

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

[I]n his short and broken treatise he provides an eternal example—not of laws, or even
of method, for there is no method except to be very intelligent, but of intelligence itself
swiftly operating the analysis of sensation to the point of principle and definition.

— T. S. Eliot on Aristotle, “The Perfect Critic”, The Sacred Wood (1921)

The nice thing about standards is that you have so many to choose from;
furthermore, if you do not like any of them, you can just wait for next year’s model.

— Andrew S. Tannenbaum, Computer Networks (1981)
Also attributed to Grace Murray Hopper and others

If a problem has no solution, it may not be a problem, but a fact —
not to be solved, but to be coped with over time.

— Shimon Peres, as quoted by David Rumsfeld, Rumsfeld’s Rules (2001)

�� NP-Hard Problems

��.� A Game You Can’t Win

A salesman in a red suit who looks suspiciously like Tom Waits presents you with a black steel
box with n binary switches on the front and a light bulb on the top. The salesman tells you that
the state of the light bulb is controlled by a complex boolean circuit—a collection of A��, O�,
and N�� gates connected by wires, with one input wire for each switch and a single output wire
for the light bulb. He then asks you the following question: Is there a way to set the switches so
that the light bulb turns on? If you can answer this question correctly, he will give you the box
and a million billion trillion dollars; if you answer incorrectly, or if you die without answering at
all, he will take your soul.

x
y

xx
y

x∨yx∧y ¬x

An A�� gate, an O� gate, and a N�� gate.

x
1

x
2

x
3

x
4

x
5

A boolean circuit. inputs enter from the left, and the output leaves to the right.

As far as you can tell, the Adversary hasn’t connected the switches to the light bulb at all, so
no matter how you set the switches, the light bulb will stay off. If you declare that it is possible
to turn on the light, the Adversary will open the box and reveal that there is no circuit at all.
But if you declare that it is not possible to turn on the light, before testing all 2n settings, the
Adversary will magically create a circuit inside the box that turns on the light if and only if the

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

�

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

switches are in one of the settings you haven’t tested, and then flip the switches to that setting,
turning on the light. (You can’t detect the Adversary’s cheating, because you can’t see inside the
box until the end.) The only way to provably answer the Adversary’s question correctly is to try
all 2n possible settings. You quickly realize that this will take far longer than you expect to live,
so you gracefully decline the Adversary’s offer.

The Adversary smiles and says, “Ah, yes, of course, you have no reason to trust me. But
perhaps I can set your mind at ease.” He hands you a large roll of parchment—which you hope
was made from sheep skin—with a circuit diagram drawn (or perhaps tattooed) on it. “Here are
the complete plans for the circuit inside the box. Feel free to poke around inside the box to make
sure the plans are correct. Or build your own circuit from these plans. Or write a computer
program to simulate the circuit. Whatever you like. If you discover that the plans don’t match
the actual circuit in the box, you win the trillion bucks.” A few spot checks convince you that the
plans have no obvious flaws; subtle cheating appears to be impossible.

But you should still decline the Adversary’s generous offer. The problem that the Adversary is
posing is called circuit satisfiability or C������S��: Given a boolean circuit, is there is a set
of inputs that makes the circuit output T���, or conversely, whether the circuit always outputs
F����. For any particular input setting, we can calculate the output of the circuit in polynomial
(actually, linear) time using depth-first-search. But nobody knows how to solve C������S�� faster
than just trying all 2n possible inputs to the circuit, but this requires exponential time. On the
other hand, nobody has actually proved that this is the best we can do; maybe there’s a clever
algorithm that just hasn’t been discovered yet!

��.� P versus NP

A minimal requirement for an algorithm to be considered “efficient” is that its running time is
polynomial: O(nc) for some constant c, where n is the size of the input.¹ Researchers recognized
early on that not all problems can be solved this quickly, but had a hard time figuring out exactly
which ones could and which ones couldn’t. There are several so-called NP-hard problems, which
most people believe cannot be solved in polynomial time, even though nobody can prove a
super-polynomial lower bound.

A decision problem is a problem whose output is a single boolean value: Y�� or N�. Let me
define three classes of decision problems:

• P is the set of decision problems that can be solved in polynomial time. Intuitively, P is the
set of problems that can be solved quickly.

• NP is the set of decision problems with the following property: If the answer is Y��, then
there is a proof of this fact that can be checked in polynomial time. Intuitively, NP is the
set of decision problems where we can verify a Y�� answer quickly if we have the solution
in front of us.

• co-NP is essentially the opposite of NP. If the answer to a problem in co-NP is N�, then
there is a proof of this fact that can be checked in polynomial time.

¹This notion of efficiency was independently formalized by Alan Cobham (The intrinsic computational difficulty of
functions. Logic, Methodology, and Philosophy of Science (Proc. Int. Congress), ��–��, ����), Jack Edmonds (Paths,
trees, and flowers. Canadian Journal of Mathematics ��:���–���, ����), and Michael Rabin (Mathematical theory of
automata. Proceedings of the ��th ACM Symposium in Applied Mathematics, ���–���, ����), although similar notions
were considered more than a decade earlier by Kurt Gödel and John von Neumann.

�

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

For example, the circuit satisfiability problem is in NP. If a given boolean circuit is satisfiable,
then any set of m input values that produces T��� output is a proof that the circuit is satisfiable;
we can check the proof by evaluating the circuit in polynomial time. It is widely believed that
circuit satisfiability is not in P or in co-NP, but nobody actually knows.

Every decision problem in P is also in NP. If a problem is in P, we can verify Y�� answers in
polynomial time recomputing the answer from scratch! Similarly, every problem in P is also in
co-NP.

Perhaps the single most important unanswered question in theoretical computer science—if
not all of computer science—if not all of science—is whether the complexity classes P and NP are
actually different. Intuitively, it seems obvious to most people that P 6= NP; the homeworks and
exams in this class and others have (I hope) convinced you that problems can be incredibly hard
to solve, even when the solutions are obvious in retrospect. It’s completely obvious; of course
solving problems from scratch is harder than just checking that a solution is correct. We can
quite reasonably accept the statement “P 6= NP” as a law of nature.

But nobody knows how to prove P 6= NP. In fact, there has been little or no real progress
toward a proof for decades.² The Clay Mathematics Institute lists P versus NP as the first of its
seven Millennium Prize Problems, offering a $�,���,��� reward for its solution. And yes, in fact,
several people have lost their souls attempting to solve this problem.

A more subtle but still open question is whether the complexity classes NP and co-NP are
different. Even if we can verify every Y�� answer quickly, there’s no reason to believe we can also
verify N� answers quickly. For example, as far as we know, there is no short proof that a boolean
circuit is not satisfiable. It is generally believed that NP 6= co-NP, but again, nobody knows how
to prove it.

P

NPcoNP

What we think the world looks like.

��.� NP-hard, NP-easy, and NP-complete

A problem ⇧ is NP-hard if a polynomial-time algorithm for ⇧ would imply a polynomial-time
algorithm for every problem in NP. In other words:

⇧ is NP-hard () If ⇧ can be solved in polynomial time, then P=NP

Intuitively, if we could solve one particular NP-hard problem quickly, then we could quickly solve
any problem whose solution is easy to understand, using the solution to that one special problem
as a subroutine. NP-hard problems are at least as hard as every problem in NP.

Finally, a problem is NP-complete if it is both NP-hard and an element of NP (or “NP-easy”).
Informally, NP-complete problems are the hardest problems in NP. A polynomial-time algorithm
for even one NP-complete problem would immediately imply a polynomial-time algorithm for
every NP-complete problem. Literally thousands of problems have been shown to be NP-complete,
so a polynomial-time algorithm for one (and therefore all) of them seems incredibly unlikely.

²Perhaps the most significant progress has taken the form of barrier results, which imply that entire avenues of
attack are doomed to fail. In a very real sense, these results actually prove that we have no idea how to prove P 6= NP!

�

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

Calling a problem NP-hard is like saying “If I own a dog, then it can speak fluent English.’”
You probably don’t know whether or not I own a dog, but I bet you’re pretty sure that I don’t own
a talking dog. Nobody has a mathematical proof that dogs can’t speak English—the fact that no
one has ever heard a dog speak English is evidence, as are the hundreds of examinations of dogs
that lacked the proper mouth shape and brainpower, but mere evidence is not a mathematical
proof. Nevertheless, no sane person would believe me if I said I owned a dog that spoke fluent
English. So the statement “If I own a dog, then it can speak fluent English” has a natural corollary:
No one in their right mind should believe that I own a dog! Likewise, if a problem is NP-hard, no
one in their right mind should believe it can be solved in polynomial time.

P

NPcoNP

NP-hard

NP-complete

More of what we think the world looks like.

It is not immediately clear that any problems are NP-hard. The following remarkable theorem
was first published by Steve Cook in ���� and independently by Leonid Levin in ����.³ I won’t
even sketch the proof here, since I’ve been (deliberately) vague about the definitions; interested
readers find a proof in my lecture notes on nondeterministic Turing machines.

The Cook-Levin Theorem. Circuit satisfiability is NP-hard.

��.� Formal Definitions (HC SVNT DRACONES)?

Formally, the complexity classes P, NP, and co-NP are defined in terms of languages and Turing
machines. A language is just a set of strings over some finite alphabet ⌃; without loss of generality,
we can assume that ⌃ = {0,1}. P is the set of languages that can be decided in Polynomial time
by a deterministic single-tape Turing machine. Similarly, NP is the set of all languages that can
be decided in polynomial time by a nondeterministic Turing machine; NP is an abbreviation for
Nondeterministic Polynomial-time.

Polynomial time is a sufficient crude requirement that the precise form of Turing machine
(number of heads, number of tracks, and so one) is unimportant. In fact, careful application and
analysis of the techniques described in the Turing machine notes imply that any algorithm that
runs on a random-access machine⁴ in T (n) time can be simulated by a single-tape, single-track,
single-head Turing machine that runs in O(T (n)3) time. This simulation result allows us to

³Levin first reported his results at seminars in Moscow in ����, while still a PhD student. News of Cook’s result
did not reach the Soviet Union until at least ����, after Levin’s announcement of his results had been published; in
accordance with Stigler’s Law, this result is often called “Cook’s Theorem”. Levin was denied his PhD at Moscow
University for political reasons; he emigrated to the US in ���� and earned a PhD at MIT a year later. Cook was denied
tenure at Berkeley in ����, just one year before publishing his seminal paper; he (but not Levin) later won the Turing
award for his proof.

⁴Random-access machines are a model of computation that more faithfully models physical computers. A random-
access machine has unbounded random-access memory, modeled as an array M[0 ..1] where each address M[i]
holds a single w-bit integer, for some fixed integer w, and can read to or write from any memory addresses in constant
time. RAM algorithms are formally written in assembly-like language, using instructions like ADD i, j , k (meaning
“M[i] M[j] +M[k]”), INDIR i, j (meaning “M[i] M[M[j]]”), and IFZGOTO i,` (meaning “if M[i] = 0, go to
line `”). In practice, RAM algorithms can be faithfully described using higher-level pseudocode, as long as we’re
careful about arithmetic precision.

�

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

argue formally about computational complexity in terms of standard high-level programming
constructs like for-loops and recursion, instead of describing everything directly in terms of
Turing machines.

A problem ⇧ is formally NP-hard if and only if, for every language ⇧0 2 NP, there is a
polynomial-time Turing reduction from ⇧0 to ⇧. A Turing reduction just means a reduction
that can be executed on a Turing machine; that is, a Turing machine M that can solve ⇧0 using
another Turing machine M 0 for ⇧ as a black-box subroutine. Turing reductions are also called
oracle reductions; polynomial-time Turing reductions are also called Cook reductions.

Researchers in complexity theory prefer to define NP-hardness in terms of polynomial-time
many-one reductions, which are also called Karp reductions. A many-one reduction from one
language L0 ✓ ⌃⇤ to another language L ✓ ⌃⇤ is an function f : ⌃⇤ ! ⌃⇤ such that x 2 L0 if and
only if f (x) 2 L. Then we can define a language L to be NP-hard if and only if, for any language
L0 2 NP, there is a many-one reduction from L0 to L that can be computed in polynomial time.

Every Karp reduction “is” a Cook reduction, but not vice versa. Specifically, any Karp reduction
from one decision problem ⇧ to another decision ⇧0 is equivalent to transforming the input to ⇧
into the input for ⇧0, invoking an oracle (that is, a subroutine) for ⇧0, and then returning the
answer verbatim. However, as far as we know, not every Cook reduction can be simulated by a
Karp reduction.

Complexity theorists prefer Karp reductions primarily because NP is closed under Karp
reductions, but is not closed under Cook reductions (unless NP=co-NP, which is considered
unlikely). There are natural problems that are (�) NP-hard with respect to Cook reductions, but
(�) NP-hard with respect to Karp reductions only if P=NP. One trivial example is of such a problem
is U�S��: Given a boolean formula, is it always false? On the other hand, many-one reductions
apply only to decision problems (or more formally, to languages); formally, no optimization or
construction problem is Karp-NP-hard.

To make things even more confusing, both Cook and Karp originally defined NP-hardness in
terms of logarithmic-space reductions. Every logarithmic-space reduction is a polynomial-time
reduction, but (as far as we know) not vice versa. It is an open question whether relaxing the set
of allowed (Cook or Karp) reductions from logarithmic-space to polynomial-time changes the set
of NP-hard problems.

Fortunately, none of these subtleties raise their ugly heads in practice—in particular, every
algorithmic reduction described in these notes can be formalized as a logarithmic-space many-one
reduction—so you can wake up now.

��.� Reductions and SAT

To prove that any problem other than Circuit satisfiability is NP-hard, we use a reduction argument.
Reducing problem A to another problem B means describing an algorithm to solve problem A
under the assumption that an algorithm for problem B already exists. You’re already used to
doing reductions, only you probably call it something else, like writing subroutines or utility
functions, or modular programming. To prove something is NP-hard, we describe a similar
transformation between problems, but not in the direction that most people expect.

You should tattoo the following rule of onto the back of your hand, right next to your mom’s
birthday and the actual rules of Monopoly.⁵

⁵If a player lands on an available property and declines (or is unable) to buy it, that property is immediately
auctioned off to the highest bidder; the player who originally declined the property may bid, and bids may be
arbitrarily higher or lower than the list price. Players in Jail can still buy and sell property, buy and sell houses and
hotels, and collect rent. The game has �� houses and �� hotels; once they’re gone, they’re gone. In particular, if all

�

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

To prove that problem A is NP-hard, reduce a known NP-hard problem to A.

In other words, to prove that your problem is hard, you need to describe an algorithm to solve
a different problem, which you already know is hard, using a magical mystery algorithm for your
problem as a subroutine. The essential logic is a proof by contradiction. The reduction shows
implies that if your problem were easy, then the other problem would be easy, too. Equivalently,
since you know the other problem is hard, the reduction implies that your problem must also be
hard.

For example, consider the formula satisfiability problem, usually just called SAT. The input
to SAT is a boolean formula like

(a _ b _ c _ d̄), ((b ^ c̄)_ (ā) d)_ (c 6= a ^ b)),

and the question is whether it is possible to assign boolean values to the variables a, b, c, . . . so
that the entire formula evaluates to T���.

To prove that SAT is NP-hard, we need to give a reduction from a known NP-hard problem.
The only problem we know is NP-hard so far is C������SAT, so let’s start there.

Let K be an arbitrary boolean circuit. We can transform K into a boolean formula � by
creating new output variables for each gate, and then just writing down the list of gates separated
by A��s. For example, our example circuit would be transformed into a formula as follows:

x
1

x
2

x
3

x
4

x
5

y
1

y
2

y
3

y
4

y
5

y
6

z

(y1 = x1 ^ x4)^ (y2 = x4)^ (y3 = x3 ^ y2)^ (y4 = y1 _ x2)^
(y5 = x2)^ (y6 = x5)^ (y7 = y3 _ y5)^ (z = y4 ^ y7 ^ y6)^ z

Now we claim that the original circuit K is satisfiable if and only if the resulting formula � is
satisfiable. We prove this claim in two steps:

• Given a set of inputs that satisfy the circuit K , we can obtain a satisfying assignment for
the formula � by computing the output of every gate in K .

• Given a satisfying assignment for the formula �, we can obtain a satisfying input the the
circuit by simply ignoring the internal gate variables yi and the output variable z.

The entire transformation from circuit to formula can be carried out in linear time. Moreover, the
size of the resulting formula is at most a constant factor larger than any reasonable representation
of the circuit.

Now suppose, for the sake of argument, there is a magical mystery algorithm that can
determine in polynomial time whether a given boolean formula is satisfiable. Then given any

houses are already on the board, you cannot downgrade a hotel to four houses; you must sell all three hotels in the
group. Players can sell/exchange undeveloped properties, but not buildings or cash. A player landing on Free Parking
does not win anything. A player landing on Go gets $���, no more. Railroads are not magic transporters. Finally, Jeff
always gets the car.

�

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

boolean circuit K , we can decide whether K is satisfiable by first transforming K into a boolean
formula � as described above, and then asking our magical mystery SAT algorithm whether � is
satisfiable, as suggested by the following cartoon. Each box represents an algorithm. The red
box on the left is the transformation subroutine; the box on the right the magical SAT algorithm.
It must be magic, because it has a rainbow on it!⁶

C⌅⌃⇥ ⌅�SAT
SAT

K
Boolean
formula

transform
in O(n)

time

Φ
Boolean
circuit

Φ is
satisfiable

Φ is not
satisfiable

T⌃ ⇤

F�⇧⌥⇤

K is
satisfiable

K is not
satisfiable

T⌃ ⇤

F�⇧⌥⇤

If you prefer pseudocode to rainbows:

C������SAT(K):
transcribe K into a boolean formula �
return SAT(�) hhMagic!!ii

Transcribing K into � requires only polynomial time (in fact, only linear time, but whatever), so
the entire C������SAT algorithm also runs in polynomial time.

TC������SAT(n) O(n) + TSAT(O(n))

We conclude that any polynomial-time algorithm for SAT would give us a polynomial-time
algorithm for C������SAT, which in turn would imply P=NP. So SAT is NP-hard!

��.� �SAT (from SAT)

A special case of SAT that is particularly useful in proving NP-hardness results is called �SAT.
A boolean formula is in conjunctive normal form (CNF) if it is a conjunction (���) of several

clauses, each of which is the disjunction (��) of several literals, each of which is either a variable
or its negation. For example:

clausez }| {
(a _ b _ c _ d) ^ (b _ c̄ _ d̄)^ (ā _ c _ d)^ (a _ b̄)

A �CNF formula is a CNF formula with exactly three literals per clause; the previous example is
not a �CNF formula, since its first clause has four literals and its last clause has only two. �SAT
is just SAT restricted to �CNF formulas: Given a �CNF formula, is there an assignment to the
variables that makes the formula evaluate to T���?

We could prove that �SAT is NP-hard by a reduction from the more general SAT problem, but
it’s easier just to start over from scratch, by reducing directly from C������SAT.

Let K be an arbitrary boolean circuit. We transform K into a �CNF formula in several stages.

�. Make sure every ��� and �� gate in K has exactly two inputs. If any gate has k > 2 inputs,
replace it with a binary tree of k� 1 two-input gates. Call the resulting circuit K 0.

⁶Katherine Z. Erickson. Personal communication, ����.

�

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

C⇧⌥⇤⌦⇧ SAT
�SAT

K
3CNF

Boolean
formula

Φ
Boolean
circuit

Φ is
satisfiable

Φ is not
satisfiable

T⌥⌦⌅

F⇥⌃�⌅

K is
satisfiable

K is not
satisfiable

T⌥⌦⌅

F⇥⌃�⌅

transform
in O(n)

time

Polynomial-time reduction from C������SAT to �SAT

�. Transcribe K 0 into a boolean formula �1 with one clause per gate, exactly as in our previous
reduction to SAT.

�. Replace each clause in �1 with a CNF formula. There are only three types of clauses in �1,
one for each type of gate in K 0:

a = b ^ c 7�! (a _ b̄ _ c̄)^ (ā _ b)^ (ā _ c)
a = b _ c 7�! (ā _ b _ c)^ (a _ b̄)^ (a _ c̄)

a = b̄ 7�! (a _ b)^ (ā _ b̄)

Call the resulting CNF formula �2.

�. Replace each clause in �2 with a �CNF formula. Every clause in �2 has at most three literals.
We can keep the three-literal clauses as-is. We expand each two-literal clause into two
three-literal clauses by introducing a new variable. Finally, we expand any one-literal
clause into four three-literal clauses by introducing two new variables.

a _ b 7�! (a _ b _ x)^ (a _ b _ x̄)
a 7�! (a _ x _ y)^ (a _ x̄ _ y)^ (a _ x _ ȳ)^ (a _ x̄ _ ȳ)

Call the final �CNF formula �3.

For example, if we start with the same example circuit we used earlier, we obtain the following
�CNF formula �3.

(y1 _ x1 _ x4)^ (y1 _ x1 _ z1)^ (y1 _ x1 _ z1)^ (y1 _ x4 _ z2)^ (y1 _ x4 _ z2)
^ (y2 _ x4 _ z3)^ (y2 _ x4 _ z3)^ (y2 _ x4 _ z4)^ (y2 _ x4 _ z4)
^ (y3 _ x3 _ y2)^ (y3 _ x3 _ z5)^ (y3 _ x3 _ z5)^ (y3 _ y2 _ z6)^ (y3 _ y2 _ z6)
^ (y4 _ y1 _ x2)^ (y4 _ x2 _ z7)^ (y4 _ x2 _ z7)^ (y4 _ y1 _ z8)^ (y4 _ y1 _ z8)
^ (y5 _ x2 _ z9)^ (y5 _ x2 _ z9)^ (y5 _ x2 _ z10)^ (y5 _ x2 _ z10)
^ (y6 _ x5 _ z11)^ (y6 _ x5 _ z11)^ (y6 _ x5 _ z12)^ (y6 _ x5 _ z12)
^ (y7 _ y3 _ y5)^ (y7 _ y3 _ z13)^ (y7 _ y3 _ z13)^ (y7 _ y5 _ z14)^ (y7 _ y5 _ z14)
^ (y8 _ y4 _ y7)^ (y8 _ y4 _ z15)^ (y8 _ y4 _ z15)^ (y8 _ y7 _ z16)^ (y8 _ y7 _ z16)
^ (y9 _ y8 _ y6)^ (y9 _ y8 _ z17)^ (y9 _ y8 _ z17)^ (y9 _ y6 _ z18)^ (y9 _ y6 _ z18)
^ (y9 _ z19 _ z20)^ (y9 _ z19 _ z20)^ (y9 _ z19 _ z20)^ (y9 _ z19 _ z20)

Although this formula may look a lot more ugly and complicated than the original circuit at first
glance, it’s actually only a constant factor larger—every binary gate in the original circuit has

�

Algorithms Lecture ��: NP-Hard Problems [Sp’��]

been transformed into at most five clauses. Even if the formula size were a large polynomial
function (like n573) of the circuit size, we would still have a valid reduction.

This process transforms the circuit into an equivalent �CNF formula; the output formula is
satisfiable if and only if the input circuit is satisfiable. As with the more general SAT problem,
the output formula �3 is only a constant factor larger than any reasonable description of the
original circuit K , and the reduction can be carried out in polynomial time. Thus, if �SAT can be
solved in polynomial time, then C������SAT can be solved in polynomial time, which implies
that P= NP. We conclude �SAT is NP-hard.

��.� Maximum Independent Set (from �SAT)

For the next few problems we consider, the input is a simple, unweighted graph, and the problem
asks for the size of the largest or smallest subgraph satisfying some structural property.

Let G be an arbitrary graph. An independent set in G is a subset of the vertices of G with no
edges between them. The maximum independent set problem, or simply M��I��S��, asks for
the size of the largest independent set in a given graph. I will prove that M��I��S�� is NP-hard
using a reduction from �SAT, as suggested by the following figure.

�SAT
M⇥↵I⌃⇤S⌅

G
�CNF

Boolean
formula

Φ
graph

Φ is
satisfiable

Φ is not
satisfiable

T⌥⌦⌅

F⇥⇧�⌅

G has an
independent
set of size k

T⌥⌦⌅

F⇥⇧�⌅

transform
in O(n)

time

G has no
independent
set of size k

=?

k
number of clauses in Φ

size of largest
independent

set in G

Polynomial-time reduction from �SAT to M��I��S��

Given an arbitrary �CNF formula �, we construct a graph G as follows. Let k denote the
number of clauses in �. The graph G contains exactly 3k vertices, one for each literal in �. Two
vertices in G are connected by an edge if and only if either (�) they correspond to literals in
the same clause, or (�) they correspond to a variable and its inverse. For example, the formula
(a _ b _ c)^ (b _ c̄ _ d̄)^ (ā _ c _ d)^ (a _ b̄ _ d̄) is transformed into the following graph.

‾ ‾

a
b

c

c
d

a

b

d

‾b

d

a‾

c‾

A graph derived from a satisfiable 3CNF formula, and an independent set of size 4.
Black edges join literals from the same clause; red (heavier) edges join contradictory literals.

Any independent set in G contains at most one vertex from each clause triangle, because any
two vertices in each triangle are connected. Thus, the largest independent set in G has size at

�

