Algorithms Lecture 26: Linear Programming [Sp ’16]

The greatest flood has the soonest ebb;

the sorest tempest the most sudden calm;

the hottest love the coldest end; and

from the deepest desire oftentimes ensues the deadliest hate.

— Socrates

Th’ extremes of glory and of shame,
Like east and west, become the same.

— Samuel Butler, Hudibras Part Il, Canto | (c. 1670)
Everything is dual; everything has poles; everything has its pair of opposites; like

and unlike are the same; opposites are identical in nature, but different in degree;
extremes meet; all truths are but half-truths; all paradoxes may be reconciled.

— The Kybalion: A Study of The Hermetic Philosophy
of Ancient Egypt and Greece (1908)

*26 Linear Programming

The maximum flow and minimum cut problems are examples of a general class of problems
called linear programming. Many other optimization problems fall into this class, including
minimum spanning trees and shortest paths, as well as several common problems in scheduling,
logistics, and economics. Linear programming was used implicitly by Fourier and Jacobi in
the early 1800s, but it was first formalized and applied to problems in economics in the 1930s
by Leonid Kantorovich. Kantorivich’s work was hidden behind the Iron Curtain (where it was
largely ignored) and therefore unknown in the West. Linear programming was rediscovered
and applied to shipping problems in the early 1940s by Tjalling Koopmans. The first complete
algorithm to solve linear programming problems, called the simplex method, was published by
George Dantzig in 1947. Koopmans first proposed the name “linear programming" in a discussion
with Dantzig in 1948. Kantorovich and Koopmans shared the 1975 Nobel Prize in Economics “for
their contributions to the theory of optimum allocation of resources”. Dantzig did not; his work
was apparently too pure. Koopmans wrote to Kantorovich suggesting that they refuse the prize
in protest of Dantzig’s exclusion, but Kantorovich saw the prize as a vindication of his use of
mathematics in economics, which his Soviet colleagues had written off as “a means for apologists
of capitalism”.

A linear programming problem asks for a vector x € R? that maximizes (or equivalently,
minimizes) a given linear function, among all vectors x that satisfy a given set of linear inequalities.
The general form of a linear programming problem is the following:

d
maximize Z CjX;
j=1
d
subject to Zaijxj <b; foreachi=1..p
j=1

d
Zaijszbi foreachi=p+1..p+q

-
|
—

d
Zaijsz b; foreachi=p+q+1..n

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

Algorithms Lecture 26: Linear Programming [Sp ’16]

Here, the input consists of a matrix A= (a;;) € R™4_ a column vector b € R, and a row vector
¢ € R, Each coordinate of the vector x is called a variable. Each of the linear inequalities is
called a constraint. The function x — c - x is called the objective function. I will always use d to
denote the number of variables, also known as the dimension of the problem. The number of
constraints is usually denoted n.

A linear programming problem is said to be in canonical form' if it has the following
structure:

d
maximize Z CiX;
j=1
d
subject to Zaijxj <b; foreachi=1..n
Jj=1
x;j=0 foreachj=1..d
We can express this canonical form more compactly as follows. For two vectors x = (x;, X5, ...,Xq)

and y = (¥1,Y2,-..,Yq), the expression x > y means that x; > y; for every index i.

max c-Xx
s.t. Ax <b
x>0

Any linear programming problem can be converted into canonical form as follows:

* For each variable x;, add the equality constraint x; = x]JF —Xx; and the inequalities x;f >0
and Xz 0.

* Replace any equality constraint), jaijXj = b; with two inequality constraints Y| jijXj = b;
and Z] ainj < bi‘
* Replace any upper bound)| jajx;j = b; with the equivalent lower bound > j—aijx; < —b;.
This conversion potentially double the number of variables and the number of constraints;
fortunately; it is rarely necessary in practice.

Another useful format for linear programming problems is slack form?, in which every
inequality is of the form x; > 0:

max c-x
s.t. Ax=">
x=0

It’s fairly easy to convert any linear programming problem into slack form. Slack form is especially
useful in executing the simplex algorithm (which we’ll see in the next lecture).

1Confusingly, some authors call this standard form.
2Confusingly, some authors call this standard form.

Algorithms Lecture 26: Linear Programming [Sp ’16]

26.1 The Geometry of Linear Programming

A point x € R? is feasible with respect to some linear programming problem if it satisfies all the
linear constraints. The set of all feasible points is called the feasible region for that linear program.
The feasible region has a particularly nice geometric structure that lends some useful intuition to
the linear programming algorithms we’ll see later.

Any linear equation in d variables defines a hyperplane in R?; think of a line when d = 2,
or a plane when d = 3. This hyperplane divides R? into two halfspaces; each halfspace is
the set of points that satisfy some linear inequality. Thus, the set of feasible points is the
intersection of several hyperplanes (one for each equality constraint) and halfspaces (one for
each inequality constraint). The intersection of a finite number of hyperplanes and halfspaces is
called a polyhedron. It’s not hard to verify that any halfspace, and therefore any polyhedron, is
convex—if a polyhedron contains two points x and y, then it contains the entire line segment xy.

A two-dimensional polyhedron defined by 11 linear inequalities.

By rotating R¢ (or choosing a coordinate frame) so that the objective function points
downward, we can express any linear programming problem in the following geometric form:

Find the lowest point in a given polyhedron.

With this geometry in hand, we can easily picture two pathological cases where a given linear
programming problem has no solution. The first possibility is that there are no feasible points; in
this case the problem is called infeasible.

maximize x—y
subjectto 2x+y <1 >
x+y=2

x,y=0 X\ 4
\

An infeasible linear programming problem; arrows indicate the constraints.

The second possibility is that there are feasible points at which the objective function is
arbitrarily large; in this case, we call the problem unbounded. The same polyhedron could be
unbounded for some objective functions but not others, or it could be unbounded for every
objective function.

Algorithms Lecture 26: Linear Programming [Sp ’16]

A two-dimensional polyhedron (white) that is unbounded downward but bounded upward.

26.2 Example 1: Shortest Paths

We can compute the length of the shortest path from s to t in a weighted directed graph by
solving the following very simple linear programming problem.

maximize d,
subject to d,=0
d,—d,<{,,, foreveryedgeu—v

Here, £,,_,, is the length of the edge u—v. Each variable d, represents a tentative shortest-path
distance from s to v. The constraints mirror the requirement that every edge in the graph must be
relaxed. These relaxation constraints imply that in any feasible solution, d,, is at most the shortest
path distance from s to v. Thus, somewhat counterintuitively, we are correctly maximizing the
objective function to compute the shortest path!

In the optimal solution, the objective function d, is the actual shortest-path distance from s
to t, but for any vertex v that is not on the shortest path from s to t, the corresponding value d,
may underestimate the true distance from s to v. We can obtain the true distances from s to
every other vertex by modifying the objective function:

maximize Z d,
v
subject to d,=0
d,—d,<{,.,, foreveryedgeu—v

There is another formulation of shortest paths as an LP minimization problem using an
indicator variable x,,_,, for each edge u—v.

minimize E sy - Xy

u—v

subject to Z Xyss — Z Xew =1
u w
qu—ﬁ _thaw =-1
u w
Z Xy — Z X, , =0 forevery vertex v #s,t
u w
Xysy =0 for every edge u—v

Intuitively, x,_,, = 1 means u—v lies on the shortest path from s to t, and x,_,, = 0 means u—v
does not lie on this shortest path. The constraints merely state that the path should start at s, end

Algorithms Lecture 26: Linear Programming [Sp ’16]

at t, and either pass through or avoid every other vertex v. Any path from s to t—in particular,
the shortest path—clearly implies a feasible point for this linear program.

However, there are other feasible solutions, possibly even optimal solutions, with non-integral
values that do not represent paths. Nevertheless, there is always an optimal solution in which
every x, is either O or 1 and the edges e with x, = 1 comprise the shortest path. (This fact is by
no means obvious, but a proof is beyond the scope of these notes.) Moreover, in any optimal
solution, even if not every x, is an integer, the objective function gives the shortest path distance!

26.3 Example 2: Maximum Flows and Minimum Cuts

Recall that the input to the maximum (s, t)-flow problem consists of a weighted directed graph
G = (V,E), two special vertices s and t, and a function assigning a non-negative capacity c, to
each edge e. Our task is to choose the flow f, across each edge e, as follows:

maximize Z foow— Z fuos
w u

subject to Z foow— Z fusv =0 for every vertex v #£ s, t
w u

fusy < ¢y, for every edge u—v

fusv =0 for every edge u—v

Similarly, the minimum cut problem can be formulated using ‘indicator’ variables similarly to
the shortest path problem. We have a variable S, for each vertex v, indicating whether v € S or
v € T, and a variable X,,_,, for each edge u—v, indicating whether u € S and v € T, where (S, T)
is some (s, t)-cut.3

minimize E Cuasy " Xuoy
u—v

subjectto X,_.,+S,—S,=0 for every edge u—v
X,., =0 forevery edge u—v

S;=1

S, =0

Like the minimization LP for shortest paths, there can be optimal solutions that assign fractional
values to the variables. Nevertheless, the minimum value for the objective function is the cost
of the minimum cut, and there is an optimal solution for which every variable is either 0 or 1,
representing an actual minimum cut. No, this is not obvious; in particular, my claim is not a
proof!

26.4 Linear Programming Duality

Each of these pairs of linear programming problems is related by a transformation called duality.
For any linear programming problem, there is a corresponding dual linear program that can be
obtained by a mechanical translation, essentially by swapping the constraints and the variables.

3These two linear programs are not quite syntactic duals; I've added two redundant variables S, and S, to the
min-cut program to increase readability.

Algorithms Lecture 26: Linear Programming [Sp ’16]

The translation is simplest when the LP is in canonical form:

Primal (IT) Dual (II)
max c-Xx min y-b
st. Ax<b s.t. YA>c
x>0 y=0

We can also write the dual linear program in exactly the same canonical form as the primal, by
swapping the coefficient vector ¢ and the objective vector b, negating both vectors, and replacing
the constraint matrix A with its negative transpose.*

Primal (II) Dual (II)
max c-Xx max —b' -yt
st. Ax<b sit. —ATyT <—¢T
x>0 y'>0

Written in this form, it should be immediately clear that duality is an involution: The dual of the
dual linear program II is identical to the primal linear program I1. The choice of which linear
program to call the “primal” and which to call the “dual” is totally arbitrary.>

The Fundamental Theorem of Linear Programming. A linear program I1 has an optimal so-
lution x* if and only if the dual linear program 11 has an optimal solution y* such that ¢ - x* =
y*Ax* =y*-b.

The weak form of this theorem is trivial to prove.

Weak Duality Theorem. If x is a feasible solution for a canonical linear program Il and y is a
feasible solution for its dual 11, then ¢ - x < yAx <y - b.

Proof: Because x is feasible for II, we have Ax < b. Since y is non-negative, we can multiply
both sides of the inequality to obtain yAx < y - b. Conversely, y is feasible for II and x is
non-negative, so yAx = c- x. O

The Weak Duality Theorem has two important immediate consequences:

* Let x and y be arbitrary feasible solutions to a canonical linear program and its dual,
respectively. If c-x = y - b, then x and y are optimal primal and dual solutions, and
c-x=yAx=y-b.

* Ifalinear program is unbounded, then its dual is infeasible; equivalently, if a linear program
is feasible, then its dual is bounded. (It is possible for a linear program and its dual to both
be infeasible, but only if both linear programs are degenerate.)

Later we will see that all of these implications are actually equivalences.

4For the notational purists: In these formulations, x and b are column vectors, and y and ¢ are row vectors. This
is a somewhat nonstandard choice. Yes, that means the dot in ¢ - x is redundant. Sue me.

SFor historical reasons, maximization linear programs tend to be called “primal” and minimization linear programs
tend to be called “dual”. (Or is it the other way around?) This is pointless religious tradition, nothing more. Duality is
a relationship between linear programming problems, not a specific type of linear programming problem.

Algorithms Lecture 26: Linear Programming [Sp ’16]

26.5 Duality Example

Before I prove the stronger duality theorem, let me first provide some intuition about where this
duality thing comes from in the first place.® Consider the following linear programming problem:

maximize 4x;+ X, 4+ 3Xx;3
subjectto x; +4x, <2
3X1 — Xy + X3 < 4

X1,X9,X3 =0

Let o* denote the optimum objective value for this LP. The feasible solution x = (1,0, 0) gives us
a lower bound o* > 4. A different feasible solution x = (0, 0, 3) gives us a better lower bound
o* = 9. We could play this game all day, finding different feasible solutions and getting ever
larger lower bounds. How do we know when we’re done? Is there a way to prove an upper
bound on o*?

In fact, there is. Let’s multiply each of the constraints in our LP by a new non-negative scalar
value y;:

maximize 4x;+ X5+ 3x3
subject to y;(xq + 4x,) <2y,
Yo(B8x1— X9+ x3) <4y,
X1,X9,X320

Because each y; is non-negative, we do not reverse any of the inequalities. Any feasible solution
(x1, x5, x3) must satisfy both of these inequalities, so it must also satisfy their sum:

(y1+3y2)x1 + (4y1 — ¥y2)Xo + Yox3 < 2y, +4Ys.

Now suppose that the coefficient of each variable x; in the expression on the left side of this
inequality is larger than the corresponding coefficient of the objective function:

t3y224, 4n—y221, y, 23
This assumption implies an upper bound on the objective value of any feasible solution:
4x1+x3+3x3 < (y1+3y2)x1 +(4y1 —ya)xa + yaxs < 2y1+4y,. ()

In particular, by plugging in the optimal solution (x7, x5, x3) for the original LP, we obtain the
following upper bound on o*:

0% = 4x]+x5+3x; < 2y, +4y,.

Now it is natural to ask how tight this upper bound can be. That is, how small can we make
the expression 2y; + 4y, without violating any of the inequalities we used to prove the upper

6This example is taken from Robert Vanderbei’s excellent textbook Linear Programming: Foundations and Extensions
[Springer, 2001], but the idea appears earlier in Jens Clausen’s 1997 paper ‘Teaching Duality in Linear Programming:
The Multiplier Approach’.

Algorithms Lecture 26: Linear Programming [Sp ’16]

bound? This is just another linear programming problem.

minimize 2y; +4y,
subjectto y; +3y, >4

4y1— ¥y221
Y223

Y1,Y2=0

In fact, the resulting linear program is precisely the dual of our original linear program! Moreover,
inequality (*) is just an instantiation of the Weak Duality Theorem.

26.6 Strong Duality

The Fundamental Theorem can be rephrased in the following form:

Strong Duality Theorem. If x* is an optimal solution for a canonical linear program II, then
there is an optimal solution y* for its dual 11, such that ¢ - x* = y*Ax* = y* - b.

Proof (sketch): I'll prove the theorem only for non-degenerate linear programs, in which (a) the
optimal solution (if one exists) is unique and is therefore a vertex of the feasible region, and
(b) at most d constraint hyperplanes pass through any point. These non-degeneracy assumptions
are relatively easy to enforce in practice and can be removed from the proof at the expense of
some technical detail. I will also prove the theorem only for the case n > d; the argument for
under-constrained LPs is similar (if not simpler).

To develop some intuition, let’s first consider the very special case where x* = (0,0,...,0).
Let e; denote the ith standard basis vector, whose ith coordinate is 1 and all other coordinates
are 0. Because x; = 0 for all i, our non-degeneracy assumption implies the strict inequality
a; - x* < b; for all i. Thus, any sufficiently small ball around the origin does not intersect any
other constraint hyperplane a; - x = b;. Thus, for all i, and for any sufficiently small 6 > 0, the
vector e; is feasible. Because x* is the unique optimum, we must have 6¢; = c-(de;) < c-x* =0.
We conclude that ¢; < 0 for all i.

Now let y = (0,0,...,0) as well. We immediately observe that yA > ¢ and y > 0; in other
words, y is a feasible solution for the dual linear program II. But y - b =0 = c - x*, so the weak
duality theorem implies that y is an optimal solution to II, and the proof is complete for this very
special case!

Now let us consider the more general case. Let x™ be the optimal solution for the linear
program IT; our non-degeneracy assumption implies that this solution is unique, and that exactly d
of the n linear constraints are satisfied with equality. Without loss of generality (by permuting
the constraints and possibly changing coordinates), we can assume that these are the first d
constraints. Thus, we have

a; - x*=b; foralli <d,
a; - x*<b; foralli>d +1,
where a; denotes the ith row of A. Let A, denote the d x d matrix containing the first d rows

of A. Our non-degeneracy assumption implies that A, has full rank, and thus has a well-defined
inverse V = A

Algorithms Lecture 26: Linear Programming [Sp ’16]

Now define a vector y € R" by setting

Yj =c-v/ forall j <d,
yj:=0 forall j>d+1,

where v/ denotes the jth column of V = A]1. Note that a;- v/ =0if i # j, and a; - v/ = 1 if i = j.
To simplify notation, let y, = (¥1,¥2,.--,¥q) and let b, = (by, b, ..., by) = A.x*. Because
y; =0forall i > d + 1, we immediately have

y-bzy.-b.=ch.=cA:1b.=c-x*

and
YA=Y,Ay =CcVA, = cA:IA. =c.

The point x* lies on exactly d constraint hyperplanes; moreover, any sufficiently small ball
around x* intersects only those d constraint hyperplanes. Consider the point ¥ = x* — ev/, for
some index 1 < j < d and some sufficiently small £ > 0. We have a; - ¥ = q; - x* —&(a; - v/) = b;
foralli # j, and a; - X = a; - x* —¢(a; - v) = b; —e < b;. Thus, X is a feasible point for II.
Because x* is the unique optimum for II, we must have ¢ - ¥ = ¢ - x* —e(c-v/) < c-x*. We
conclude that y; =c- v/ >0 for all j.

We have shown that yA > c and y > 0, so y is a feasible solution for the dual linear program II.
We have also shown that y - b = ¢ - x*, so by the Weak Duality Theorem, y is also an optimal
solution for I, and the proof is complete! O

We can also give a useful geometric interpretation to the dual vector y, € RY. Each linear
equation a; - x = b; defines a hyperplane in RY with normal vector a;. The normal vectors
a,...,a, are linearly independent (by non-degeneracy) and therefore describe a coordinate
frame for the vector space R?. The definition of y, implies that ¢ = y,A, = Zle ¥;a;. In other
words, the non-zero dual variables y1,...,y4 are the coefficients of the objective vector c in
the coordinate frame a,,...,a4.

26.7 Complementary Slackness

The Strong Duality Theorem implies a relationship between the optimal solutions of a linear
program and its dual that is stronger than just the equality of objective values. Let IT be an
arbitrary canonical linear program and let LI be its dual:

Primal (IT) Dual (1I)
max c-X min y-b
s.t. Ax<b s.t. yA=>c
x>0 y=0

Recall that the theorem states that if x* is the optimal solution to II, then the dual program II
has an optimal solution y* satisfying the following equations:

c-x*=y*Ax*=y*-b.
These two equations have two immediate consequences for the actual solution vectors x* and y*.

* For any row index i, either y =0 or a; - x* = b (or both).

* kK

Algorithms Lecture 26: Linear Programming [Sp ’16]

* For any column index j, either x;.k =0or y*-a’ =c (or both).
Here, a; and a’ respectively denote the ith row and jth column of A. More colloquially:

* If a primal variable is positive, the corresponding dual constraint is tight.
* If a dual constraint is loose, the corresponding primal variable is zero.
* If a dual variable is positive, the corresponding primal constraint is tight.

* If a primal constraint is loose, the corresponding dual variable is zero.
These observations are collectively called the complementary slackness conditions.

Complementary Slackness Theorem. Let x be an arbitrary feasible solution to a canonical linear
program I1, and let y be an arbitrary feasible solution to the dual linear program I1. The following
conditions are equivalent:

* x and y are optimal solutions to their respective linear programs.

® c.X = y . b

* x and y satisfy all complementary slackness conditions.

In general, the complementary slackness conditions are not exclusive; it is possible for a
constraint to be tight and the corresponding dual variable to be zero. Nevertheless, every bounded
and feasible linear program has optimal primal and dual solutions x* and y* that satisfy strict
complementary slackness conditions:

* For any row index i, either yl.* > 0 or g; - x* < b (but not both).

* For any column index j, either xj > 0 or y*-a’ > ¢ (but not both).

Moreover, if the linear program is non-degenerate, the primal and dual optimal solutions are
both unique and therefore satisfy these stricter conditions.

Integer programming? Total unimodularity?

Exercises

1. (a) Describe how to transform any linear program written in general form into an
equivalent linear program written in slack form.

d

maximize Z CjX;
j=1
d

subject to >, a;;x; < b; foreachi=1..p max. ¢ x
131 = | st.Ax=0b
S ajxj=b; foreachi=p+1.p+q x=0
j=1

d
> ajixj=b; foreachi=p+q+1..n

(b) Describe precisely how to dualize a linear program written in slack form.

10

Algorithms Lecture 26: Linear Programming [Sp ’16]

(c) Describe precisely how to dualize a linear program written in general form.

In all cases, keep the number of variables in the resulting linear program as small as
possible.

2. A matrix A = (a;;) is skew-symmetric if and only if a;; = —a;; for all indices i # j; in
particular, every skew-symmetric matrix is square. A canonical linear program max{c - x |
Ax < b; x = 0} is self-dual if the matrix A is skew-symmetric and the objective vector c is
equal to the constraint vector b.

(a) Prove that any self-dual linear program II is syntactically equivalent to its dual
program I1.

(b) Show that any linear program IT with d variables and n constraints can be transformed
into a self-dual linear program with n+d variables and n +d constraints. The optimal
solution to the self-dual program should include both the optimal solution for IT (in
d of the variables) and the optimal solution for the dual program II (in the other n
variables).

3. (a) Give alinear-programming formulation of the bipartite maximum matching problem.
The input is a bipartite graph G = (U U V; E), where E C U x V; the output is the
largest matching in G. Your linear program should have one variable for each edge.

(b) Now dualize the linear program from part (a). What do the dual variables represent?
What does the objective function represent? What problem is this!?

4. (a) Give a linear-programming formulation of the minimum-cost circulation problem.
You are given a flow network whose edges have both capacities and costs, and your
goal is to find a feasible circulation (flow with value 0) whose total cost is as small as
possible.

(b) Derive the dual of your linear program from part (a).

5. Given points (xq,y1), (%5, ¥32),...,(x,, ¥,) in the plane, the linear regression problem
asks for real numbers a and b such that the line y = ax + b fits the points as closely as
possible, according to some criterion. The most common fit criterion is minimizing the
L, error, defined as follows:”

ea(a, b) = > (y;—ax;— b)>.

i=1

But there are many other ways of measuring a line’s fit to a set of points, some of which
can be optimized via linear programming.

(a) The L; error (or total absolute deviation) of the line y = ax + b is defined as follows:

n

sl(a,b)zz |yl~—axl~—b .

i=1

7This measure is also known as sum of squared residuals, and the algorithm to compute the best fit is normally
called (ordinary/linear) least squares.

11

Algorithms

Lecture 26: Linear Programming [Sp ’16]

(b)

Describe a linear program whose solution (a, b) describes the line with minimum L,
error.

The Lo, error (or maximum absolute deviation) of the line y = ax + b is defined as
follows:
n
€oola,b) = max |yi —ax; — b| .
i=

Describe a linear program whose solution (a, b) describes the line with minimum L,
error.

6. Suppose we are given a sequence of n linear inequalities of the form a;x + b;y < ¢;.
Collectively, these n inequalities describe a convex polygon P in the plane.

(a)

(b)

(©

D

(e)

Describe a linear program whose solution describes the largest axis-aligned square
that lies entirely inside P.

Describe a linear program whose solution describes the maximum-perimeter axis-
aligned rectangle that lies entirely inside P.

Describe a linear program whose solution describes the largest circle that lies entirely
inside P.

Describe a polynomial-time algorithm to compute two interior-disjoint axis-aligned
squares with maximum total perimeter that lie entirely inside P. [Hint: There are
exactly two interesting cases to consider; for each case, formulate a corresponding linear
program.]

Describe a polynomial-time algorithm to compute two interior-disjoint axis-aligned
rectangles with maximum total perimeter that lie entirely inside P. [Hint: Again,
there are only two interesting cases to consider.]

In all subproblems, “axis-aligned” means that the edges of the square(s) or rectangles(s)
are horizontal and vertical.

7. Let G = (V, E) be an arbitrary directed graph with weighted vertices; vertex weights may be
positive, negative, or zero. A prefix of G is a subset P C V, such that there is no edge u—v
where u & P but v € P. A suffix of G is the complement of a prefix. Finally, an interval
of G is the intersection of a prefix of G and a suffix of G. The weight of a prefix, suffix, or
interval is the sum of the weights of its vertices.

12

Algorithms Lecture 26: Linear Programming [Sp ’16]

(a) Describe a linear program whose solution describes the maximum-weight prefix of G.
Your linear program should have one variable per vertex, indicating whether that
vertex is or is not in the chosen prefix.

(b) Describe an algorithm that computes the maximum-weight prefix of G, by reducing
to a standard maximum-flow problem in a related graph. [Hint: Consider the special
case where G is a dag. Haven’t we seen this problem before?]

(c) Describe an efficient algorithm that computes the maximum-weight prefix of G,
when G is a rooted tree with all edges pointing away from the root. [Hint: This is
really easy if you don’t think about linear programming.]

(d) Describe a linear program whose solution describes the maximum-weight interval
of G.

(e) Describe an efficient algorithm that computes the maximum-weight interval of G,
when G is a rooted tree with all edges pointing away from the root. [Hint: Again,
this is easy if you don’t think about linear programming.]

[Hint: Don’t worry about the solutions to your linear programs being integral; they will be
(essentially by part (b)). If all vertex weights are negative, the maximum-weight interval is
empty; if all vertex weights are positive, the maximum-weight interval contains every vertex.]

8. An integer program is a linear program with the additional constraint that the variables
must take only integer values.

(a) Prove that deciding whether an integer program has a feasible solution is NP-complete.

(b) Prove that finding the optimal feasible solution to an integer program is NP-hard.

[Hint: Almost any NP-hard decision problem can be formulated as an integer program. Pick
your favorite.]

9. Helly’s theorem states that for any collection of convex bodies in R?, if every d + 1 of them
intersect, then there is a point lying in the intersection of all of them. Prove Helly’s theorem
for the special case where the convex bodies are halfspaces. Equivalently, show that if a
system of linear inequalities Ax < b does not have a solution, then we can select d + 1 of
the inequalities such that the resulting subsystem also does not have a solution. [Hint:
Construct a dual LP from the system by choosing a O cost vector.]

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	Linear Programming
	The Geometry of Linear Programming
	Example 1: Shortest Paths
	Example 2: Maximum Flows and Minimum Cuts
	Linear Programming Duality
	Duality Example
	Strong Duality
	Complementary Slackness

