Algorithms Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

Man muss immer generalisieren. [One must always generalize.]
— attributed to Carl Gustav Jacob Jacobi (c. 1830) by
Philip J. Davis and Reuben Hersh, The Mathematical Experience (1981)
Life is like riding a bicycle.
To keep your balance you must keep moving.
— Albert Einstein, in a letter to his son Eduard (February 5, 1930)
A process cannot be understood by stopping it.
Understanding must move with the flow of the process, must join it and flow with it.
— The First Law of Mentat, from Frank Herbert’s Dune (1965)
Scarcely pausing for breath, Vroomfondel shouted, “We don’t demand solid facts!

What we demand is a total absence of solid facts. | demand that | may or may not be
Vroomfondel!”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)

*25 Supplies, Demands, and Pseudoflows

In this note, we consider a mild generalization of flows, which allow a fixed amount of flow to be
injected or extracted from the flow network at the vertices. For the moment, consider a flow
network G = (V, E) without identified source and target vertices. Let b: V — R be a balance
function describing how much flow should be injected (if the value is positive) or extracted (if
the value is negative) at each vertex. We interpret positive balances as demand or deficit and
negative balances as (negated) supply or excess.
We now redefine the word flow to mean a function f: E — R that satisfies the modified
balance condition
D fw) =3 fv-w)=b()
ueV wev
at every node v. A flow f is feasible if it satisfies the usual capacity constraints 0 < f(e) < c(e)
at every edge e. Our problem now is to compute, given a flow network with edge capacities and
vertex balances, either a feasible flow in or a proof that no such flow exists.
One easy necessary condition is that all the vertex balances must sum to zero; intuitively,
every edge u—v adds the same amount to v’s balance that it subtracts from u’s balance. More
formally, for any feasible flow f we have

Db = D D fwmn) =D Fmw) | = D)= D) fr-w) = o,

v uev wev u—veE v—-weE

25.1 Reduction to Maximum Flow

We can we can reduce the problem of finding a feasible flow to the standard maximum-flow
problem by adding new vertices and edges to the input graph as follows.

Starting with with original graph G, we construct a new graph G’ = (V’, E’) by adding a new
source vertex s, a new target vertex t, and edges from s to every supply vertex and from every
demand vertex to t. Specifically, for each vertex v in G, if b(v) > 0, we add an edge v—t with
capacity b(v), and if b(v) < 0, we add a new edge s—v with capacity —b(v). Let ¢’: E' —» R be
the resulting capacity function; by construction, ¢’|z = c.

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

Algorithms Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

A flow network G with non-zero balance constraints, and the transformed network G'.

Now call an (s, t)-flow in G’ saturating if every edge leaving s (or equivalently, every edge
entering t) is saturated. Every saturating flow is a maximum flow; conversely, either all maximum
flows in G’ are saturating, or G’ has no saturating flow.

Lemma 1. G has a feasible flow if and only if G’ has a saturating (s, t")-flow.

Proof: Let f: E — R be any feasible flow in G, and consider the function f’: E’ — R defined as
follows:
f(e') ife’€E
fleh=4",", .
c’(e’) otherwise
Every edge incident to s or t is saturated, and every edge in E satisfies the capacity constraint
0 < f'(e) = f(e) < c(e) =c'(e). For any vertex v # s, t, we immediately have

Do fusv)= Y fv-w) = (Zf(uev) -> f(HW)) —b(v)

uev’ wevV’/ uev wevV

= b(v)—b(v) = 0.

We conclude that f’ is a feasible (s, t")-flow, and every edge out of s’ or into t’ is clearly saturated.
Similar tedious algebra implies that for any saturating (s, t)-flow f’: E’ - R for G’, the
function f = f’| is a feasible flow in G. O

A feasible flow in G and the corresponding saturating flow in G’.

We emphasize that there are flow networks with no feasible flow, even when the sum of the
balances is zero. Suppose we partition the vertices of G into two arbitrary subsets S and T. As
usual, let ||S, T|| be the total capacity of the cut (S, T):

IS, Tl =2 > elu=).

uesS veT

Algorithms Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

Let b(S) and b(T) denote the sum of the balances of vertices in S and T, respectively:

b(S):=>b(u) and b(T):=) b().

ues veT

We call the cut (S, T) infeasible if ||S, T|| < b(T); that is, if T has more demand than can be moved
across the cut. The following theorem is a straightforward consequence of the maxflow/mincut
theorem (hint, hint):

Theorem 1. Every flow network has either a feasible flow or an infeasible cut.

25.2 Pseudoflows

Instead of reducing to the maximum flow problem, it is instructive to project the behavior of
Ford-Fulkerson on G’ back to the original flow network G. The resulting algorithm no longer
maintains and incrementally improves a feasible flow in G, but a more general function called a
pseudoflow. Formally, a pseudoflow in G is any function 1 : E — R. We say that a pseudoflow
is feasible if 0 < ¢y(e) < c(e) for every edge e € E. A flow is just a pseudoflow that also satisfies
the balance constraints at every vertex.

For any pseudoflow 1 in G, we define the residual capacity of any edge u—v as usual:

c(u—»v)—y(u—-v) ifu-veE

ey (u=v)i= {1/)(V—>u) ifvsuekE

We also define the residual balance of any node to be its original balance minus its net incoming
pseudoflow:

by(v) :=b(¥) = > Pu-v) + > P(v-w).

A pseudoflow 1) is a flow if and only if b, (v) = 0 for every vertex v. Finally, we define the
residual network G, to be the graph of all edges with positive residual capacity, where the
balance of each node v is by, (v). As usual, if ¢ is zero everywhere, then G, is just the original
network G, with its original capacities and balances.

Now we redefine an augmenting path to be any path in the residual graph G, from any
vertex with negative residual balance (supply or excess) to any vertex with positive residual
balance (demand or deficit). Pushing flow along an augmenting path decreases the total residual

supply
By =D, |by()|
v

and therefore moves v closer to being a feasible flow. The largest amount of flow that we can
push along an augmenting path from u to v, before it ceases to be an augmenting path, is the
minimum of three quantities:

* The residual supply —b,;,(u) at the starting vertex of the path,

* The residual demand b, (v) at the ending vertex of the path, and

* The minimum residual capacity among the edges in the path.

On the other hand, if Gy contains a vertex v with non-zero residual balance, but there is

no augmenting path, then G has no feasible flow. Specifically, if b(v) > 0, then the set S of
vertices reachable from v and its complement T = V' \ S define an infeasible cut; symmetrically, if

Algorithms Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

From left to right: A pseudoflow v in a flow network G; the residual graph G with one augmenting path highlighted;
and the updated pseudoflow after pushing 4 units along the augmenting path.

b(v) < 0, then the set T of vertices that can reach v and its complement S = V \ T define an
infeasible cut.

Putting all these pieces together, we obtain a simple algorithm for computing either a feasible
flow or an infeasible cut. Initialize 1(e) = O at every edge e. Then as long as there is any
non-zero residual balance in Gy, find an arbitrary augmenting path 7, compute the minimum
residual capacity R among all edges in 7, and push R units of flow along 7. When all residual
balances are zero, v is a feasible flow; otherwise, if there is no augmenting path in G, then G
has no feasible flow.

FeasiBLEFLow(V, E, ¢, b):
for every edge e € E
¢(e) <0
B, b()|/2
while B >0
construct Gy,
if G, contains is an augmenting path 7 from u to v
R« min{—by(u), by(v), min,c,cy(e)}
B+~ B—R
for every edge e 7
ifecE

Y(e) = (e) +R
Y(e) —p(e) =R

else

else
return INFEASIBLE
return

Naturally this algorithm comes with the same power and the same limitations as Ford-
Fulkerson. We can find a single augmenting path in O(V + E) time. If all capacities and balances
are integers, the basic algorithm halts after at most B iterations, where B = Y, |b(v)|/2, but if
we allow irrational capacities or irrational balances, the algorithm could run forever without
converging to a flow. Choosing the augmenting path with maximum residual capacity or with the
fewest edges leads to faster algorithms; in particular, if we always choose the shortest augmenting
path, the algorithm runs in O(V E?) time.

25.3 Variations on a Theme

There are several variations on the standard maximum-flow problem, with additional or modified
constraints, that can be solved quickly using the pseudoflow formulation. These variations are all
solved using a two-stage process:

Algorithms Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

* First find a feasible flow f in the original input graph G.
* Then find a maximum flow f’ in the residual graph Gy.

* Finally, return the flow f + f.

In each variation, the residual graph G, we use in the second stage will be a textbook-standard
flow network. Notice that Ford-Fulkerson itself can be seen as an example of this two-stage
algorithm, where the flow f found in the first stage is zero everywhere, or more subtly, where f
is obtained by interrupting Ford-Fulkerson after any augmentation step.

Maximum flows with supplies and demands. Suppose we are given a flow network G = (V, E)
with edge capacities c: E — R*, non-trivial vertex balances b: V — R, and two special vertices s
and t, and we are asked to compute the maximum (s, t)-flow in this network. In this context, an
(s, t)-flow is a function f : E — R* that satisfies the modified balance conditions

D Fow)= > f(u-v) = b(v)

at every vertex v except s and t. As usual, our goal is to find an (s, t)-flow that maximizes the net

flow out of s:
Fl=D fls—w)= > fu=s)

The algorithms in the previous sections almost solve the first stage directly, except for two
issues: (1) the terminal vertices s and t are not subject to balance constraints, and (2) the sum
of the vertex balances need not be zero. In fact, we can handle both of these issues at once by
modifying the graph as follows. First, to avoid any ambiguity, we (re)define b(s) = b(t) = 0.
Then we add one new vertex z with balance b(z) = —Zv b(v), and two new infinite-capacity
edges t—z and z—s. Call the resulting modified flow network G’. Straightforward definition-
chasing implies that any feasible flow in G’ restricts to a feasible (s, t)-flow in G, and conversely,
any feasible (s, t)-flow in G can be extended to a feasible flow in G’.

Thus, we can find a feasible (s, t)-flow f in G in O(VE?) time by repeatedly pushing flow
along shortest augmenting paths, or in O(VE) time using Orlin’s maximum-flow algorithm. In
the resulting residual graph Gy, every vertex (except at s and t) has residual balance zero, so we
can find a maximum flow in G using any standard algorithm.

Lower bounds on edges. In another standard variant, each edge e has a lower bound {(e) on
its flow value, in addition to its capacity c(e). In this context, a flow f is feasible if and only if
£(e) < f(e) < c(e) for every edge e. In the standard flow problem, we have £(e) = O for every
edge e.

Although it is natural to require the lower bounds £(e) to be non-negative, we can in fact
allow negative lower bounds, and therefore negative flow values f (e), if we interpret negative
flow along an edge u—v as positive flow along its reversal v—u. More formally, we define a
pseudoflow as a function v : E — R such that

Y(v-ou) =—yp(u—v)

for every edge u—v; more simply, a pseudoflow is an antisymmetric function over the edges. The
antisymmetry is reflected in the upper and lower bounds on flow:

L(v-u) =—c(u-v) c(v-u) =—L(u—v)

* Kk

Algorithms Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

Then for any pseudoflow 1, each edge u—v has both a residual capacity and a residual lower
bound, defined as follows to maintain antisymmetry:

L(u—»v)—yY(u—v) ifu-veE
Yu—-v)—c(v—u) ifv-su€kE

Cy(u—-v):= {

()= c(u—v)—y(u—-v) ifu-veE
Cpitmy) = Y(u-v)—L(vou) ifvoueckE

Now the residual network G,, consists of all edges u—v with non-negative residual capac-
ity cy(u—v) = 0. We can easily verify (hint, hint) that this antisymmetric formulation of
(pseudo)flows and residual graphs is completely consistent with our usual formulation of flows
as non-negative functions.

Given a flow network with both lower bounds and capacities on the edges, we can compute
a maximum (s, t)-flow as follows. If all lower bounds are zero or negative, we can apply any
standard maxflow algorithm, after replacing each edge u—v with negative lower bound with a
pair of opposing edges u—v and v—u, each with positive capacity. Otherwise, we first define an
initial feasible pseudoflow 1) that meets every positive lower bound:

Y (u—v) = max {E(u—w), O}

Vertices in the resulting residual graph G,, may have non-zero residual balance, but every edge
has a lower bound that is either zero or negative. Thus, we can compute a maximum (s, t)-flow
in G, using the previous two-stage approach, in O(VE) time.

* upper and lower bounds on flow into vertices — exercises

* balance ranges on vertices — exercises

* maximum matching/assignment: one side has supply, the other has demand. Augment-
ing paths are now alternating paths.

25.4 Push-Relabel

The pseudoflow formulation is the foundation of another family of efficient maximum-flow
algorithms that is not based on path-augmentation, called push-relabel algorithms. Every
push-relabel algorithm maintains a special type of pseudoflow, called a preflow, in which every
node (except s) has non-negative residual balance:

by(v):= Zl,b(u—w) —Zl,b(vew) >0.

We call a node active if it is not the target node t and its residual balance is positive; we
immediately observe that 1 is actually a flow if and only if no vertex is active. The algorithm
also maintains a non-negative integer height ht(v) for each vertex v. We call any edge u—v
with ht(u) > ht(v) a downward edge.

The push-relabel algorithm begins by setting ht(s) = |V| and ht(v) = 0 for every node v #s,
and choosing an initial pseudoflow 1) that saturates all edges leaving s and leaves all other edges
empty:

c(u—»v) ifu=s
0 otherwise

P(u—v) = {

Then as long as there are active nodes, the algorithm repeatedly performs one of the following
operations at an arbitrary active node u:

Algorithms Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

* Push: For some downward residual edge u—v out of u, increase vy)(u—v) by the minimum
of the excess at u and the residual capacity of u—v.

* Relabel: If u has no downward outgoing residual edges, increase the height of u by 1.

It is not at all obvious (at least, it wasn’t obvious to me at first) that the push-relabel algorithm
correctly computes a maximum flow, or even that it halts in finite time. To prove that the
algorithm is correct, we need a series of relatively simple observations.

First, we say that the height function ht: V — N and the pseudoflow v¢: E — R are
compatible if ht(u) < ht(v) + 1 for every edge u—v in the residual graph G,.

Lemma 2. After each step of the push-relabel algorithm, the height function ht and the pseudoflow v
are compatible.

Proof: We prove the lemma by induction. Initially, every residual edge either enters the source
vertex s or has both endpoints with height zero, so the initial heights and pseudoflow are
compatible. For each later step of the algorithm, there are two cases to consider.

* Just before we push flow along the residual edge u—v, then u—v must be a downward
edge, so ht(v) < ht(u). If the edge u—v was empty before the push, then this step adds
the reversed edge v—u to the residual graph, and ht(v) < ht(u) < ht(u) + 1.

* On the other hand, just before we relabel an active vertex v, we must have ht(v) < ht(w)
for every outgoing residual edge v—w and (by the induction hypothesis) ht(u) < ht(v)+1
for every incoming residual edge u—v. Thus, after relabeling, we have ht(v) < ht(w)+ 1
for every outgoing residual edge v—w and ht(u) < ht(v) < ht(v) + 1 for every incoming
residual edge u—v.

In both cases, compatibility of the new height function and the new pseudoflow follows from the
inductive hypothesis. O

Lemma 3. After each step of the push-relabel algorithm, there is no residual path from s to t.

Proof: Suppose to the contrary that there is a simple residual path vy—v;—---—v, where
vo = s and v, = t. This path does not repeat vertices, so k < |V|. Because the height of
s and t never change, we have ht(vy) = |V| and ht(v,) = 0. Finally, compatibility implies
ht(v;) = ht(v;_;) — 1, and thus by induction ht(v;) = ht(vy) — i, for each index i. In particular,
we have ht(v,) = |V|—k > 0, giving us a contradiction. O

Lemma 4. If the push-relabel algorithm terminates, it returns a maximum (s, t)-flow in G.

Proof: The algorithm terminates only when there are no active vertices, which means that every
vertex except s and t has zero residual balance. A pseudoflow with non-zero residual balance
is definition of a flow! Any flow whose residual graph has no paths from s to t is a maximum
(s, t)-flow. O

For a full proof of correctness, we still need to prove that the algorithm terminates, but
the easiest way to prove termination is by proving an upper bound on the running time. In
the analysis, we distinguish between two types of push operations. A push along edge u—v is
saturating if we have 1(u—v) = c(u—v) after the push, and non-saturating otherwise.

Algorithms Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

Lemma 5. The push-relabel algorithm performs at most O(V?) relabel operations.

Proof: First, we observe that at any stage of the algorithm, every active node v has a residual
path back to s (because we can follow some unit of flow from s to v). Compatibility now implies
that the height of any active node is less than 2|V|. But we only change the height of a node when
it is active, and then only upward, so the height of every node is less than 2|V |. We conclude that
each node is relabeled at most 2|V| times. O

Lemma 6. The push-relabel algorithm performs at most O(V E) saturating pushes.

Proof: Consider an arbitrary edge u—v. We only push along u—v when ht(u) > ht(v). If this
push is saturating, it removes u—v from the residual graph. This edge reappears only when we
push along the reversed edge v—u, but this can only happen when ht(u) < ht(v). Thus between
any saturating push through u—v and the reappearance of u—v in the residual graph, v must be
relabeled at least twice. Similarly, u must be relabeled at least twice before the next push along
u—v. By the previous lemma, u and v are each relabeled at most 2|V| times. We conclude that
there are at most |V| saturating pushes along u—v. O

Lemma 7. The push-relabel algorithm performs at most O(V2E) non-saturating pushes.

Proof: Define the potential ¢ of the current residual graph to be the sum of the heights of all
active vertices. This potential is always non-negative, because heights are non-negative. Moreover,
we have ® = 0 when the algorithm starts (because every active node has height zero) and ® =0
again when the algorithm terminates (because there are no active vertices).

Every relabel operation increases ® by 1. Every saturating push along u—v makes v active (if
it wasn’t already), and therefore increases ® by at most ht(v) < 2|V|. Thus, the total potential
increase from all relabels and saturating pushes is at most O(V2E).

On the other hand, every non-saturating push along u—v makes the vertex u inactive
and makes v active (if it wasn’t already) and therefore decreases the potential by at least
ht(u)—ht(v) > 1.

Because the potential starts and ends at zero, the total decrease from all non-saturating pushes
must equal the total increase from the other operations. The lemma follows immediately. O

With appropriate elementary data structures, we can perform each push in O(1) time, and
each relabel in time proportional to the degree of the node. It follows that the algorithm runs in
O(V2E) time; in particular, the algorithm always terminates with the correct output!

Like the Ford-Fulkerson algorithm, the push-relabel approach can be made more efficient by
more carefully choosing which operation to perform at each step. Two natural choices lead to
faster algorithms:

* FIFO: The active vertices are kept in a standard queue. At each step, we remove the active
vertex from the front of the queue, and then either push from or relabel that vertex until it
becomes inactive. Any newly active vertices are inserted at the back of the queue. This
rule reduces the number of non-saturating pushes to O(V3), and so the resulting algorithm
runs in O(V?3) time.

* Highest label: At each step, we either push from or relabel the vertex with maximum
height (breaking ties arbitrarily). This rule reduces the number of non-saturating pushes
to O(V24/E), and so the resulting algorithm runs in O(V2vE) time.

Algorithms

Lecture 25: Supplies, Demands, and Pseudoflows [Sp’16]

With more advanced data structures that support pushing flow along more than one edge at a
time, the running time of the push-relabel algorithm can be improved to O(VE log(V2/E)). This
was the theoretically-fastest algorithm known before Orlin’s algorithm. In practice, however, this
optimization is actually slower than the more basic algorithm that handles one edge at a time.

Exercises

1. A path cover of a graph is a collection of directed paths that cover every vertex in G. Every
graph has a trivial path cover consisting of zero-length paths, each covering one vertex. On
the other hand, finding the smallest path cover in an arbitrary graph is NP-hard; a graph
has a path cover of size 1 if and only if it has a Hamiltonian path. Your task in this problem
is to find the smallest path cover of a given directed acyclic graph G.

(a)

(b)

(©

(b)

@

Describe an algorithm to find the smallest path cover of G such that each vertex lies
on exactly one path in the cover.

Suppose G has a unique source s and a unique sink t. Describe an algorithm to find
the smallest path cover of G in which every path starts at s and ends at t.

Describe an algorithm to find the smallest path cover of an arbitrary dag G, with no
additional restrictions on the paths.

Suppose we are given a directed graph G, two vertices s and t, and two functions
£,c: V — R over the vertices. An (s, t)-flow f : E — R in this network is feasible if and
only if the total flow into each vertex v (except s and t) lies between £(v) and u(v):

() <D flu-v) < c(v).

u—=v

Describe an efficient algorithm to compute a maximum (s, t)-flow in this network.

Suppose we are given a directed graph G, two vertices s and t, and two functions
b~,b*: V — R over the vertices. An (s, t)-flow f : E — R in this network is feasible if
and only if the total net flow into each vertex v (except s and t) lies between b~ (v)
and bt (v):
b™() < D fusv) =D Flr-w) < b ().
u—v V—-w

Describe an efficient algorithm to compute a maximum (s, t)-flow in this network.

Describe an efficient algorithm to compute a maximum (s, t)-flow in a network with
all of the features we’ve seen so far:

» Upper and lower bounds on the flow through each edge

* Upper and lower bounds on the flow into each vertex

* Upper and lower bounds on the flow balance at each vertex

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision.

9

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	Supplies, Demands, and Pseudoflows
	Reduction to Maximum Flow
	Pseudoflows
	Variations on a Theme
	Push-Relabel

