
Algorithms Lecture 21: Shortest Paths [Sp’15]

Well, ya turn left by the fire station in the village and take the old post road by
the reservoir and. . . no, that won’t do.

Best to continue straight on by the tar road until you reach the schoolhouse and
then turn left on the road to Bennett’s Lake until. . . no, that won’t work either.

East Millinocket, ya say? Come to think of it, you can’t get there from here.

— Robert Bryan and Marshall Dodge,
Bert and I and Other Stories from Down East (1961)

Hey farmer! Where does this road go?
Been livin’ here all my life, it ain’t gone nowhere yet.

Hey farmer! How do you get to Little Rock?
Listen stranger, you can’t get there from here.

Hey farmer! You don’t know very much do you?
No, but I ain’t lost.

— Michelle Shocked, “Arkansas Traveler" (1992)

21 Shortest Paths

21.1 Introduction

Suppose we are given a weighted directed graph G = (V, E, w) with two special vertices, and we
want to find the shortest path from a source vertex s to a target vertex t. That is, we want to find
the directed path p starting at s and ending at t that minimizes the function

w(p) :=
∑

u�v∈p

w(u�v).

For example, if I want to answer the question “What’s the fastest way to drive from my old
apartment in Champaign, Illinois to my wife’s old apartment in Columbus, Ohio?”, I might use
a graph whose vertices are cities, edges are roads, weights are driving times, s is Champaign,
and t is Columbus.¹ The graph is directed, because driving times along the same road might
be different in different directions. (At one time, there was a speed trap on I-70 just east of the
Indiana/Ohio border, but only for eastbound traffic.)

Perhaps counter to intuition, we will allow the weights on the edges to be negative. Negative
edges make our lives complicated, because the presence of a negative cycle might imply that
there is no shortest path. In general, a shortest path from s to t exists if and only if there is at
least one path from s to t, but there is no path from s to t that touches a negative cycle. If any
negative cycle is reachable from s and can reach t, we can always find a shorter path by going
around the cycle one more time.

Almost every algorithm known for solving this problem actually solves (large portions of)
the following more general single source shortest path or SSSP problem: Find the shortest path
from the source vertex s to every other vertex in the graph. This problem is usually solved by
finding a shortest path tree rooted at s that contains all the desired shortest paths.

It’s not hard to see that if shortest paths are unique, then they form a tree, because any
subpath of a shortest path is itself a shortest path. If there are multiple shortest paths to some

¹West on Church, north on Prospect, east on I-74, south on I-465, east on Airport Expressway, north on I-65, east on
I-70, north on Grandview, east on 5th, north on Olentangy River, east on Dodridge, north on High, west on Kelso,
south on Neil. Depending on traffic. We both live in Urbana now.

© Copyright 2015 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms


Algorithms Lecture 21: Shortest Paths [Sp’15]

s t5

2 −8

4 1

3

There is no shortest path from s to t.

vertices, we can always choose one shortest path to each vertex so that the union of the paths is a
tree. If there are shortest paths to two vertices u and v that diverge, then meet, then diverge
again, we can modify one of the paths without changing its length so that the two paths only
diverge once.

s

u

v

a

b c

d

x y

If s�a�b�c�d�v and s�a�x�y�d�u are shortest paths,
then s�a�b�c�d�u is also a shortest path.

Although they are both optimal spanning trees, shortest-path trees and minimum spanning
trees are very different creatures. Shortest-path trees are rooted and directed; minimum spanning
trees are unrooted and undirected. Shortest-path trees are most naturally defined for directed
graphs; only undirected graphs have minimum spanning trees. If edge weights are distinct, there
is only one minimum spanning tree, but every source vertex induces a different shortest-path
tree; moreover, it is possible for every shortest path tree to use a different set of edges from the
minimum spanning tree.

8 5
10

2 3

18
12

14

4

30
16

26

8 5
10

2 3

18
12

14
4

30
16

26

A minimum spanning tree and a shortest path tree (rooted at the top vertex) of the same undirected graph.

21.2 Warning!

Throughout this lecture, we will explicitly consider only directed graphs. All of the algorithms
described in this lecture also work for undirected graphs with some minor modifications, but only
if negative edges are prohibited. Dealing with negative edges in undirected graphs is considerably
more subtle. We cannot simply replace every undirected edge with a pair of directed edges,
because this would transform any negative edge into a short negative cycle. Subpaths of
an undirected shortest path that contains a negative edge are not necessarily shortest paths;
consequently, the set of all undirected shortest paths from a single source vertex may not define a
tree, even if shortest paths are unique.

2



Algorithms Lecture 21: Shortest Paths [Sp’15]

s

u v

1 1

–1

s

u v

1 1

–1

s

u v

1 1

–1

An undirected graph where shortest paths from s are unique but do not define a tree.

A complete treatment of undirected graphs with negative edges is beyond the scope of this
lecture (if not the entire course). I will only mention that a single shortest path in an undirected
graph with negative edges can be computed in O(V E+V 2 log V ) time, by a reduction to maximum
weighted matching.

21.3 The Only SSSP Algorithm

Just like graph traversal and minimum spanning trees, there are several different SSSP algorithms,
but they are all special cases of the a single generic algorithm, first proposed by Lester Ford in
1956, and independently by George Dantzig in 1957.² Each vertex v in the graph stores two
values, which (inductively) describe a tentative shortest path from s to v.

• dist(v) is the length of the tentative shortest s v path, or∞ if there is no such path.

• pred(v) is the predecessor of v in the tentative shortest s v path, or Null if there is no
such vertex.

In fact, the predecessor pointers automatically define a tentative shortest path tree; they play
exactly the same role as the parent pointers in our generic graph traversal algorithm. At the
beginning of the algorithm, we already know that dist(s) = 0 and pred(s) = Null. For every
vertex v 6= s, we initially set dist(v) =∞ and pred(v) = Null to indicate that we do not know of
any path from s to v.

During the execution of the algorithm, we call an edge u�v tense if dist(u)+w(u�v)< dist(v).
If u�v is tense, the tentative shortest path s v is clearly incorrect, because the path s u�v is
shorter. Our generic algorithm repeatedly finds a tense edge in the graph and relaxes it:

Relax(u�v):
dist(v)← dist(u) +w(u�v)
pred(v)← u

When there are no tense edges, the algorithm halts, and we have our desired shortest path tree.
The correctness of Ford’s generic relaxation algorithm follows from the following series of

claims:

1. For every vertex v, the distance dist(v) is either∞ or the length of some walk from s to v.
This claim can be proved by induction on the number of relaxations.

2. If the graph has no negative cycles, then dist(v) is either∞ or the length of some simple
path from s to v. Specifically, if dist(v) is the length of a walk from s to v that contains a
directed cycle, that cycle must have negative weight. This claim implies that if G has no
negative cycles, the relaxation algorithm eventually halts, because there are only a finite
number of simple paths in G.

²Specifically, Dantzig showed that the shortest path problem can be phrased as a linear programming problem, and
then described an interpretation of his simplex method in terms of the original graph. His description is equivalent to
Ford’s relaxation strategy.

3



Algorithms Lecture 21: Shortest Paths [Sp’15]

3. If no edge in G is tense, then for every vertex v, the distance dist(v) is the length of the
predecessor path s� · · ·pred(pred(v))�pred(v)�v. Specifically, if v violates this condition
but its predecessor pred(v) does not, the edge pred(v)�v is tense.

4. If no edge in G is tense, then for every vertex v, the path s� · · ·pred(pred(v))�pred(v)�v
is a shortest path from s to v. Specifically, if v violates this condition but its predecessor u
in some shortest path does not, the edge u�v is tense. This claim also implies that if the G
has a negative cycle, then some edge is always tense, so the generic algorithm never halts.

So far I haven’t said anything about how we detect which edges can be relaxed, or in what
order we relax them. To make this easier, we refine the relaxation algorithm slightly, into
something closely resembling the generic graph traversal algorithm. We maintain a “bag” of
vertices, initially containing just the source vertex s. Whenever we take a vertex u from the
bag, we scan all of its outgoing edges, looking for something to relax. Finally, whenever we
successfully relax an edge u�v, we put v into the bag. Unlike our generic graph traversal
algorithm, we do not mark vertices when we visit them; the same vertex could be visited many
times, and the same edge could be relaxed many times.

InitSSSP(s):
dist(s)← 0
pred(s)← Null
for all vertices v 6= s

dist(v)←∞
pred(v)← Null

GenericSSSP(s):
InitSSSP(s)
put s in the bag
while the bag is not empty

take u from the bag
for all edges u�v

if u�v is tense
Relax(u�v)
put v in the bag

Just as with graph traversal, different “bag” data structures for the give us different algorithms.
There are three obvious choices to try: a stack, a queue, and a priority queue. Unfortunately,
if we use a stack, the resulting algorithm performs Θ(2V ) relaxation steps in the worst case!
(Proving this is a good homework problem.) The other two possibilities are much more efficient.

21.4 Dijkstra’s Algorithm

If we implement the bag using a priority queue, where the key of a vertex v is its tentative distance
dist(v), we obtain an algorithm first “published” in 1957 by a team of researchers at the Case
Institute of Technology, in an annual project report for the Combat Development Department
of the US Army Electronic Proving Ground. The same algorithm was later independently
rediscovered and actually publicly published by Edsger Dijkstra in 1959. A nearly identical
algorithm was also described by George Dantzig in 1958.

Dijkstra’s algorithm, as it is universally known³, is particularly well-behaved if the graph has
no negative-weight edges. In this case, it’s not hard to show (by induction, of course) that the
vertices are scanned in increasing order of their shortest-path distance from s. It follows that each
vertex is scanned at most once, and thus that each edge is relaxed at most once. Since the key of
each vertex in the heap is its tentative distance from s, the algorithm performs a DecreaseKey
operation every time an edge is relaxed. Thus, the algorithm performs at most E DecreaseKeys.

³I will follow this common convention, despite the historical inaccuracy, partly because I don’t think anybody wants
to read about the “Leyzorek-Gray-Johnson-Ladew-Meaker-Petry-Seitz algorithm”, and partly because papers that
aren’t actually publically published don’t count.

4



Algorithms Lecture 21: Shortest Paths [Sp’15]

Similarly, there are at most V Insert and ExtractMin operations. Thus, if we store the vertices
in a Fibonacci heap, the total running time of Dijkstra’s algorithm is O(E + V log V); if we use a
regular binary heap, the running time is O(E log V).

This analysis assumes that no edge has negative weight. Dijkstra’s algorithm (in the form
I’m presenting here⁴) is still correct if there are negative edges, but the worst-case running time
could be exponential. (Proving this unfortunate fact is a good homework problem.) On the other
hand, in practice, Dijkstra’s algorithm is usually quite fast even for graphs with negative edges.

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

∞

∞

4

3

1

3 2

0 5

10 12

8

4

6 3

7

s
0

∞

∞

∞

∞

∞

∞

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

∞

4

3

12

1

3 2

0 5

10 12

8

4

6 3

7

s

∞

∞

4

3

94
1

3 2

0 5

10 12

8

4

6 3

7

s

4

3

94

7

14

0 0

0 0

Four phases of Dijkstra’s algorithm run on a graph with no negative edges.
At each phase, the shaded vertices are in the heap, and the bold vertex has just been scanned.

The bold edges describe the evolving shortest path tree.

21.5 The A∗ Heuristic

A slight generalization of Dijkstra’s algorithm, commonly known as the A∗ algorithm, is frequently
used to find a shortest path from a single source node s to a single target node t. This heuristic
was first described in 1968 by Peter Hart, Nils Nilsson, and Bertram Raphael. A∗ uses a black-box
function GuessDistance(v, t) that returns an estimate of the distance from v to t. The only
difference between Dijkstra and A∗ is that the key of a vertex v is dist(v) +GuessDistance(v, t).

The function GuessDistance is called admissible if GuessDistance(v, t) never overestimates
the actual shortest path distance from v to t. If GuessDistance is admissible and the actual
edge weights are all non-negative, the A∗ algorithm computes the actual shortest path from s to t
at least as quickly as Dijkstra’s algorithm. In practice, the closer GuessDistance(v, t) is to the
real distance from v to t, the faster the algorithm. However, in the worst case, the running time
is still O(E + V log V ).

The heuristic is especially useful in situations where the actual graph is not known. For
example, A∗ can be used to find optimal solutions to many puzzles (15-puzzle, Freecell, Shanghai,

⁴Most algorithms textbooks, Wikipedia, and even Dijkstra’s original paper present a version of Dijkstra’s algorithm
that gives incorrect results for graphs with negative edges, because it never visits the same vertex more than once. I’ve
taken the liberty of correcting Dijkstra’s mistake. Even Dijkstra would agree that a correct algorithm that is sometimes
slow (and in practice, rarely slow) is better than a fast algorithm that doesn’t always work.

5



Algorithms Lecture 21: Shortest Paths [Sp’15]

Sokoban, Atomix, Rush Hour, Rubik’s Cube, Racetrack, . . . ) and other path planning problems
where the starting and goal configurations are given, but the graph of all possible configurations
and their connections is not given explicitly.

21.6 Shimbel’s Algorithm

If we replace the heap in Dijkstra’s algorithm with a FIFO queue, we obtain an algorithm first
sketched by Shimbel in 1954, described in more detail by Moore in 1957, then independently
rediscovered by Woodbury and Dantzig in 1957 and again by Bellman in 1958. Because Bellman
explicitly used Ford’s formulation of relaxing edges, this algorithm is almost universally called
“Bellman-Ford”, although some early sources refer to “Bellman-Shimbel”. Shimbel’s algorithm is
efficient even if there are negative edges, and it can be used to quickly detect the presence of
negative cycles. If there are no negative edges, however, Dijkstra’s algorithm is faster. (In fact, in
practice, Dijkstra’s algorithm is often faster even for graphs with negative edges.)

The easiest way to analyze the algorithm is to break the execution into phases, by introducing
an imaginary token. Before we even begin, we insert the token into the queue. The current phase
ends when we take the token out of the queue; we begin the next phase by reinserting the token
into the queue. The 0th phase consists entirely of scanning the source vertex s. The algorithm
ends when the queue contains only the token. A simple inductive argument (hint, hint) implies
the following invariant for every integer i and vertex v:

After i phases of the algorithm, dist(v) is at most the length of
the shortest walk from s to v consisting of at most i edges.

Since a shortest path can only pass through each vertex once, either the algorithm halts
before the V th phase, or the graph contains a negative cycle. In each phase, we scan each vertex
at most once, so we relax each edge at most once, so the running time of a single phase is O(E).
Thus, the overall running time of Shimbel’s algorithm is O(VE).

Once we understand how the phases of Shimbel’s algorithm behave, we can simplify the
algorithm considerably by producing the same behavior on purpose. Instead of performing a
partial breadth-first search of the graph in each phase, we can simply scan through the adjacency
list directly, relaxing every tense edge we find in the graph.

Shimbel: Relax ALL the tense edges and recurse.

6



Algorithms Lecture 21: Shortest Paths [Sp’15]

−2

1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

−3

−18

a

b

c

d

e

f

1

2

0 5

4

6 3

s
0

∞

−3

−18

a

b

c

d

e

f1

2

0 5

4

6 3

s
0

∞

∞

∞

∞

∞

∞ −3

−18

a

b

c

d

e

f 1

2

0 5

4

6 3

s
0

∞

∞

∞

−3

−18

a

b

c

d

e

f

6

4

3 6

2

3

74

3

2

2 7

9
−8−8

−8−8−8

−3 −3

−3 −3

−3

1

9

7

2

3

1

Four phases of Shimbel’s algorithm run on a directed graph with negative edges.
Nodes are taken from the queue in the order s � a b c � d f b � a e d � d a � �, where � is the end-of-phase token.
Shaded vertices are in the queue at the end of each phase. The bold edges describe the evolving shortest path tree.

ShimbelSSSP(s)
InitSSSP(s)
repeat V times:

for every edge u�v
if u�v is tense

Relax(u�v)
for every edge u�v

if u�v is tense
return “Negative cycle!”

This is how most textbooks present “Bellman-Ford”.⁵ The O(V E) running time of this
formulation of the algorithm should be obvious, but it may be less clear that the algorithm is still
correct. In fact, correctness follows from exactly the same invariant as before:

After i phases of the algorithm, dist(v) is at most the length of
the shortest walk from s to v consisting of at most i edges.

As before, it is straightforward to prove by induction (hint, hint) that this invariant holds for
every integer i and vertex v.

21.7 Shimbel’s Algorithm as Dynamic Programming

Shimbel’s algorithm can also be recast as a dynamic programming algorithm. Let disti(v) denote
the length of the shortest path s v consisting of at most i edges. It’s not hard to see that this

⁵In fact, this is essentially the formulation proposed by both Shimbel and Bellman. Bob Tarjan recognized in the
early 1980s that Shimbel’s algorithm is equivalent to Dijkstra’s algorithm with a queue instead of a heap.

7



Algorithms Lecture 21: Shortest Paths [Sp’15]

function obeys the following recurrence:

disti(v) =



















0 if i = 0 and v = s

∞ if i = 0 and v 6= s

min

¨

disti−1(v),
min

u�v∈E
(disti−1(u) +w(u�v))

«

otherwise

For the moment, let’s assume the graph has no negative cycles; our goal is to compute distV−1(t).
We can clearly memoize this two-parameter function into a two-dimensional array. A straightfor-
ward dynamic programming evaluation of this recurrence looks like this:

ShimbelDP(s)
dist[0, s]← 0
for every vertex v 6= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]
for every edge u�v

if dist[i, v]> dist[i − 1, u] +w(u�v)
dist[i, v]← dist[i − 1, u] +w(u�v)

Now let us make two minor changes to this algorithm. First, we remove one level of
indentation from the last three lines. This may change the order in which we examine edges, but
the modified algorithm still computes disti(v) for all i and v. Second, we change the indices in
the last two lines from i − 1 to i. This change may cause the distances dist[i, v] to approach the
true shortest-path distances more quickly than before, but the algorithm is still correct.

ShimbelDP2(s)
dist[0, s]← 0
for every vertex v 6= s

dist[0, v]←∞
for i← 1 to V − 1

for every vertex v
dist[i, v]← dist[i − 1, v]

for every edge u�v
if dist[i, v]> dist[i, u] +w(u�v)

dist[i, v]← dist[i, u] +w(u�v)

Now notice that the iteration index i is completely redundant! We really only need to keep a
one-dimensional array of distances, which means we don’t need to scan the vertices in each
iteration of the main loop.

ShimbelDP3(s)
dist[s]← 0
for every vertex v 6= s

dist[v]←∞
for i← 1 to V − 1

for every edge u�v
if dist[v]> dist[u] +w(u�v)

dist[v]← dist[u] +w(u�v)

8



Algorithms Lecture 21: Shortest Paths [Sp’15]

The resulting algorithm is almost identical to our earlier algorithm ShimbelSSSP! The first three
lines initialize the shortest path distances, and the last two lines check whether an edge is tense,
and if so, relaxes it. The only feature missing from the new algorithm is explicit maintenance of
predecessors, but that’s easy to add.

Exercises

0. Prove that the following invariant holds for every integer i and every vertex v: After i
phases of Shimbel’s algorithm (in either formulation), dist(v) is at most the length of the
shortest path s v consisting of at most i edges.

1. Let G be a directed graph with edge weights (which may be positive, negative, or zero),
and let s be an arbitrary vertex of G.

(a) Suppose every vertex v stores a number dist(v). Describe and analyze an algorithm to
determine whether dist(v) is the shortest-path distance from s to v, for every vertex v.

(b) Suppose instead that every vertex v 6= s stores a pointer pred(v) to another vertex
in G. Describe and analyze an algorithm to determine whether these predecessor
pointers define a single-source shortest path tree rooted at s.

Do not assume that G contains no negative cycles.

2. A looped tree is a weighted, directed graph built from a binary tree by adding an edge from
every leaf back to the root. Every edge has a non-negative weight.

5 8

17 0 1

23 9 14

42416 7

A looped tree.

(a) How much time would Dijkstra’s algorithm require to compute the shortest path
between two vertices u and v in a looped tree with n nodes?

(b) Describe and analyze a faster algorithm.

3. Suppose we are given an undirected graph G in which every vertex has a positive weight.

(a) Describe and analyze an algorithm to find a spanning tree of G with minimum total
weight. (The total weight of a spanning tree is the sum of the weights of its vertices.)

(b) Describe and analyze an algorithm to find a path in G from one given vertex s to
another given vertex t with minimum total weight. (The total weight of a path is the
sum of the weights of its vertices.)

9



Algorithms Lecture 21: Shortest Paths [Sp’15]

4. For any edge e in any graph G, let G \ e denote the graph obtained by deleting e from G.

(a) Suppose we are given a directed graph G in which the shortest path σ from vertex s
to vertex t passes through every vertex of G. Describe an algorithm to compute the
shortest-path distance from s to t in G \ e, for every edge e of G, in O(E log V ) time.
Your algorithm should output a set of E shortest-path distances, one for each edge of
the input graph. You may assume that all edge weights are non-negative. [Hint: If
we delete an edge of the original shortest path, how do the old and new shortest paths
overlap?]

?(b) Let s and t be arbitrary vertices in an arbitrary undirected graph G. Describe an
algorithm to compute the shortest-path distance from s to t in G \ e, for every edge e of
G, in O(E log V ) time. Again, you may assume that all edge weights are non-negative.

5. Let G = (V, E) be a connected directed graph with non-negative edge weights, let s and t
be vertices of G, and let H be a subgraph of G obtained by deleting some edges. Suppose
we want to reinsert exactly one edge from G back into H, so that the shortest path from s
to t in the resulting graph is as short as possible. Describe and analyze an algorithm that
chooses the best edge to reinsert, in O(E log V ) time.

6. When there is more than one shortest path from one node s to another node t, it is often
convenient to choose a shortest path with the fewest edges; call this the best path from s
to t. Suppose we are given a directed graph G with positive edge weights and a source
vertex s in G. Describe and analyze an algorithm to compute best paths in G from s to
every other vertex.

?7. (a) Prove that Ford’s generic shortest-path algorithm (while the graph contains a tense
edge, relax it) can take exponential time in the worst case when implemented with a
stack instead of a priority queue (like Dijkstra) or a queue (like Shimbel). Specifically,
for every positive integer n, construct a weighted directed n-vertex graph Gn, such
that the stack-based shortest-path algorithm call Relax Ω(2n) times when Gn is the
input graph. [Hint: Towers of Hanoi.]

(b) Prove that Dijkstra’s shortest-path algorithm can require exponential time in the
worst case when edges are allowed to have negative weight. Specifically, for every
positive integer n, construct a weighted directed n-vertex graph Gn, such that Dijkstra’s
algorithm calls Relax Ω(2n) times when Gn is the input graph. [Hint: This is relatively
easy if you’ve already solved part (a).]

8. (a) Describe and analyze a modification of Shimbel’s shortest-path algorithm that actually
returns a negative cycle if any such cycle is reachable from s, or a shortest-path tree if
there is no such cycle. The modified algorithm should still run in O(V E) time.

(b) Describe and analyze a modification of Shimbel’s shortest-path algorithm that com-
putes the correct shortest path distances from s to every other vertex of the input
graph, even if the graph contains negative cycles. Specifically, if any walk from s to v
contains a negative cycle, your algorithm should end with dist(v) = −∞; otherwise,
dist(v) should contain the length of the shortest path from s to v. The modified
algorithm should still run in O(V E) time.

10



Algorithms Lecture 21: Shortest Paths [Sp’15]

?(c) Repeat parts (a) and (b), but for Ford’s generic shortest-path algorithm. You may
assume that the unmodified algorithm halts in O(2V ) steps if there is no negative
cycle; your modified algorithms should also run in O(2V ) time.

?9. Describe and analyze an efficient algorithm to compute the number of shortest paths
between two specified vertices s and t in a directed graph G whose edges have positive
weights. [Hint: Which edges of G can lie on a shortest path from s to t?]

10. You just discovered your best friend from elementary school on Twitbook. You both want to
meet as soon as possible, but you live in two different cites that are far apart. To minimize
travel time, you agree to meet at an intermediate city, and then you simultaneously hop in
your cars and start driving toward each other. But where exactly should you meet?

You are given a weighted graph G = (V, E), where the vertices V represent cities and
the edges E represent roads that directly connect cities. Each edge e has a weight w(e)
equal to the time required to travel between the two cities. You are also given a vertex
p, representing your starting location, and a vertex q, representing your friend’s starting
location.

Describe and analyze an algorithm to find the target vertex t that allows you and your
friend to meet as quickly as possible.

11. After a grueling algorithms midterm, you decide to take the bus home. Since you planned
ahead, you have a schedule that lists the times and locations of every stop of every bus
in Champaign-Urbana. Unfortunately, there isn’t a single bus that visits both your exam
building and your home; you must transfer between bus lines at least once.

Describe and analyze an algorithm to determine the sequence of bus rides that will get
you home as early as possible, assuming there are b different bus lines, and each bus stops
n times per day. Your goal is to minimize your arrival time, not the time you actually spend
traveling. Assume that the buses run exactly on schedule, that you have an accurate watch,
and that you are too tired to walk between bus stops.

12. After graduating you accept a job with Aerophobes- R-Us, the leading traveling agency for
people who hate to fly. Your job is to build a system to help customers plan airplane trips
from one city to another. All of your customers are afraid of flying (and by extension,
airports), so any trip you plan needs to be as short as possible. You know all the departure
and arrival times of all the flights on the planet.

Suppose one of your customers wants to fly from city X to city Y . Describe an algorithm
to find a sequence of flights that minimizes the total time in transit—the length of time from
the initial departure to the final arrival, including time at intermediate airports waiting for
connecting flights. [Hint: Modify the input data and apply Dijkstra’s algorithm.]

13. Mulder and Scully have computed, for every road in the United States, the exact probability
that someone driving on that road won’t be abducted by aliens. Agent Mulder needs to
drive from Langley, Virginia to Area 51, Nevada. What route should he take so that he has
the least chance of being abducted?

11



Algorithms Lecture 21: Shortest Paths [Sp’15]

More formally, you are given a directed graph G = (V, E), where every edge e has
an independent safety probability p(e). The safety of a path is the product of the safety
probabilities of its edges. Design and analyze an algorithm to determine the safest path
from a given start vertex s to a given target vertex t.

0.2

0.7

0.50.9

0.1

0.5
Langley, VA

Area 51, AZ

Memphis, TN

Las Vegas, NV

For example, with the probabilities shown above, if Mulder tries to drive directly from
Langley to Area 51, he has a 50% chance of getting there without being abducted. If he
stops in Memphis, he has a 0.7× 0.9= 63% chance of arriving safely. If he stops first in
Memphis and then in Las Vegas, he has a 1− 0.7× 0.1× 0.5 = 96.5% chance of being
abducted! (That’s how they got Elvis, you know.) Although this example is a dag, your
algorithm must handle arbitrary directed graphs.

14. On an overnight camping trip in Sunnydale National Park, you are woken from a restless
sleep by a scream. As you crawl out of your tent to investigate, a terrified park ranger runs
out of the woods, covered in blood and clutching a crumpled piece of paper to his chest.
As he reaches your tent, he gasps, “Get out. . . while. . . you. . . ”, thrusts the paper into your
hands, and falls to the ground. Checking his pulse, you discover that the ranger is stone
dead.

You look down at the paper and recognize a map of the park, drawn as an undirected
graph, where vertices represent landmarks in the park, and edges represent trails between
those landmarks. (Trails start and end at landmarks and do not cross.) You recognize one
of the vertices as your current location; several vertices on the boundary of the map are
labeled EXIT.

On closer examination, you notice that someone (perhaps the poor dead park ranger)
has written a real number between 0 and 1 next to each vertex and each edge. A scrawled
note on the back of the map indicates that a number next to an edge is the probability of
encountering a vampire along the corresponding trail, and a number next to a vertex is the
probability of encountering a vampire at the corresponding landmark. (Vampires can’t
stand each other’s company, so you’ll never see more than one vampire on the same trail or
at the same landmark.) The note warns you that stepping off the marked trails will result
in a slow and painful death.

You glance down at the corpse at your feet. Yes, his death certainly looked painful.
Wait, was that a twitch? Are his teeth getting longer? After driving a tent stake through
the undead ranger’s heart, you wisely decide to leave the park immediately.

Describe and analyze an efficient algorithm to find a path from your current location to
an arbitrary EXIT node, such that the total expected number of vampires encountered along

12



Algorithms Lecture 21: Shortest Paths [Sp’15]

the path is as small as possible. Be sure to account for both the vertex probabilities and the
edge probabilities!

— Randall Munroe, xkcd (http://xkcd.com/69/)
Reproduced under a Creative Commons Attribution-NonCommercial 2.5 License

© Copyright 2015 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

13

http://xkcd.com/69/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

	Shortest Paths
	Introduction
	Warning!
	The Only SSSP Algorithm
	Dijkstra's Algorithm
	The A* Heuristic
	Shimbel’s Algorithm
	Shimbel's Algorithm as Dynamic Programming


