasible solution to this ILP corresponds to some vertex cover; each
variable x(v) indicates whether that vertex cover contains the corresponding vertex v.

minimize
∑

v

w(v) · x(v)

subject to x(u) + x(v)≥ 1 for every edge uv

x(v)∈ {0,1} for every vertex v

6

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

Let OPT denote the weight of the lightest vertex cover; OPT is also the optimal objective value
for this integer linear program.

Now we’re going to do something weird. Consider the linear program obtained from this ILP
by removing the integrality constraint; this linear program is usually called the linear relaxation
of the integer linear program.

minimize
∑

v

w(v) · x(v)

subject to x(u) + x(v)≥ 1 for every edge uv

0≤ x(v)≤ 1 for every vertex v

Like all linear programs, this one can be solved in polynomial time; let x∗ denote its optimal
solution, and letÞOPT=

∑

v w(v) · x∗(v) denote the denote the optimal objective value. Unfortu-
nately, the optimal solution may not be integral; the “indicator” variables x∗(v) may be rational
numbers between 0 and 1. Thus, x∗ is often called the optimal fractional solution. Nevertheless,
this solution is useful for two reasons.

First, because every feasible solution to the original ILP is also feasible for its linear relaxation,
the optimal fractional solution is a lower bound on the optimal integral solution: OPT ≥ÞOPT. As
we’ve already seen, finding lower bounds on the optimal solution is the key to deriving good
approximation algorithms.

Second, we can derive a good approximation to the lightest vertex cover by rounding the
optimal fractional solution. Specifically, for each vertex v, let

x ′(v) =

¨

1 if x∗(v)≥ 1/2,

0 otherwise.

For every edge uv, the constraint x∗(u) + x∗(v)≥ 1 implies that max{x∗(u), x∗(v)} ≥ 1/2, and
therefore either x ′(u) = 1 or x ′(v) = 1. Thus, x ′ is the indicator function of a vertex cover. On
the other hand, we have x ′(v)≤ 2x∗(v) for every vertex v, which implies that

∑

v

w(v) · x ′(v) ≤ 2
∑

v

w(v) · x∗(v) = 2 ·ÞOPT ≤ 2 ·OPT.

So we’ve just described a simple polynomial-time 2-approximation algorithm for lightest
vertex cover: Compute the optimal fractional solution, and round it as described above.

31.7 Randomized LP Rounding

We can also round the optimal fractional solution randomly by interpreting each fractional value
x∗(v) as a probability. For each vertex v, independently set

x ′(v) =

¨

1 with probability x∗(v),
0 otherwise.

Our usual argument from linearity of expectation immediately implies that

E

�

∑

v

w(v) · x ′(v)
�

=
∑

v

w(v) · x∗(v) = ÞOPT ≤ OPT.

7

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

Unfortunately, x ′ is not necessarily the indicator function of a vertex cover. The probability
that any particular edge uv is uncovered is

Pr[x ′(u) = 0∧ x ′(v) = 0] = (1− x∗(u))(1− x∗(v)).

Thanks to the constraint x∗(u) = x∗(v)≥ 1, the expression (1− x∗(u))(1− x∗(v)) is minimized
when x∗(v) = x∗(u) = 1/2. It follows that each edge uv is covered with probability at least 3/4;
equivalently, we expect x ′ to cover 3/4 of the edges of the graph.

To construct an actual vertex cover, we can run the randomized rounding algorithm several
times in succession, and take the union of the resulting vertex sets.

ApproxLightestVertexCover(G):
C ←∅
x∗← optimal fractional solution
for i← 1 to 2 lg n

for all vertices v
with probability x∗(v)

C ← C ∪ {x}
return C

Because the random choices in each iteration of the main loop are independent, we can simplify
the algorithm by changing the rounding criterion as follows, where N = 2 lg n:

x ′(v) =

¨

1 with probability 1− (1− x∗(v))N ,
0 otherwise,

Let C be the set of vertices returned by this algorithm. Each edge uv is left uncovered by C with
probability (1− x∗(u))N (1− x∗(v))N ≤ 1/4N = 1/n4. It follows that C is a vertex cover with
probability at least 1− 1/n2. On the other hand, linearity of expectation immediately implies
that the expected size of C is exactly N ·ÞOPT≤ 2 lg n ·OPT.

If we want to guarantee a vertex cover, we can modify the main loop in ApproxLightest-
VertexCover to continue running until every edge is covered. The loop will terminate after
O(log n) iterations with high probability, and the expected size of the resulting vertex cover is still
at most O(log n) ·OPT. Thus, at least in expectation, we obtain the same O(log n) approximation
ratio (at least in expectation) as our original greedy algorithm.

This randomized rounding strategy can be generalized to the lightest set cover problem,
where each subset in the input family has an associated weight, and the goal is to find the lightest
collection of subsets that covers the ground set. The resulting rounding algorithm computes a
set cover whose expected weight is at most O(log |F |) times the weight of the lightest set cover,
matching the performance of the greedy algorithm for unweighted set cover. The dual of this
algorithm is a randomized O(log |X|)-approximation algorithm for weighted hitting set (where
every item in the ground set has a weight).

ÆÆÆ Derandomization: Greedy set cover with prices with proof via LP duality

31.8 Traveling Salesman: The Bad News

The traveling salesman problem² problem asks for the shortest Hamiltonian cycle in a weighted
undirected graph. To keep the problem simple, we can assume without loss of generality that

²This is sometimes bowdlerized into the traveling salesperson problem. That’s just silly. Who ever heard of a
traveling salesperson sleeping with the farmer’s child?

8

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

the underlying graph is always the complete graph Kn for some integer n; thus, the input to the
traveling salesman problem is just a list of the

�n
2

�

edge lengths.
Not surprisingly, given its similarity to the Hamiltonian cycle problem, it’s quite easy to prove

that the traveling salesman problem is NP-hard. Let G be an arbitrary undirected graph with n
vertices. We can construct a length function for Kn as follows:

`(e) =

¨

1 if e is an edge in G,

2 otherwise.

Now it should be obvious that if G has a Hamiltonian cycle, then there is a Hamiltonian cycle
in Kn whose length is exactly n; otherwise every Hamiltonian cycle in Kn has length at least n+1.
We can clearly compute the lengths in polynomial time, so we have a polynomial time reduction
from Hamiltonian cycle to traveling salesman. Thus, the traveling salesman problem is NP-hard,
even if all the edge lengths are 1 and 2.

There’s nothing special about the values 1 and 2 in this reduction; we can replace them with
any values we like. By choosing values that are sufficiently far apart, we can show that even
approximating the shortest traveling salesman tour is NP-hard. For example, suppose we set
the length of the ‘absent’ edges to n+ 1 instead of 2. Then the shortest traveling salesman tour
in the resulting weighted graph either has length exactly n (if G has a Hamiltonian cycle) or
has length at least 2n (if G does not have a Hamiltonian cycle). Thus, if we could approximate
the shortest traveling salesman tour within a factor of 2 in polynomial time, we would have a
polynomial-time algorithm for the Hamiltonian cycle problem.

Pushing this idea to its limits us the following negative result.

Theorem 4. For any function f (n) that can be computed in time polynomial in n, there is no
polynomial-time f (n)-approximation algorithm for the traveling salesman problem on general
weighted graphs, unless P=NP.

31.9 Traveling Salesman: The Good News

Even though the general traveling salesman problem can’t be approximated, a common special
case can be approximated fairly easily. The special case requires the edge lengths to satisfy the
so-called triangle inequality:

`(u, w)≤ `(u, v) + `(v, w) for any vertices u, v, w.

This inequality is satisfied for geometric graphs, where the vertices are points in the plane (or
some higher-dimensional space), edges are straight line segments, and lengths are measured
in the usual Euclidean metric. Notice that the length functions we used above to show that the
general TSP is hard to approximate do not (always) satisfy the triangle inequality.

With the triangle inequality in place, we can quickly compute a 2-approximation for the
traveling salesman tour as follows. First, we compute the minimum spanning tree T of the
weighted input graph; this can be done in O(n2 log n) time (where n is the number of vertices of
the graph) using any of several classical algorithms. Second, we perform a depth-first traversal
of T , numbering the vertices in the order that we first encounter them. Because T is a spanning
tree, every vertex is numbered. Finally, we return the cycle obtained by visiting the vertices
according to this numbering.

Theorem 5. A depth-first ordering of the minimum spanning tree gives a 2-approximation of the
shortest traveling salesman tour.

9

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

6

7 5

32

4

1

6

7 5

42

3

1

A minimum spanning tree T , a depth-first traversal of T , and the resulting approximate traveling salesman tour.

Proof: Let OPT denote the cost of the optimal TSP tour, let MST denote the total length of the
minimum spanning tree, and let A be the length of the tour computed by our approximation
algorithm. Consider the ‘tour’ obtained by walking through the minimum spanning tree in
depth-first order. Since this tour traverses every edge in the tree exactly twice, its length is
2 ·MST. The final tour can be obtained from this one by removing duplicate vertices, moving
directly from each node to the next unvisited node.; the triangle inequality implies that taking
these shortcuts cannot make the tour longer. Thus, A≤ 2 ·MST. On the other hand, if we remove
any edge from the optimal tour, we obtain a spanning tree (in fact a spanning path) of the graph;
thus, MST≥ OPT. We conclude that A≤ 2 ·OPT; our algorithm computes a 2-approximation of
the optimal tour. �

We can improve this approximation factor using the following algorithm discovered by Nicos
Christofides in 1976. As in the previous algorithm, we start by constructing the minimum spanning
tree T . Then let O be the set of vertices with odd degree in T ; it is an easy exercise (hint, hint)
to show that the number of vertices in O is even.

In the next stage of the algorithm, we compute a minimum-cost perfect matching M of these
odd-degree vertices. A perfect matching is a collection of edges, where each edge has both
endpoints in O and each vertex in O is adjacent to exactly one edge; we want the perfect matching
of minimum total length. A minimum-cost perfect matching can be computed in polynomial time
using maximum-flow techniques, which are described in a different lecture note.

Now consider the multigraph T ∪ M ; any edge in both T and M appears twice in this
multigraph. This graph is connected, and every vertex has even degree. Thus, it contains an
Eulerian circuit: a closed walk that uses every edge exactly once. We can compute such a walk in
O(n) time with a simple modification of depth-first search. To obtain the final approximate TSP
tour, we number the vertices in the order they first appear in some Eulerian circuit of T ∪M , and
return the cycle obtained by visiting the vertices according to that numbering.

7

6 5

42

3

1

7

6 5

42

3

1

A minimum spanning tree T , a minimum-cost perfect matching M of the odd vertices in T ,
an Eulerian circuit of T ∪M , and the resulting approximate traveling salesman tour.

10

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

Theorem 6. Given a weighted graph that obeys the triangle inequality, the Christofides heuristic
computes a (3/2)-approximation of the shortest traveling salesman tour.

Proof: Let A denote the length of the tour computed by the Christofides heuristic; let OPT denote
the length of the optimal tour; let MST denote the total length of the minimum spanning tree; let
MOM denote the total length of the minimum odd-vertex matching.

The graph T ∪M , and therefore any Euler tour of T ∪M , has total length MST+MOM. By
the triangle inequality, taking a shortcut past a previously visited vertex can only shorten the tour.
Thus, A≤MST+MOM.

By the triangle inequality, the optimal tour of the odd-degree vertices of T cannot be longer
than OPT. Any cycle passing through of the odd vertices can be partitioned into two perfect
matchings, by alternately coloring the edges of the cycle red and green. One of these two
matchings has length at most OPT/2. On the other hand, both matchings have length at least
MOM. Thus, MOM≤ OPT/2.

Finally, recall our earlier observation that MST≤ OPT.
Putting these three inequalities together, we conclude that A≤ 3 ·OPT/2, as claimed. �

Four decades after its discovery, Christofedes’ algorithm is the best approximation algorithm
known for metric TSP, although better approximation algorithms are known for interesting special
cases. In particular, there have been several recent breakthroughs for the special case where
the underlying metric is determined by shortest-path distances in an unweighted graph G; this
special case is often called the graphic traveling salesman problem. The best approximation ratio
known for this special case is 7/5, from a 2012 algorithm of Sebő and Vygen.

31.10 k-center Clustering

The k-center clustering problem is defined as follows. We are given a set P = {p1, p2, . . . , pn} of n
points in the plane³ and an integer k. Our goal to find a collection of k circles that collectively
enclose all the input points, such that the radius of the largest circle is as small as possible. More
formally, we want to compute a set C = {c1, c2, . . . , ck} of k center points, such that the following
cost function is minimized:

cost(C) :=max
i

min
j
|pi c j|.

Here, |pi c j| denotes the Euclidean distance between input point pi and center point c j . Intuitively,
each input point is assigned to its closest center point; the points assigned to a given center c j
comprise a cluster. The distance from c j to the farthest point in its cluster is the radius of that
cluster; the cluster is contained in a circle of this radius centered at c j . The k-center clustering
cost cost(C) is precisely the maximum cluster radius.

This problem turns out to be NP-hard, even to approximate within a factor of roughly 1.8.
However, there is a natural greedy strategy, first analyzed in 1985 by Teofilo Gonzalez⁴, that is
guaranteed to produce a clustering whose cost is at most twice optimal. Choose the k center
points one at a time, starting with an arbitrary input point as the first center. In each iteration,
choose the input point that is farthest from any earlier center point to be the next center point.

³The k-center problem can be defined over any metric space, and the approximation analysis in this section holds
in any metric space as well. The analysis in the next section, however, does require that the points come from the
Euclidean plane.

⁴Teofilo F. Gonzalez. Clustering to minimize the maximum inter-cluster distance. Theoretical Computer Science
38:293-306, 1985.

11

http://arxiv.org/abs/1201.1870

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

The first five iterations of Gonzalez’s k-center clustering algorithm.

In the pseudocode below, di denotes the current distance from point pi to its nearest center,
and r j denotes the maximum of all di (or in other words, the cluster radius) after the first j centers
have been chosen. The algorithm includes an extra iteration to compute the final clustering
radius rk (and the next center ck+1).

GonzalezKCenter(P, k):
for i← 1 to n

di ←∞
c1← p1

for j← 1 to k
r j ← 0
for i← 1 to n

di ←min{di , |pi c j |}
if r j < di

r j ← di; c j+1← pi

return {c1, c2, . . . , ck}

GonzalezKCenter clearly runs in O(nk) time. Using more advanced data structures, Tomas
Feder and Daniel Greene⁵ described an algorithm to compute exactly the same clustering in only
O(n log k) time.

Theorem 7. GonzalezKCenter computes a 2-approximation to the optimal k-center clustering.

Proof: Let OPT denote the optimal k-center clustering radius for P. For any index i, let ci and ri
denote the ith center point and ith clustering radius computed by GonzalezKCenter.

By construction, each center point c j has distance at least r j−1 from any center point ci with
i < j. Moreover, for any i < j, we have ri ≥ r j . Thus, |cic j| ≥ rk for all indices i and j.

On the other hand, at least one cluster in the optimal clustering contains at least two of the
points c1, c2, . . . , ck+1. Thus, by the triangle inequality, we must have |cic j| ≤ 2 ·OPT for some
indices i and j. We conclude that rk ≤ 2 ·OPT, as claimed. �

⁵Tomas Feder* and Daniel H. Greene. Optimal algorithms for approximate clustering. Proc. 20th STOC, 1988.
Unlike Gonzalez’s algorithm, Feder and Greene’s faster algorithm does not work over arbitrary metric spaces; it
requires that the input points come from some Rd and that distances are measured in some Lp metric. The time
analysis also assumes that the distance between any two points can be computed in O(1) time.

12

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

31.11 Approximation Schemes?

With just a little more work, we can compute an arbitrarily close approximation of the optimal
k-clustering, using a so-called approximation scheme. An approximation scheme accepts both an
instance of the problem and a value ε > 0 as input, and it computes a (1+ε)-approximation of the
optimal output for that instance. As I mentioned earlier, computing even a 1.8-approximation is
NP-hard, so we cannot expect our approximation scheme to run in polynomial time; nevertheless,
at least for small values of k, the approximation scheme will be considerably more efficient than
any exact algorithm.

Our approximation scheme works in three phases:

1. Compute a 2-approximate clustering of the input set P using GonzalezKCenter. Let r be
the cost of this clustering.

2. Create a regular grid of squares of width δ = εr/2
p

2. Let Q be a subset of P containing
one point from each non-empty cell of this grid.

3. Compute an optimal set of k centers for Q. Return these k centers as the approximate
k-center clustering for P.

The first phase requires O(nk) time. By our earlier analysis, we have r∗ ≤ r ≤ 2r∗, where r∗

is the optimal k-center clustering cost for P.
The second phase can be implemented in O(n) time using a hash table, or in O(n log n)

time by standard sorting, by associating approximate coordinates (bx/δc, by/δc) to each point
(x , y) ∈ P and removing duplicates. The key observation is that the resulting point set Q is
significantly smaller than P. We know P can be covered by k balls of radius r∗, each of which
touches O(r∗/δ2) = O(1/ε2) grid cells. It follows that |Q|= O(k/ε2).

Let T (n, k) be the running time of an exact k-center clustering algorithm, given n points
as input. If this were a computational geometry class, we might see a “brute force” algorithm
that runs in time T (n, k) = O(nk+2); the fastest algorithm currently known⁶ runs in time
T (n, k) = nO(

p
k). If we use this algorithm, our third phase requires (k/ε2)O(

p
k) time.

It remains to show that the optimal clustering for Q implies a (1+ ε)-approximation of the
optimal clustering for P. Suppose the optimal clustering of Q consists of k balls B1, B2, . . . , Bk,
each of radius r̃. Clearly r̃ ≤ r∗, since any set of k balls that cover P also cover any subset of P.
Each point in P \Q shares a grid cell with some point in Q, and therefore is within distance δ

p
2

of some point in Q. Thus, if we increase the radius of each ball Bi by δ
p

2, the expanded balls
must contain every point in P. We conclude that the optimal centers for Q gives us a k-center
clustering for P of cost at most r∗ +δ

p
2≤ r∗ + εr/2≤ r∗ + εr∗ = (1+ ε)r∗.

The total running time of the approximation scheme is O(nk + (k/ε2)O(
p

k)). This is still
exponential in the input size if k is large (say

p
n or n/100), but if k and ε are fixed constants,

the running time is linear in the number of input points.

31.12 An FPTAS for Subset Sum?

An approximation scheme whose running time, for any fixed ε, is polynomial in n is called a
polynomial-time approximation scheme or PTAS (usually pronounced “pee taz”). If in addition
the running time depends only polynomially on ε, the algorithm is called a fully polynomial-
time approximation scheme or FPTAS (usually pronounced “eff pee taz”). For example, an

⁶R. Z. Hwang, R. C. T. Lee, and R. C. Chan. The slab dividing approach to solve the Euclidean p-center problem.
Algorithmica 9(1):1–22, 1993.

13

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

approximation scheme with running time O(n2/ε2) is an FPTAS; an approximation scheme with
running time O(n1/ε6

) is a PTAS but not an FPTAS; and our approximation scheme for k-center
clustering is not a PTAS.

The last problem we’ll consider is the SubsetSum problem: Given a set X containing n
positive integers and a target integer t, determine whether X has a subset whose elements sum
to t. The lecture notes on NP-completeness include a proof that SubsetSum is NP-hard. As
stated, this problem doesn’t allow any sort of approximation—the answer is either True or
False.⁷ So we will consider a related optimization problem instead: Given set X and integer t,
find the subset of X whose sum is as large as possible but no larger than t.

We have already seen a dynamic programming algorithm to solve the decision version
SubsetSum in time O(nt); a similar algorithm solves the optimization version in the same time
bound. Here is a different algorithm, whose running time does not depend on t:

SubsetSum(X [1 .. n], t):
S0← {0}
for i← 1 to n

Si ← Si−1 ∪ (Si−1 + X [i])
remove all elements of Si bigger than t

return max Sn

Here Si−1 + X [i] denotes the set {s + X [i] | s ∈ Si−1}. If we store each Si in a sorted array,
the ith iteration of the for-loop requires time O(|Si−1|). Each set Si contains all possible subset
sums for the first i elements of X ; thus, Si has at most 2i elements. On the other hand, since
every element of Si is an integer between 0 and t, we also have |Si| ≤ t + 1. It follows that the
total running time of this algorithm is

∑n
i=1 O(|Si−1|) = O(min{2n, nt}).

Of course, this is only an estimate of worst-case behavior. If several subsets of X have the
same sum, the sets Si will have fewer elements, and the algorithm will be faster. The key idea
for finding an approximate solution quickly is to ‘merge’ nearby elements of Si—if two subset
sums are nearly equal, ignore one of them. On the one hand, merging similar subset sums
will introduce some error into the output, but hopefully not too much. On the other hand, by
reducing the size of the set of sums we need to maintain, we will make the algorithm faster,
hopefully significantly so.

Here is our approximation algorithm. We make only two changes to the exact algorithm: an
initial sorting phase and an extra Filtering step inside the main loop.

Filter(Z[1 .. k],δ):
Sort(Z)
j← 1
Y [j]← Z[i]
for i← 2 to k

if Z[i]> (1+δ) · Y [j]
j← j + 1
Y [j]← Z[i]

return Y [1 .. j]

ApproxSubsetSum(X [1 .. n], k,ε):
Sort(X)
R0← {0}
for i← 1 to n

Ri ← Ri−1 ∪ (Ri−1 + X [i])
Ri ← Filter(Ri ,ε/2n)
remove all elements of Ri bigger than t

return max Rn

Theorem 8. ApproxSubsetSum returns a (1+ ε)-approximation of the optimal subset sum, given
any ε such that 0< ε ≤ 1.

Proof: The theorem follows from the following claim, which we prove by induction:

⁷Do, or do not. There is no ‘try’. (Are old one thousand when years you, alphabetical also in order talk will you.)

14

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

For any element s ∈ Si , there is an element r ∈ Ri such that r ≤ s ≤ r · (1+ εn/2)i .

The claim is trivial for i = 0. Let s be an arbitrary element of Si , for some i > 0. There are two
cases to consider: either x ∈ Si−1, or x ∈ Si−1 + x i .

(1) Suppose s ∈ Si−1. By the inductive hypothesis, there is an element r ′ ∈ Ri−1 such that
r ′ ≤ s ≤ r ′ · (1+ εn/2)i−1. If r ′ ∈ Ri, the claim obviously holds. On the other hand, if
r ′ 6∈ Ri , there must be an element r ∈ Ri such that r < r ′ ≤ r(1+εn/2), which implies that

r < r ′ ≤ s ≤ r ′ · (1+ εn/2)i−1 ≤ r · (1+ εn/2)i ,

so the claim holds.

(2) Suppose s ∈ Si−1 + x i . By the inductive hypothesis, there is an element r ′ ∈ Ri−1 such that
r ′ ≤ s − x i ≤ r ′ · (1+ εn/2)i−1. If r ′ + x i ∈ Ri, the claim obviously holds. On the other
hand, if r ′ + x i 6∈ Ri , there must be an element r ∈ Ri such that r < r ′ + x i ≤ r(1+ εn/2),
which implies that

r < r ′ + x i ≤ s ≤ r ′ · (1+ εn/2)i−1 + x i

≤ (r − x i) · (1+ εn/2)i + x i

≤ r · (1+ εn/2)i − x i · ((1+ εn/2)i − 1)

≤ r · (1+ εn/2)i .

so the claim holds.

Now let s∗ = max Sn and r∗ = max Rn. Clearly r∗ ≤ s∗, since Rn ⊆ Sn. Our claim implies
that there is some r ∈ Rn such that s∗ ≤ r · (1+ ε/2n)n. But r cannot be bigger than r∗, so
s∗ ≤ r∗ · (1+ ε/2n)n. The inequalities ex ≥ 1+ x for all x , and ex ≤ 2x + 1 for all 0 ≤ x ≤ 1,
imply that (1+ ε/2n)n ≤ eε/2 ≤ 1+ ε. �

Theorem 9. ApproxSubsetSum runs in O((n3 log n)/ε) time.

Proof: Assuming we keep each set Ri in a sorted array, we can merge the two sorted arrays Ri−1
and Ri−1 + x i in O(|Ri−1|) time. Filterin Ri and removing elements larger than t also requires
only O(|Ri−1|) time. Thus, the overall running time of our algorithm is O(

∑

i|Ri|); to express this
in terms of n and ε, we need to prove an upper bound on the size of each set Ri .

Let δ = ε/2n. Because we consider the elements of X in increasing order, every element of
Ri is between 0 and i · x i . In particular, every element of Ri−1 + x i is between x i and i · x i . After
Filtering, at most one element r ∈ Ri lies in the range (1+ δ)k ≤ r < (1+ δ)k+1, for any k.
Thus, at most dlog1+δ ie elements of Ri−1 + x i survive the call to Filter. It follows that

|Ri|= |Ri−1|+
¡

log i
log(1+δ)

¤

≤ |Ri−1|+
¡

log n
log(1+δ)

¤

[i ≤ n]

≤ |Ri−1|+
¡

2 ln n
δ

¤

[ex ≤ 1+ 2x for all 0≤ x ≤ 1]

≤ |Ri−1|+
¡

n ln n
ε

¤

[δ = ε/2n]

15

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

Unrolling this recurrence into a summation gives us the upper bound |Ri| ≤ i · d(n ln n)/εe =
O((n2 log n)/ε).

We conclude that the overall running time of ApproxSubsetSum is O((n3 log n)/ε), as
claimed. �

Exercises

1. (a) Prove that for any set of jobs, the makespan of the greedy assignment is at most
(2− 1/m) times the makespan of the optimal assignment, where m is the number of
machines.

(b) Describe a set of jobs such that the makespan of the greedy assignment is exactly
(2− 1/m) times the makespan of the optimal assignment, where m is the number of
machines.

(c) Describe an efficient algorithm to solve the minimum makespan scheduling problem
exactly if every processing time T[i] is a power of two.

2. (a) Find the smallest graph (minimum number of edges) for which GreedyVertexCover
does not return the smallest vertex cover.

(b) For any integer n, describe an n-vertex graph for which GreedyVertexCover returns
a vertex cover of size OPT ·Ω(log n).

3. (a) Find the smallest graph (minimum number of edges) for which DumbVertexCover
does not return the smallest vertex cover.

(b) Describe an infinite family of graphs for which DumbVertexCover returns a vertex
cover of size 2 ·OPT.

4. Let R be a set of rectangles in the plane, with horizontal and vertical edges. A stabbing set
for R is a set S of points such that every rectangle in R contains at least one point in S. The
rectangle stabbing problem asks for the smallest stabbing set of a given set of rectangles.

(a) Prove that the rectangle stabbing problem is NP-hard.

(b) Describe and analyze an efficient approximation algorithm for the rectangle stabbing
problem. What is the approximation ratio of your algorithm?

5. Consider the following heuristic for constructing a vertex cover of a connected graph G:
return the set of non-leaf nodes in any depth-first spanning tree of G.

(a) Prove that this heuristic returns a vertex cover of G.

(b) Prove that this heuristic returns a 2-approximation to the minimum vertex cover of G.

(c) Describe an infinite family of graphs for which this heuristic returns a vertex cover of
size 2 ·OPT.

6. Suppose we have n pieces of candy with weights W [1 .. n] (in ounces) that we want to
load into boxes. Our goal is to load the candy into as many boxes as possible, so that each

16

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

box contains at least L ounces of candy. Describe an efficient 2-approximation algorithm
for this problem. Prove that the approximation ratio of your algorithm is 2. [Hint: First
consider the case where every piece of candy weighs less than L ounces.]

7. Suppose we want to route a set of N calls on a telecommunications network that consists
of a cycle of n nodes, indexed in cyclic order from 0 to n−1. Each call can be routed either
clockwise or counterclockwise around the cycle from its source node to its destination
node. Our goal is to route the calls so as to minimize the overall load on the network. The
load Li on any edge (i, (i+1) mod n) is the number of calls routed through that edge, and
the overall load is maxi Li. Describe and analyze an efficient 2-approximation algorithm
for this problem.

8. The linear arrangement problem asks, given an n-vertex directed graph as input, for an
ordering v1, v2, . . . , vn of the vertices that maximizes the number of forward edges: directed
edges vi�v j such that i < j. Describe and analyze an efficient 2-approximation algorithm
for this problem. (Solving this problem exactly is NP-hard.)

9. Consider the following optimization version of the Partition problem. Given a set X
of positive integers, our task is to partition X into disjoint subsets A and B such that
max{

∑

A,
∑

B} is as small as possible. Solving this problem exactly is clearly NP-hard.

(a) Prove that the following algorithm yields a 3/2-approximation.

GreedyPartition(X [1 .. n]):
a← 0
b← 0
for i← 1 to n

if a < b
a← a+ X [i]

else
b← b+ X [i]

return max{a, b}

(b) Prove that the approximation ratio 3/2 cannot be improved, even if the input array X
is sorted in non-decreasing order. In other words, give an example of a sorted array X
where the output of GreedyPartition is 50% larger than the cost of the optimal
partition.

(c) Prove that if the array X is sorted in non-increasing order, then GreedyPartition
achieves an approximation ratio of at most 4/3.

?(d) Prove that if the array X is sorted in non-increasing order, then GreedyPartition
achieves an approximation ratio of exactly 7/6.

10. The chromatic number χ(G) of a graph G is the minimum number of colors required to
color the vertices of the graph, so that every edge has endpoints with different colors.
Computing the chromatic number exactly is NP-hard.

Prove that the following problem is also NP-hard: Given an n-vertex graph G, return any
integer between χ(G) and χ(G) + 31337. [Note: This does not contradict the possibility of
a constant factor approximation algorithm.]

17

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

11. Let G = (V, E) be an undirected graph, each of whose vertices is colored either red, green,
or blue. An edge in G is boring if its endpoints have the same color, and interesting if
its endpoints have different colors. The most interesting 3-coloring is the 3-coloring with
the maximum number of interesting edges, or equivalently, with the fewest boring edges.
Computing the most interesting 3-coloring is NP-hard, because the standard 3-coloring
problem is a special case.

(a) Let zzz(G) denote the number of boring edges in the most interesting 3-coloring of a
graph G. Prove that it is NP-hard to approximate zzz(G) within a factor of 1010100

.

(b) Let wow(G) denote the number of interesting edges in the most interesting 3-coloring
of G. Supposewe assign each vertex in G a random color from the set {red,green,blue}.
Prove that the expected number of interesting edges is at least 2

3wow(G).

(c) Prove that with high probability, the expected number of interesting edges is at least
1
2wow(G). [Hint: Use Chebyshev’s inequality. But wait. . . How do we know that we
can use Chebyshev’s inequality?]

12. The Knapsack problem can be defined as follows. We are given a finite set of elements X
where each element x ∈ X has a non-negative size and a non-negative value, along with an
integer capacity c. Our task is to determine the maximum total value among all subsets
of X whose total size is at most c. This problem is NP-hard. Specifically, the optimization
version of SubsetSum is a special case, where each element’s value is equal to its size.

Determine the approximation ratio of the following polynomial-time approximation
algorithm. Prove your answer is correct.

ApproxKnapsack(X , c):
return max{GreedyKnapsack(X , c), PickBestOne(X , c)}

GreedyKnapsack(X , c):
Sort X in decreasing order by the ratio value/size
S← 0; V ← 0
for i← 1 to n

if S + size(x i)> c
return V

S← S + size(x i)
V ← V + value(x i)

return V

PickBestOne(X , c):
Sort X in increasing order by size
V ← 0
for i← 1 to n

if size(x i)> c
return V

if value(x i)> V
V ← value(x i)

return V

13. In the bin packing problem, we are given a set of n items, each with weight between 0
and 1, and we are asked to load the items into as few bins as possible, such that the total
weight in each bin is at most 1. It’s not hard to show that this problem is NP-hard; this
question asks you to analyze a few common approximation algorithms. In each case, the
input is an array W [1 .. n] of weights, and the output is the number of bins used.

18

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

NextFit(W [1 .. n]):
b← 0
Total[0]←∞

for i← 1 to n
if Total[b] +W [i]> 1

b← b+ 1
Total[b]←W [i]

else
Total[b]← Total[b] +W [i]

return b

FirstFit(W [1 .. n]):
b← 0

for i← 1 to n
j← 1; f ound ← False

while j ≤ b and f ound = False
if Total[j] +W [i]≤ 1

Total[j]← Total[j] +W [i]
f ound ← True

j← j + 1

if f ound = False
b← b+ 1
Total[b] =W [i]

return b

(a) Prove that NextFit uses at most twice the optimal number of bins.

(b) Prove that FirstFit uses at most twice the optimal number of bins.
?(c) Prove that if the weight array W is initially sorted in decreasing order, then FirstFit

uses at most (4 · OPT+ 1)/3 bins, where OPT is the optimal number of bins. The
following facts may be useful (but you need to prove them if your proof uses them):

• In the packing computed by FirstFit, every item with weight more than 1/3 is
placed in one of the first OPT bins.

• FirstFit places at most OPT− 1 items outside the first OPT bins.

14. Given a graph G with edge weights and an integer k, suppose we wish to partition the the
vertices of G into k subsets S1, S2, . . . , Sk so that the sum of the weights of the edges that
cross the partition (that is, have endpoints in different subsets) is as large as possible.

(a) Describe an efficient (1− 1/k)-approximation algorithm for this problem.

(b) Now suppose we wish to minimize the sum of the weights of edges that do not cross
the partition. What approximation ratio does your algorithm from part (a) achieve
for the new problem? Justify your answer.

15. The lecture notes describe a (3/2)-approximation algorithm for the metric traveling
salesman problem, which asks for the minimum-cost Hamiltonian cycle in a graph whose
edge weights satisfy the triangle inequality. Here, we consider computing minimum-cost
Hamiltonian paths. Our input consists of a graph G whose edges have weights that satisfy
the triangle inequality. Depending upon the problem, we are also given zero, one, or two
endpoints.

(a) If our input includes zero endpoints, describe a (3/2)-approximation to the problem
of computing a minimum cost Hamiltonian path.

(b) If our input includes one endpoint u, describe a (3/2)-approximation to the problem
of computing a minimum cost Hamiltonian path that starts at u.

?(c) If our input includes two endpoints u and v, describe a (5/3)-approximation to the
problem of computing a minimum cost Hamiltonian path that starts at u and ends
at v.

19

Algorithms Lecture 31: Approximation Algorithms [Sp’16]

16. Suppose we are given a collection of n jobs to execute on a machine containing a row of p
identical processors. The parallel scheduling problem asks us to schedule these jobs on
these processors, given two arrays T[1 .. n] and P[1 .. n] as input, subject to the following
constraints:

• When the ith job is executed, it occupies a contiguous interval of P[i] processors for
exactly T[i] seconds.

• No processor works on more than one job at a time.

A valid schedule specifies a non-negative starting time and an interval of processors for
each job that meets these constraints. Our goal is to compute a valid schedule with the
smallest possible makespan, which is the earliest time when all jobs are complete.

(a) Prove that the parallel scheduling problem is NP-hard.

(b) Describe a polynomial-time algorithm that computes a 3-approximation of the mini-
mum makespan of a given set of jobs. That is, if the minimum makespan is M , your
algorithm should compute a schedule with make-span at most 3M . You may assume
that p is a power of 2. [Hint: p is a power of 2.]

(c) Describe an algorithm that computes a 3-approximation of the minimum makespan of
a given set of jobs in O(n log n) time. Again, you may assume that n is a power of 2.

17. Consider the greedy algorithm for the metric traveling salesman problem: start at an
arbitrary vertex u, and at each step, travel to the closest unvisited vertex.

(a) Prove that the approximation ratio for this algorithm is O(log n), where n is the
number of vertices. [Hint: Argue that the kth least expensive edge in the tour output by
the greedy algorithm has weight at most OPT/(n− k+ 1); try k = 1 and k = 2 first.]

?(b) Prove that the approximation ratio for this algorithm is Ω(log n). That is, describe
an infinite family of weighted graphs such that the greedy algorithm returns a
Hamiltonian cycle whose weight is Ω(log n) times the weight of the optimal TSP tour.

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision.

20

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

	Approximation Algorithms
	Load Balancing
	Generalities
	Greedy Vertex Cover
	Set Cover and Hitting Set
	Vertex Cover Redux
	Lightest Vertex Cover: LP Rounding
	Randomized LP Rounding
	Traveling Salesman: The Bad News
	Traveling Salesman: The Good News
	k-center Clustering
	Approximation Schemes
	An FPTAS for Subset Sum

