
Algorithms Lecture 25½: Minimum Cost Flows [Sp’16]

La distance n’y fait rien; il n’y a que le premier pas qui coûte.
[The distance is nothing; it is only the first step that costs.]

— Marie Anne de Vichy-Chamrond, marquise du Deffand,
letter to Jean le Rond d’Alembert, July 7, 1763

Cecil Graham: What is a cynic?
Lord Darlington: A man who knows the price of everything, and the value of nothing.
Cecil Graham: And a sentimentalist, my dear Darlington, is a man who sees an absurd
value in everything and doesn’t know the market price of any single thing.

— Oscar Wilde, Lady Windermere’s Fan, A Play About a Good Woman (1892)

25½ Minimum Cost Flows?

Now we consider a significant generalization of the maximum-flow problem that cannot be solved
by simply modifying the graph and applying a standard flow algorithm. For this problem, every
edge e in the input graph has both a capacity c(e) and a cost $(e). The cost function describes the
cost of sending a unit of flow through the edges; thus, the cost any flow f is defined as follows:

$( f ) =
∑

e∈E

$(e) · f (e).

Costs can either be positive, negative, or zero. The minimum-cost flow problem is to compute a
feasible flow with minimum cost, instead of a feasible flow with maximum value.

ÆÆÆ Standard reductions:
• Reduce maximum flow to min-cost circulation: add t�s with cost −1 and infinite

capacity, and give all other edges cost 0.

• Reduce min-cost flow (with arbitrary vertex balances) to minimum-cost circulation:
Find a feasible flow and work in the residual graph. Most natural formulation for cycle
canceling.

• Reduce min-cost flow to transportation—non-trivial vertex balances, non-negative
costs, infinite capacities, zero lower bounds. Replace each edge e with two edges;
move upper and lower bounds to balances on vertices. Most natural formulation for
successive shortest path.

25½.1 Cycle Cancelling

Without loss of generality, it suffices to consider the minimum-cost circulation problem, where
the network has no specified source or target, and we seek a minimum-cost flow with value 0.
For flow networks with a source s and target t, we can reduce to the minimum-cost circulation
problem by adding a single edge t�s with infinite capacity and cost 0. For flow networks with
nontrivial balance constraints at the vertices, we first find a feasible flow f using the algorithm in
the previous section and then seek a minimum-cost circulation in the residual graph G f .

Fix a flow network G = (V, E). Without loss of generality, assume that whenever G contains
an edge u�v, it does not contain the reversed edge v�u. If G contains both u�v and v�u, we
can introduce a new vertex x and then replace v�u with two edges v�x and x�u, each with
capacity c(v�u) and cost $(v�u)/2.

ÆÆÆ Figure!

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms


Algorithms Lecture 25½: Minimum Cost Flows [Sp’16]

Fix a circulation f in G. Each edge in G and its reversal has both a residual capacity and a
residual cost:

c f (u�v) :=

¨

c(u�v)− f (u�v) if u�v ∈ E

f (v�u) if v�u ∈ E

$ f (u�v) :=

¨

$(u�v) if u�v ∈ E

−$(v�u) if v�u ∈ E

As before, the residual network G f consists of all edges with non-zero residual capacity.

ÆÆÆ Figure showing flow f and residual graph G f

Now let γ be a directed cycle in the residual graph G f . Let F =mine∈γ c f (e) be the minimum
residual capacity of edges in γ, and let ¢=

∑

e∈γ $ f (e) be the sum of the residual costs of edges
in γ. Just as in the Ford-Fulkerson algorithm, we can augment the circulation f , by pushing F
units of flow around γ, to obtain a new circulation f ′:

f ′(u�v) =











f (u�v) + R if u�v ∈ γ
f (u�v)− R if v�u ∈ γ
f (u�v) otherwise

Straightforward calculation now implies that

$( f ′) = $( f ) + ¢ · R.

In particular, if ¢ < 0, the new circulation f ′ has lower cost than the original circulation f .
We immediately conclude that f is a minimum-cost circulation if and only if G f contains no
negative cycles.

ÆÆÆ Figure showing negative cycle and updated flow f ′

This observation implies that we can compute minimum-cost circulations using a cycle
cancelling algorithm first proposed by Morton Klein in 1967, which is a straightforward variant of
Ford and Fulkerson’s augmenting path algorithm. We start by setting f to the all-zero circulation.
Then we repeatedly augment f along an arbitrary negative-cost cycle in the residual graph G f ,
until there are no more negative residual cycles.

In each iteration of the cycle canceling algorithm, we can find a negative-cost cycle in O(V E)
time using a straightforward modification of the Shimbel-Bellman-Ford shortest path algorithm.
To bound the number of iterations, we assume that both the capacity and the cost of each edge is
an integer, and we define

C =max
e∈E

c(e) and D =max
e∈E
|$(e)|.

The total cost of any feasible circulation clearly lies between −EC D and EC D, and each
augmentation step decreases the cost of the flow by a positive integer, and therefore by at least 1.
Since we start with the zero circulation, we conclude that the algorithm requires at most EC D
iterations, and therefore runs in O(VE2CD) time. As with the raw Ford-Fulkerson algorithm,
this running time is exponential in the complexity of the input, and the algorithm may never
terminate if capacities and/or costs are irrational.

2



Algorithms Lecture 25½: Minimum Cost Flows [Sp’16]

ÆÆÆ For the network produced by our earlier reduction from maximum flows to min-cost flows,
cycle cancelling IS Ford-Fulkerson, because a cycle in G f is negative iff it contains t�s.

Like Ford-Fulkerson, more careful choices of which cycle to cancel can lead to more efficient
algorithms. Unfortunately, some obvious choices are NP-hard to compute, including the cycle
with most negative cost and the negative cycle with the fewest edges. In the late 1980s, Andrew
Goldberg and Bob Tarjan developed a minimum-cost flow algorithm that repeatedly cancels
the so-called minimum-mean cycle, which is the cycle whose average cost per edge is smallest.
By combining an algorithm of Karp to compute minimum-mean cycles in O(V E) time, efficient
dynamic tree data structures, and other sophisticated techniques that are (unfortunately) beyond
the scope of this class, their algorithm achieves a running time of O(VE2 log2 V).

25½.2 Successive Shortest Paths

ÆÆÆ • Proposed by Ford and Fulkerson.
• Instead of trivial balance, assume non-negative costs, by saturating all negative-cost

edges and considering the residual graph.
• Feasible flow f is optimal iff G f has no negative cycles.
• Maintain pseudoflow f such that G f has no negative cycles. If f is not a flow, augment f

along the minimum-cost path in G f from any node s with excess to any node t with
deficit, and recurse.

• Lemma: Pushing flow along a shortest excess-to-deficit path cannot introduce negative
cycles.

• Integer balances =⇒ at most B =
∑

v |b(v)| iterations =⇒ O(BV E) time via Bellman-
Ford.

• For the network produced by our earlier reduction from maximum flows to min-cost
flows, successive shortest paths is Ford-Fulkerson in disguise, because every path from
s to t has cost 0 and is therefore a shortest path!

25½.2.1 Node Potentials and Reduced Costs

ÆÆÆ • Improvement due to Edmonds and Karp in 1969 (published 1972) and independently
Nobuaki Tomizawa in 1970 (published 1971).

• Define node potentials and reduced costs. Shortest paths don’t change. Cycle lengths
don’t change.

• No negative residual cycles ⇐⇒ for some potential function, reduced residual costs
are all non-negative

• Fix any node s. Let distπ(s, v) denote the shortest-path distance in G f from s to v,
using reduced costs with respect to π as distances. If reduced costs are non-negative
with respect to π, then reduced costs are also non-negative with respect to π′, where
π′(v) = π(v)− dist(s, v) for all nodes v.

• Moreover, reduced costs with respect to π′ are zero for all shortest-path edges in G f .
(Complementary slackness!)

• Modify successive shortest-path algorithm to maintain node potentials. At each iteration,
set π(v)← π(v)− dist(s, v). (Alternatively, just let π(v) = −dist(s, v)?)

• Non-negative reduced costs =⇒ shortest path via Dijkstra in O(E log V ) time =⇒
O(BE log V ) time overall.

The fastest minimum-cost circulation algorithm currently known,¹ due to James Orlin in the

¹among algorithms whose running times do not depend on C and D

3



Algorithms Lecture 25½: Minimum Cost Flows [Sp’16]

early 1990s, reduces the problem to O(E log V ) iterations of Dijkstra’s shortest-path algorithm
and therefore runs in O(E2 log2 V) time.

25½.3 Maximum-Weight Matchings

ÆÆÆ This is an immediate application of successive shortest paths with node potentials. Do it
really need/deserve a separate presentation?

Recall from the previous lecture note that we can find a maximum-cardinality matching in
any bipartite graph in O(V E) time by reduction to the standard maximum flow problem.

Now suppose the input graph has weighted edges, and we want to find the matching with
maximum totalweight. Given a bipartite graph G = (U×W, E) and a non-negative weight function
w: E→ R, the goal is to compute a matching M whose total weight w(M) =

∑

uw∈M w(uw) is as
large as possible. Maximum-weight matchings can’t be found directly using standard maximum-
flow algorithms², but we can modify the algorithm for maximum-cardinality matchings described
in the previous note.

It will be helpful to reinterpret our earlier maximum-matching algorithm directly in terms
of the original bipartite graph instead of the derived flow network. Our algorithm maintains a
matching M , which is initially empty. We say that a vertex is matched if it is an endpoint of an
edge in M . At each iteration, we find an alternating path π that starts and ends at unmatched
vertices and alternates between edges in E \ M and edges in M . Equivalently, let GM be the
directed graph obtained by orienting every edge in M from W to U , and every edge in E \M
from U to W . An alternating path is just a directed path in GM between two unmatched vertices.
Any alternating path has odd length and has exactly one more edge in E \M than in M . The
iteration ends by setting M ← M ⊕ π, thereby increasing the number of edges in M by one.
The max-flow/min-cut theorem implies that when there are no more alternating paths, M is a
maximum matching.

A matching M with 5 edges, an alternating path π, and the augmented matching M ⊕π with 6 edges.

To find the maximum-weight matching in a bipartite graph with weighted edges, we need to
make only two changes to this algorithm.

• First, instead of looking for an arbitrary alternating path at each iteration, we look for the
alternating path π such that M ⊕π has largest weight. Suppose we weight the edges in

²However, maximum-flow algorithms can be modified to compute maximum weighted flows, where every edge has
both a capacity and a weight, and the goal is to maximize

∑

u�v w(u�v) f (u�v).

4



Algorithms Lecture 25½: Minimum Cost Flows [Sp’16]

the residual graph GM as follows:

w′(u�w) = −w(uw) for all uw 6∈ M

w′(w�u) = w(uw) for all uw ∈ M

We now have w(M ⊕π) = w(M)−w′(π). Thus, the correct augmenting path π must be
the directed path in GM with minimum total residual weight w ′(π). In other words,
we are implicitly applying the successive shortest-path algorithm!

• Second, because the matching with maximum weight may not be the matching with the
maximum cardinality, we return the heaviest matching considered in any iteration of the
algorithm, not just in the last iteration.

3 2

10

35

3 2

10

35

A maximum-weight matching is not necessarily a maximum-cardinality matching.

Before we determine the running time of the algorithm, we need to check that it actually
finds the maximum-weight matching. After all, it’s a greedy algorithm, and greedy algorithms
don’t work unless you prove them into submission! Let Mi denote the maximum-weight matching
in G with exactly i edges. In particular, M0 =∅, and the global maximum-weight matching is
equal to Mi for some i. (The figure on the previous page shows M1 and M2 for the same graph.)
Let Gi denote the directed residual graph for Mi, let wi denote the residual weight function
for Mi as defined above, and let πi denote the directed path in Gi such that wi(πi) is minimized.
To simplify the proof, I will assume that there is a unique maximum-weight matching Mi of any
particular size; this assumption can be enforced by applying a consistent tie-breaking rule. With
this assumption in place, the correctness of our algorithm follows inductively from the following
lemma.

Lemma 1. If G contains a matching with i + 1 edges, then Mi+1 = Mi ⊕πi .

Proof: I will prove the equivalent statement Mi+1 ⊕ Mi = πi−1. To simplify notation, call an
edge in Mi+1 ⊕Mi red if it is an edge in Mi+1, and blue if it is an edge in Mi .

The graph Mi+1⊕Mi has maximum degree 2, and therefore consists of pairwise disjoint paths
and cycles, each of which alternates between red and blue edges. Since G is bipartite, every cycle
must have even length. The number of edges in Mi+1 ⊕Mi is odd; specifically, Mi+1 ⊕Mi has
2i + 1− 2k edges, where k is the number of edges that are in both matchings. Thus, Mi+1 ⊕Mi
contains an odd number of paths of odd length, some number of paths of even length, and some
number of cycles of even length.

Let γ be a cycle in Mi+1 ⊕Mi . Because γ has an equal number of edges from each matching,
Mi⊕γ is anothermatchingwith i edges. The total weight of this matching is exactly w(Mi)−wi(γ),
which must be less than w(Mi), so wi(γ) must be positive. On the other hand, Mi+1 ⊕ γ is a
matching with i + 1 edges whose total weight is w(Mi+1) +wi(γ)< w(Mi+1), so wi(γ) must be
negative! We conclude that no such cycle γ exists; Mi+1 ⊕Mi consists entirely of disjoint paths.

Exactly the same reasoning implies that no path in Mi+1 ⊕Mi has an even number of edges.

5



Algorithms Lecture 25½: Minimum Cost Flows [Sp’16]

Finally, since the number of red edges in Mi+1 ⊕ Mi is one more than the number of blue
edges, the number of paths that start with a red edge is exactly one more than the number of
paths that start with a blue edge. The same reasoning as above implies that Mi+1 ⊕Mi does not
contain a blue-first path, because we can pair it up with a red-first path.

We conclude that Mi+1 ⊕Mi consists of a single alternating path π whose first edge is red.
Since w(Mi+1) = w(Mi)−wi(π), the path π must be the one with minimum weight wi(π). �

We can find the alternating path πi using a single-source shortest path algorithm. (See,
I told you we were using successive shortest paths!) Modify the residual graph Gi by adding
zero-weight edges from a new source vertex s to every unmatched node in U , and from every
unmatched node in W to a new target vertex t, exactly as in out unweighted matching algorithm.
Then πi is the shortest path from s to t in this modified graph. Since Mi is the maximum-weight
matching with i vertices, Gi has no negative cycles, so this shortest path is well-defined. We
can compute the shortest path in Gi in O(V E) time using Shimbel-Bellman-Ford, so the overall
running time our algorithm is O(V2E).

The residual graph Gi has negative-weight edges, so we can’t immediately speed up the
algorithm by replacing Shimbel-Bellman-Ford with Dijkstra’s algorithm. However, we can use the
same repricing trick as for the more general successive shortest-path algorithm, or equivalently, a
variant of Johnson’s all-pairs shortest path algorithm, to improve the running time to O(VE log V).
Let di(v) denote the distance from s to v in the residual graph Gi , using the distance function wi .
Let w̃i denote the modified distance function w̃i(u�v) := di−1(u) + wi(u�v)− di−1(v). As we
argued above (and in the discussion of Johnson’s algorithm), shortest paths with respect to wi
are still shortest paths with respect to w̃i . Moreover, w̃i(u�v)> 0 for every edge u�v in Gi:

• If u�v is an edge in Gi−1, then wi(u�v) = wi−1(u�v) and di−1(v)≤ di−1(u)+wi−1(u�v).

• If u�v is not in Gi−1, then wi(u�v) = −wi−1(v�u) and v�u is an edge in the shortest
path πi−1, so di−1(u) = di−1(v) +wi−1(v�u).

Let d̃i(v) denote the shortest path distance from s to v with respect to the distance function w̃i .
Because w̃i is positive everywhere, we can quickly compute d̃i(v) for all v using Dijkstra’s algorithm.
This gives us both the shortest alternating path πi and the distances di(v) = d̃i(v) + di−1(v)
needed for the next iteration.

Exercises

1. Describe and analyze an algorithm for the following problem, first posed and solved by the
German mathematician Carl Jacobi in the early 1800s.³

Disponantur nn quantitates h(i)k quaecunque in schema Quadrati, ita ut k habeantur n series
horizontales et n series verticales, quarum quaeque est n terminorum. Ex illis quantitatibus
eligantur n transversales, i.e. in seriebus horizontalibus simul atque verticalibus diversis
positae, quod fieri potest 1.2 . . . n modis; ex omnibus illis modis quaerendum est is, qui
summam n numerorum electorum suppeditet maximam.

For the few students who are not fluent in mid-19th century academic Latin, here is a
modern English translation of Jacobi’s problem. Suppose we are given an n× n matrix M .

³Carl Gustav Jacob Jacobi. De investigando ordine systematis aequationum differentialum vulgarium cujuscunque.
J. Reine Angew. Math. 64(4):297–320, 1865. Posthumously published by Carl Borchardt.

6



Algorithms Lecture 25½: Minimum Cost Flows [Sp’16]

Describe and analyze an algorithm that computes a permutation σ that maximizes the sum
∑n

i=1 Mi,σ(i), or equivalently, permutes the columns of M so that the sum of the elements
along the diagonal is as large as possible.

2. Let G be a directed flow network whose edges have costs, but which contains no negative-
cost cycles. Prove that one can compute a minimum-cost maximum flow in G using a
variant of Ford-Fulkerson that repeatedly augments the (s, t)-path of minimum total cost in
the current residual graph. What is the running time of this algorithm?

3. An (s , t )-series-parallel graph is an directed acyclic graph with two designated vertices s
(the source) and t (the target or sink) and with one of the following structures:

• Base case: A single directed edge from s to t.

• Series: The union of an (s, u)-series-parallel graph and a (u, t)-series-parallel graph
that share a common vertex u but no other vertices or edges.

• Parallel: The union of two smaller (s, t)-series-parallel graphs with the same source s
and target t, but with no other vertices or edges in common.

(a) Describe an efficient algorithm to compute a maximum flow from s to t in an
(s, t)-series-parallel graph with arbitrary edge capacities.

(b) Describe an efficient algorithm to compute a minimum-cost maximum flow from s to t
in an (s, t)-series-parallel graph whose edges have unit capacity and arbitrary costs.

?(c) Describe an efficient algorithm to compute a minimum-cost maximum flow from s
to t in an (s, t)-series-parallel graph whose edges have arbitrary capacities and costs.

4. Every year, Professor Dumbledore assigns the instructors at Hogwarts to various faculty
committees. There are n faculty members and c committees. Each committee member has
submitted a list of their prices for serving on each committee; each price could be positive,
negative, zero, or even infinite. For example, Professor Snape might declare that he would
serve on the Student Recruiting Committee for 1000 Galleons, that he would pay 10000
Galleons to serve on the Defense Against the Dark Arts Course Revision Committee, and
that he would not serve on the Muggle Relations committee for any price.

Conversely, Dumbledore knows how many instructors are needed for each committee,
as well as a list of instructors who would be suitable members for each committee. (For
example: “Dark Arts Revision: 5 members, anyone but Snape.”) If Dumbledore assigns an
instructor to a committee, he must pay that instructor’s price from the Hogwarts treasury.

Dumbledore needs to assign instructors to committees so that (1) each committee is
full, (3) no instructor is assigned to more than three committees, (2) only suitable and
willing instructors are assigned to each committee, and (4) the total cost of the assignment
is as small as possible. Describe and analyze an efficient algorithm that either solves
Dumbledore’s problem, or correctly reports that there is no valid assignment whose total
cost is finite.

5. Vince wants to borrow a certain amount of money from his friends as cheaply as possible,
possibly after first arranging a sequence of intermediate loans. Each of Vince’s friends have

7



Algorithms Lecture 25½: Minimum Cost Flows [Sp’16]

a different amount of money that they can lend (possibly zero). For any two people x
and y , there is a maximum amount of money (possibly zero or infinite) that x is willing to
lend to y and a certain profit (possibly zero or even negative) that x expects from any loan
to y .

For example, suppose Vince wants to borrow $100 from his friends Ben and Naomi,
who have the following constraints:

• Ben has $500 available to lend.

• Ben is willing to lend up to $150 to Vince at a profit of 20¢ per dollar.

• Ben is willing to lend up to $50 to Naomi, at a loss of 10¢ per dollar.

• Naomi has $50 available to lend.

• Naomi is willing to lend any amount of money to Vince, at a profit of 10¢ per dollar.

• Naomi is not willing to lend money to Ben.

If Vince borrows $100 directly from Ben, he needs $120 to pay off the loan. If Vince
borrows $50 from Ben and $50 from Naomi, he needs $115 to pay off the loan: $60 for Ben
and $55 for Naomi. But if Vince asks Naomi to borrow $50 from Ben and then borrows the
entire $100 from Naomi, then he needs only $110 to pay off Naomi, who can then pay off
Ben with just $45. With the same constraints, the maximum amount of money that Vince
can borrow is $250.

Describe and analyze an algorithm that finds a sequence of loans that minimizes the
amount Vince needs to pay everyone off, or correctly reports that Vince cannot borrow his
desired amount. The input has the following components:

• An array Money[1 .. n], where Money[i] is the amount of money that friend i has.

• An array MaxLoan[1 .. n, 0 .. n], where MaxLoan[i, j] is the amount of money that
friend i is willing to lend to friend j. “Friend 0” is Vince.

• An array Profit[1 .. n, 0 .. n], where Profit[i, j] is the profit per dollar that friend i
expects from any load to friend j. Again, “friend 0” is Vince.

• The total amount T that Vince wants to borrow.

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.

8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	Minimum Cost Flows
	Cycle Cancelling
	Successive Shortest Paths
	Node Potentials and Reduced Costs

	Maximum-Weight Matchings


