
Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

It is a very sad thing that nowadays there is so little
useless information.

— Oscar Wilde, “A Few Maxims for the Instruction
Of The Over-Educated” (1894)

Ninety percent of science fiction is crud.
But then, ninety percent of everything is crud,
and it’s the ten percent that isn’t crud that is important.

— [Theodore] Sturgeon’s Law (1953)

Dis-moi ce que tu manges, je te dirai ce que tu es.

— Jean Anthelme Brillat-Savarin, Physiologie du Gout (1825)

6 Advanced Dynamic Programming?

Dynamic programming is a powerful technique for efficiently solving recursive problems, but
it’s hardly the end of the story. In many cases, once we have a basic dynamic programming
algorithm in place, we can make further improvements to bring down the running time or the
space usage. We saw one example in the Fibonacci number algorithm. Buried inside the naïve
iterative Fibonacci algorithm is a recursive problem—computing a power of a matrix—that can
be solved more efficiently by dynamic programming techniques—in this case, repeated squaring.

6.1 Saving Space: Divide and Conquer

Just as we did for the Fibonacci recurrence, we can reduce the space complexity of our edit
distance algorithm from O(mn) to O(m+ n) by only storing the current and previous rows of
the memoization table. This ‘sliding window’ technique provides an easy space improvement for
most (but not all) dynamic programming algorithm.

Unfortunately, this technique seems to be useful only if we are interested in the cost of the
optimal edit sequence, not if we want the optimal edit sequence itself. By throwing away most
of the table, we apparently lose the ability to walk backward through the table to recover the
optimal sequence.

Fortunately for memory-misers, in 1975 Dan Hirshberg discovered a simple divide-and-conquer
strategy that allows us to compute the optimal edit sequence in O(mn) time, using just O(m+ n)
space. The trick is to record not just the edit distance for each pair of prefixes, but also a single
position in the middle of the optimal editing sequence for that prefix. Specifically, any optimal
editing sequence that transforms A[1 .. m] into B[1 .. n] can be split into two smaller editing
sequences, one transforming A[1 .. m/2] into B[1 .. h] for some integer h, the other transforming
A[m/2+ 1 .. m] into B[h+ 1 .. n].

To compute this breakpoint h, we define a second function Half(i, j) such that some optimal
edit sequence from A[1 .. i] into B[1 .. j] contains an optimal edit sequence from A[1 .. m/2] to
B[1 ..Half(i, j)]. We can define this function recursively as follows:

Half(i, j) =

∞ if i < m/2

j if i = m/2

Half(i − 1, j) if i > m/2 and Edit(i, j) = Edit(i − 1, j) + 1

Half(i, j − 1) if i > m/2 and Edit(i, j) = Edit(i, j − 1) + 1

Half(i − 1, j − 1) otherwise

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu//teaching/algorithms/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu//teaching/algorithms/

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

(Because there there may be more than one optimal edit sequence, this is not the only correct
definition.) A simple inductive argument implies that Half(m, n) is indeed the correct value of h.
We can easily modify our earlier algorithm so that it computes Half(m, n) at the same time as the
edit distance Edit(m, n), all in O(mn) time, using only O(m) space.

Edit A L G O R I T H M

0 1 2 3 4 5 6 7 8 9
A 1 0 1 2 3 4 5 6 7 8
L 2 1 0 1 2 3 4 5 6 7
T 3 2 1 1 2 3 4 4 5 6
R 4 3 2 2 2 2 3 4 5 6
U 5 4 3 3 3 3 3 4 5 6
I 6 5 4 4 4 4 3 4 5 6
S 7 6 5 5 5 5 4 4 5 6
T 8 7 6 6 6 6 5 4 5 6
I 9 8 7 7 7 7 6 5 5 6
C 10 9 8 8 8 8 7 6 6 6

Half A L G O R I T H M

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

A ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

L ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

T ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

R ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

U 0 1 2 3 4 5 6 7 8 9

I 0 1 2 3 4 5 5 5 5 5
S 0 1 2 3 4 5 5 5 5 5
T 0 1 2 3 4 5 5 5 5 5
I 0 1 2 3 4 5 5 5 5 5
C 0 1 2 3 4 5 5 5 5 5

Finally, to compute the optimal editing sequence that transforms A into B, we recursively
compute the optimal sequences transforming A[1 .. m/2] into B[1 ..Half(m, n)] and transforming
A[m/2+ 1 .. m] into B[Half(m, n) + 1 .. n]. The recursion bottoms out when one string has only
constant length, in which case we can determine the optimal editing sequence in linear time
using our old dynamic programming algorithm. The running time of the resulting algorithm
satisfies the following recurrence:

T (m, n) =

O(n) if m≤ 1

O(m) if n≤ 1

O(mn) + T (m/2, h) + T (m/2, n− h) otherwise

It’s easy to prove inductively that T (m, n) = O(mn), no matter what the value of h is. Specifically,
the entire algorithm’s running time is at most twice the time for the initial dynamic programming
phase.

T (m, n)≤ αmn+ T (m/2, h) + T (m/2, n− h)

≤ αmn+ 2αmh/2+ 2αm(n− h)/2 [inductive hypothesis]

= 2αmn

A similar inductive argument implies that the algorithm uses only O(n+m) space.
Hirschberg’s divide-and-conquer trick can be applied to almost any dynamic programming

problem to obtain an algorithm to construct an optimal structure (in this case, the cheapest edit
sequence) within the same space and time bounds as computing the cost of that optimal structure
(in this case, edit distance). For this reason, we will almost always ask you for algorithms to
compute the cost of some optimal structure, not the optimal structure itself.

6.2 Saving Time: Sparseness

In many applications of dynamic programming, we are faced with instances where almost every
recursive subproblem will be resolved exactly the same way. We call such instances sparse.
For example, we might want to compute the edit distance between two strings that have few
characters in common, which means there are few “free” substitutions anywhere in the table.

2

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

Most of the table has exactly the same structure. If we can reconstruct the entire table from just
a few key entries, then why compute the entire table?

To better illustrate how to exploit sparseness, let’s consider a simplification of the edit distance
problem, in which substitutions are not allowed (or equivalently, where a substitution counts as
two operations instead of one). Now our goal is to maximize the number of “free” substitutions,
or equivalently, to find the longest common subsequence of the two input strings.

Fix the two input strings A[1 .. n] and B[1 .. m]. For any indices i and j, let LCS(i, j) denote
the length of the longest common subsequence of the prefixes A[1 .. i] and B[1 .. j]. This function
can be defined recursively as follows:

LCS(i, j) =

0 if i = 0 or j = 0

LCS(i − 1, j − 1) + 1 if A[i] = B[j]
max {LCS(i, j − 1), LCS(i − 1, j)} otherwise

This recursive definition directly translates into an O(mn)-time dynamic programming algorithm.

LCS « A L G O R I T H M S »

« 0 0 0 0 0 0 0 0 0 0 0 0
A 0 1 1 1 1 1 1 1 1 1 1 1
L 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 2 2 2 3 3 3 3 3
R 0 1 2 2 2 3 3 3 3 3 3 3
U 0 1 2 2 3 3 3 3 3 3 3 3
I 0 1 2 2 3 3 4 4 4 4 4 4
S 0 1 2 2 3 3 4 4 4 4 5 5
T 0 1 2 2 3 3 4 5 5 5 5 5
I 0 1 2 2 3 3 4 5 5 5 5 5
C 0 1 2 2 3 3 4 5 5 5 5 5
» 0 1 2 2 3 3 4 5 5 5 5 6

The LCS memoization table for ALGORITHMS and ALTRUISTIC; the brackets « and » are sentinel characters.
Match points are indicated in red.

Call an index pair (i, j) a match point if A[i] = B[j]. In some sense, match points are the
only “interesting” locations in the memoization table. Given a list of the match points, we can
reconstruct the entire table using the following recurrence:

LCS(i, j) =

0 if i = j = 0

max
�

LCS(i′, j′)
�

� A[i′] = B[j′] and i′ < i and j′ < j
	

+ 1 if A[i] = B[j]

max
�

LCS(i′, j′)
�

� A[i′] = B[j′] and i′ ≤ i and j′ ≤ j
	

otherwise

(Notice that the inequalities are strict in the second case, but not in the third.) To simplify
boundary issues, we add unique sentinel characters A[0] = B[0] and A[m+ 1] = B[n+ 1] to
both strings (brackets « and » in the example above). These sentinels ensure that the sets on the
right side of the recurrence equation are non-empty, and that we only have to consider match
points to compute LCS(m, n) = LCS(m+ 1, n+ 1)− 1.

If there are K match points, we can actually compute them all in O(m log m+ n log n+ K)
time. Sort the characters in each input string, but remembering the original index of each
character, and then essentially merge the two sorted arrays, as follows:

3

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

FindMatches(A[1 .. m], B[1 .. n]):
for i← 1 to m: I[i]← i
for j← 1 to n: J[j]← j

sort A and permute I to match
sort B and permute J to match

i← 1; j← 1
while i < m and j < n

if A[i]< B[j]
i← i + 1

else if A[i]> B[j]
j← j + 1

else 〈〈Found a match!〉〉
ii← i
while A[ii] = A[i]

j j← j
while B[j j] = B[j]

report (I[i i], J[j j])
j j← j j + 1

ii← i + 1
i← ii; j← j j

To efficiently evaluate our modified recurrence, we once again turn to dynamic programming.
We consider the match points in lexicographic order—the order they would be encountered in a
standard row-major traversal of the m× n table—so that when we need to evaluate LCS(i, j), all
match points (i′, j′) with i′ < i and j′ < j have already been evaluated.

SparseLCS(A[1 .. m], B[1 .. n]):
Match[1 .. K]← FindMatches(A, B)
Match[K + 1]← (m+ 1, n+ 1) 〈〈Add end sentinel〉〉
Sort M lexicographically
for k← 1 to K

(i, j)←Match[k]
LCS[k]← 1 〈〈From start sentinel〉〉
for `← 1 to k− 1

(i′, j′)←Match[`]
if i′ < i and j′ < j

LCS[k]←min{LCS[k], 1+ LCS[`]}
return LCS[K + 1]− 1

The overall running time of this algorithm is O(m log m + n log n + K2). So as long as
K = o(

p
mn), this algorithm is actually faster than naïve dynamic programming. With some

additional work, the running time can be further improved to O(m log m+ n log n+ K log K).

6.3 Saving Time: Monotonicity

Recall the optimal binary search tree problem from the previous lecture. Given an array F[1 .. n]
of access frequencies for n items, the problem it to compute the binary search tree that minimizes
the cost of all accesses. A relatively straightforward dynamic programming algorithm solves this
problem in O(n3) time.

As for longest common subsequence problem, the algorithm can be improved by exploiting
some structure in the memoization table. In this case, however, the relevant structure isn’t in the

4

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

table of costs, but rather in the table used to reconstruct the actual optimal tree. Let OptRoot[i, j]
denote the index of the root of the optimal search tree for the frequencies F[i .. j]; this is always
an integer between i and j. Donald Knuth proved the following nice monotonicity property for
optimal subtrees: If we move either end of the subarray, the optimal root moves in the same
direction or not at all. More formally:

OptRoot[i, j − 1]≤ OptRoot[i, j]≤ OptRoot[i + 1, j] for all i and j.

In other words, every row and column in the arrayOptRoot[1 .. n, 1 .. n] is sorted. This (nontrivial!)
observation immediately suggests the following more efficient algorithm:

FasterOptimalSearchTree(f [1 .. n]):
InitF(f [1 .. n])
for i← 1 downto n

OptCost[i, i − 1]← 0
OptRoot[i, i − 1]← i

for d ← 0 to n
for i← 1 to n

ComputeCostAndRoot(i, i + d)
return OptCost[1, n]

ComputeCostAndRoot(i, j):
OptCost[i, j]←∞

for r ← OptRoot[i, j − 1] to OptRoot[i + 1, j]
tmp← OptCost[i, r − 1] +OptCost[r + 1, j]
if OptCost[i, j]> tmp

OptCost[i, j]← tmp
OptRoot[i, j]← r

OptCost[i, j]← OptCost[i, j] + F[i, j]

It’s not hard to see that the loop index r increases monotonically from 1 to n during each
iteration of the outermost for loop of FasterOptimalSearchTree. Consequently, the total cost
of all calls to ComputeCostAndRoot is only O(n2).

If we formulate the problem slightly differently, this algorithm can be improved even further.
Suppose we require the optimum external binary tree, where the keys A[1 .. n] are all stored at the
leaves, and intermediate pivot values are stored at the internal nodes. An algorithm discovered
by Ching Hu and Alan Tucker¹ computes the optimal binary search tree in this setting in only
O(n log n) time!

6.4 Saving Time: More Monotoniticy

Knuth’s algorithm can be significantly generalized by considering a more subtle form of mono-
tonicity in the cost array. A common (but often implicit) operation in many dynamic programming
algorithms is finding the minimum element in every row of a two-dimensional array. For example,
consider a single iteration of the outer loop in FasterOptimalSearchTree, for some fixed value
of d. Define an array M by setting

M[i, r] =

¨

OptCost[i, r − 1] +OptCost[r + 1, i + d] if i ≤ r ≤ i + d

∞ otherwise

Each call to ComputeCostAndRoot(i, i + d) computes the smallest element in the ith row of
this array M .

Let M[1 .. m, 1 .. n] be an arbitrary two-dimensional array. We say that M is monotone if the
leftmost smallest element in any row is either directly above or to the left of the leftmost smallest

¹T. C. Hu and A. C. Tucker, Optimal computer search trees and variable length alphabetic codes, SIAM J. Applied
Math. 21:514–532, 1971. For a slightly simpler algorithm with the same running time, see A. M. Garsia and M. L. Wachs,
A new algorithms for minimal binary search trees, SIAM J. Comput. 6:622–642, 1977. The original correctness proofs
for both algorithms are rather intricate; for simpler proofs, see Marek Karpinski, Lawrence L. Larmore, and Wojciech
Rytter, Correctness of constructing optimal alphabetic trees revisited, Theoretical Computer Science, 180:309-324, 1997.

5

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

element in any later row. To state this condition more formally, let LM(i) denote the index of
the smallest item in the ith row M[i, ·]; if there is more than one smallest item, choose the one
furthest to the left. Then M is monotone if and only if LM(i)≤ LM(i + 1) for every index i. For
example, the following 5× 5 array is monotone (as shown by the hilighted row minima).

12 21 38 76 27
74 14 14 29 60
21 8 25 10 71
68 45 29 15 76
97 8 12 2 6

Given a monotone m× n array M , we can compute the array LM[i] containing the index of
the leftmost minimum element in every row as follows. We begin by recursively computing the
leftmost minimum elements in all odd-indexed rows of M . Then for each even index 2i, the
monotonicity of M implies the bounds

LM[2i − 1]≤ LM[2i]≤ LM[2i + 1],

so we can compute LM[2i] by brute force by searching only within that range of indices. This
search requires exactly LM[2i + 1]− LM[2i − 1] comparisons, because finding the minimum of k
numbers requires k − 1 comparisons. In particular, if LM[2i − 1] = LM[2i + 1], then we don’t
need to perform any comparisons on row 2i. Summing over all even indices, we find that the
total number of comparisons is

m/2
∑

i=1

LM[2i + 1]− LM[2i − 1] = LM[m+ 1]− LM[1] ≤ n.

We also need to spend constant time on each row, as overhead for the main loop, so the total
time for our algorithm is O(n+m) plus the time for the recursive call. Thus, the running time
satisfies the recurrence

T (m, n) = T (m/2, n) +O(n+m),

which implies that our algorithm runs in O(m + n log m) time.
Alternatively, we could use the following divide-and-conquer procedure, similar in spirit

to Hirschberg’s divide-and-conquer algorithm. Compute the middle leftmost-minimum index
h= LM[m

2] by brute force in O(n) time, and then recursively find the leftmost minimum entries
in the following submatrices:

M
�

1 .. m
2 − 1, 1 .. h

�

M
�m

2 + 1 .. m, h .. n
�

The worst-case running time T (m, n) for this algorithm obeys the following recurrence (after
removing some irrelevant ±1s from the recursive arguments, as usual):

T (m, n) =

(

0 if m< 1

O(n) +max
k

�

T (m/2, k) + T (m/2, n− k)
�

otherwise

The recursion tree for this recurrence is a balanced binary tree of depth log2 m, and therefore
with O(m) nodes. The total number of comparisons performed at each level of the recursion tree
is O(n), but we also need to spend at least constant time at each node in the recursion tree. Thus,
this divide-and-conquer formulation also runs in O(m + n log m) time.

6

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

In fact, these two algorithms are morally identical. Both algorithms examine the same
subset of array entries and perform the same pairwise comparisons, although in different orders.
Specifically, the divide-and-conquer algorithm performs the usual depth-first traversal of its
recursion tree. The even-odd algorithm actually performs a breadth-first traversal of the exactly
the same recursion tree, handling each level of the recursion tree in a single for-loop. The
breadth-first formulation of the algorithm will prove more useful in the long run.

6.5 Saving more time: Total monotonicity

A more general technique for exploiting structure in dynamic programming arrays was discovered
by Alok Aggarwal, Maria Klawe, Shlomo Moran, Peter Shor, and Robert Wilber in 1987; their
algorithm is now universally known as SMAWK (pronounced “smoke”) after their suitably-
permuted initials.

SMAWK requires a stricter form of monotonicity in the input array. We say that M is totally
monotone if the subarray defined by any subset of (not necessarily consecutive) rows and
columns is monotone. For example, the following 5× 5 array is monotone (as shown by the
highlighted row minima), but not totally monotone (as shown by the gray 2× 2 subarray).

12 21 38 76 27
74 14 14 29 60
21 8 25 10 71
68 45 29 15 76
97 8 12 2 6

On the other hand, the following array is totally monotone:

12 21 38 76 89
47 14 14 29 60
21 8 20 10 71
68 16 29 15 76
97 8 12 2 6

Given a totally monotone m× n array as input, SMAWK finds the leftmost smallest element of
every row in only O(n +m) time.

The Monge property

Before we go into the details of the SMAWK algorithm, it’s useful to consider the most common
special case of totally monotone matrices. A Monge array² is a two-dimensional array M where

M[i, j] +M[i′, j′]≤ M[i, j′] +M[i′, j]

for all row indices i < i′ and all column indices j < j′. This inequality is sometimes called the
Monge property or the quadrangle inequality or submodularity.

Lemma: Every Monge array is totally monotone.

²Monge arrays are named after Gaspard Monge, a French geometer who was one of the first to consider problems
related to flows and cuts, in his 1781 Mémoire sur la Théorie des Déblais et des Remblais, which (in context) should be
translated as “Treatise on the Theory of Holes and Dirt”.

7

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

Proof: Let M be a two-dimensional array that is not totally monotone. Then there must be row
indices i < i′ and column indices j < j′ such that M[i, j] > M[i, j′] and M[i′, j] ≤ M[i′, j′].
These two inequalities imply that M[i, j] +M[i′, j′]> M[i, j′] +M[i′, j], from which it follows
immediately that M is not Monge. �

Monge arrays have several useful properties that make identifying them easier. For example,
an easy inductive argument implies that we do not need to check every quadruple of indices; in
fact, we can determine whether an m× n array is Monge in just O(mn) time.

Lemma: An array M is Monge if and only if M[i, j] +M[i + 1, j + 1]≤ M[i, j + 1] +M[i + 1, j]
for all indices i and j.

Monge arrays arise naturally in geometric settings; the following canonical example of a
Monge array was suggested by Monge himself in 1781. Fix two parallel lines ` and `′ in the plane.
Let p1, p2, . . . , pm be points on `, and let q1, q2, . . . , qn be points on `′, with each set indexed in
order along their respective lines. Let M[1 .. m, 1 .. n] be the array of Euclidean distances between
these points:

M[i, j] := |piq j|=
Æ

(pi .x − qi .x)2 + (pi .y − qi .y)2

An easy argument with the triangle inequality implies that this array is Monge. Fix arbitrary
indices i < i′ and j < j′, and let x denote the intersection point of segments piq j′ and pi′q j .

M[i, j] +M[i′, j′] = |piq j|+ |pi′q j′ |
≤ |pi x |+ |xq j|+ |pi′ x |+ |xq j′ | [triangle inequality]

=
�

|pi x |+ |xq j′ |
�

+
�

|pi′ x |+ |xq j|
�

= |piq j′ |+ |pi′q j|
= M[i, j′] +M[i′, j]

The cheapest way to move two specks of dirt (on the left) into two tiny holes (on the right)
From Monge’s 1781 treatise on the theory of holes and dirt.

There are also several easy ways to construct and combine Monge arrays, either from scratch
or by manipulating other Monge arrays.

Lemma: The following arrays are Monge:
(a) Any array with constant rows.
(b) Any array with constant columns.
(c) Any array that is all 0s except for an upper-right rectangular block of 1s.
(d) Any array that is all 0s except for an lower-left rectangular block of 1s.
(e) Any positive multiple of any Monge array.
(f) The sum of any two Monge arrays.
(g) The transpose of any Monge array.

8

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

Each of these properties follows from straightforward definition chasing. For example, to
prove part (f), let X and Y be arbitrary Monge arrays, and let Z = X + Y . For all row indices
i < i′ and column indices j < j′, we immediately have

Z[i, j] + Z[i′, j′] = X [i, j] + X [i′, j′] + Y [i, j] + Y [i′, j′]

≤ X [i′, j] + X [i, j′] + Y [i′, j] + Y [i, j′]

= Z[i′, j] + Z[i, j′].

The other properties have similarly elementary proofs.
In fact, the properties listed in the previous lemma precisely characterize Monge arrays:

Every Monge array (including the geometric example above) is a positive linear combination of
row-constant, column-constant, and upper-right block arrays. (This characterization was proved
independently by Rudolf and Woeginger in 1995, Bein and Pathak in 1990, Burdyok and Trofimov
in 1976, and possibly others.)

6.6 The SMAWK algorithm

The SMAWK algorithm alternates between two different subroutines, one for “tall” arrays with
more rows than columns, the other for “wide” arrays with more columns than rows. The “tall”
subroutine is just the divide-and-conquer algorithm described in the previous section—recursively
compute the leftmost row minima in every other row, and then fill in the remaining row minima
in O(n+m) time. The secret to SMAWK’s success is its handling of “wide” arrays.

For any row index i and any two column indices p < q, the definition of total monotonizity
implies the following observations:

• If M[i, p]≤ M[i, q], then for all h≤ i, we have M[h, p]≤ M[h, q] and thus LM[h] 6= q.

• If M[i, p]> M[i, q], then for all j ≥ i, we have M[j, p]> M[j, q] and thus LM[h] 6= p.

Call an array entry M[i, j] dead if we have enough information to conclude that LM[i] 6= j. Then
after we compare any two entries in the same row, either the left entry and everything below it is
dead, or the right entry and everything above it is dead.

≤
≤

∗ ≤ ∗

∗ > ∗
>

>

The following algorithm maintains a stack of column indices in an array S[1 .. m] (yes,
really m, the number of rows) and an index t indicating the number of indices on the stack.

Reduce(M[1 .. m, 1 .. n]):
t ← 1
S[t]← 1
for k← 1 to n

while t > 0 and M[t, S[t]]≥ M[t, k]
t ← t − 1 〈〈pop〉〉

if t < m
t ← t + 1
S[t]← k 〈〈push k〉〉

return S[1 .. t]

9

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

This algorithm maintains three important invariants:

• S[1 .. t] is sorted in increasing order.

• For all 1≤ j ≤ t, the top j − 1 entires of column S[j] are dead.

• If j < k and j is not on the stack, then every entry in column j is dead.

The first invariant follows immediately from the fact that indices are pushed onto the stack in
increasing order. The second and third are more subtle, but both follow inductively from the
total monotonicity of the array. The following figure shows a typical state of the algorithm when
it is about to compare the entries M[t, S[t]] and M[t, k] (indicated by stars). Dead entries are
indicated in gray.

S[1]S[2]S[3] S[4]S[5] S[6] k

∗ ∗

If M[t, S[t]]< M[t, k], then M[t, k] and everything above it is dead, so we can safely push
column k onto the stack (unless we already have t = n, in which case every entry in column k is
dead) and then increment k.

S[1]S[2]S[3] S[4]S[5] S[6] S[7] k

∗ ≤ ∗

On the other hand, if M[t, S[t]] > M[t, k], then we know that M[t, S[t]] and everything
below it is dead. But by the inductive hypothesis, every entry above M[t, S[t]] is already dead.
Thus, the entire column S[t] is dead, so we can safely pop it off the stack.

S[1]S[2]S[3] S[4]S[5] k

∗ > ∗

10

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

In both cases, all invariants are maintained.
Immediately after every comparison M[t, S[t]] ≥ M[t, k]? in the Reduce algorithm, we

either increment the column index k or declare a column to be dead; each of these events can
happen at most once per column. It follows that Reduce performs at most 2n comparisons and
thus runs in O(n) time overall.

Moreover, when Reduce ends, every column whose index is not on the stack is completely
dead. Thus, to compute the leftmost minimum element in every row of M , it suffices to examine
only the t < m columns with indices in the output array S[1 .. t].

Finally, the main SMAWK algorithm first Reduces the input array (if it has fewer rows than
columns), then recursively computes the leftmost row minima in every other, and finally fills in
the rest of the row minima in O(m+ n) additional time. The argument of the recursive call is
an array with exactly m/2 rows and at most min{n, m} columns, so the running time obeys the
following recurrence:

T (m, n)≤

¨

O(m) + T (m/2, n) if m≥ n,

O(n) + T (m/2, m) if m< n.

The algorithm needs O(n) time to Reduce the input array to at most m rows, after which every
recursive call reduces the (worst-case) number of rows and columns by a factor of two. We
conclude that SMAWK runs in O(m + n) time.

Later variants of SMAWK can compute row minima in totally monotone arrays in O(m+ n)
time even when the rows are revealed one by one, and we require the smallest element in each
row before we are given the next. These later variants can be used to speed up many dynamic
programming algorithms by a factor of n when the final memoization table is totally monotone.

6.7 Using SMAWK

Finally, let’s consider an (admittedly artificial) example of a dynamic programming algorithm
that can be improved by SMAWK. Recall the Shimbel-Bellman-Ford algorithm for computing
shortest paths:

Shimbel(V, E, w):
dist(s)← 0
for every vertex v 6= s

dist(v)←∞
repeat V − 1 times

for every edge u�v
if dist(v)> dist(u) +w(u�v)

dist(v)← dist(u) +w(u�v)

We can rewrite this algorithm slightly; instead of relaxing every edge, we first identify the tensest
edge leading into each vertex, and then relax only those edges. (This modification is actually
closer to the natural dynamic-programming algorithm to compute shortest paths.)

ModShimbel(V, E, w):
dist(s)← 0
for every vertex v 6= s

dist(v)←∞
repeat V − 1 times

for every vertex v
mind(v)←min

u
(dist(u) +w(u�v))

for every vertex v
dist(v)←min{dist(v),mind(v)}

11

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

The two lines in red can be interpreted as finding the minimum element in every row of a
two-dimensional array M indexed by vertices, where

M[v, u] := dist(u) +w(u�v)

Now consider the following input graph. Fix n arbitrary points p1, p2, . . . , pn on some line `
and n more arbitrary points q1, q2, . . . , qn on another line parallel to `, with each set indexed in
order along their respective lines. Let G be the complete bipartite graph whose vertices are the
points pi or q j, whose edges are the segments piq j, and where the weight of each edge is its
natural Euclidean length. The standard version of Bellman-Ford requires O(V E) = O(n3) time to
compute shortest paths in this graph.

The 2n× 2n array M is not itself Monge, but we can easily decompose it into n× n Monge
arrays as follows. Index the rows and columns of M by the vertices p1, p2, . . . , pn, q1, q2, . . . , qn in
that order. Then M decomposes naturally into four n× n blocks

M =

�

∞ U
V ∞

�

,

where every entry in the upper left and lower right blocks is∞, and the other two blocks satisfy

U[i, j] = dist(q j) + |piq j| and V [i, j] = dist(p j) + |p jqi|

for all indices i and j. Let P, Q, and D be the n× n arrays where

P[i, j] = dist(p j) Q[i, j] = dist(q j) D[i, j] = |piq j|

for all indices i and j. Arrays P and Q are Monge, because all entries in the same column are
equal, and the matrix D is Monge by the triangle inequality. It follows that the blocks U =Q+ D
and V = P + DT are both Monge. Thus, by calling SMAWK twice, once on U and once on V , we
can find all the row minima in M in O(n) time. The resulting modification of Bellman-Ford runs
in O(n2) time.³

An important feature of this algorithm is that it never explicitly constructs the array M .
Instead, whenever the SMAWK algorithm needs a particular entry M[u, v], we compute it on the
fly in O(1) time.

6.8 Saving Time: Four Russians

Some day. Maybe.

Exercises

1. Describe an algorithm to compute the edit distance between two strings A[1 .. m] and
B[1 ... n] in O(m log m+ n log n+ K2) time, where K is the number of match points. [Hint:
Use our earlier FindMatches algorithm as a subroutine.]

2. (a) Describe an algorithm to compute the longest increasing subsequence of a string
X [1 .. n] in O(n log n) time.

³Yes, we could also achieve this running time using Disjktra’s algorithm with Fibonacci heaps.

12

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

(b) Using your solution to part (a) as a subroutine, describe an algorithm to compute the
longest common subsequence of two strings A[1 .. m] and B[1 ... n] in O(m log m+
n log n+ K log K) time, where K is the number of match points.

3. Describe an algorithm to compute the edit distance between two strings A[1 .. m] and
B[1 ... n] in O(m log m+ n log n+ K log K) time, where K is the number of match points.
[Hint: Combine your answers for problems 1 and 2(b).]

4. Let T be an arbitrary rooted tree, where each vertex is labeled with a positive integer. A
subset S of the nodes of T is heap-ordered if it satisfies two properties:

• S contains a node that is an ancestor of every other node in S.

• For any node v in S, the label of v is larger than the labels of any ancestor of v in S.

3

1 4 1 5

65

7 9 3

2

8 9

8

5

9

4

3

2 3

2 7 9

6

A heap-ordered subset of nodes in a tree.

(a) Describe an algorithm to find the largest heap-ordered subset S of nodes in T that
has the heap property in O(n2) time.

(b) Modify your algorithm from part (a) so that it runs in O(n log n) time when T is a
linked list. [Hint: This special case is equivalent to a problem you’ve seen before.]

?(c) Describe an algorithm to find the largest subset S of nodes in T that has the heap
property, in O(n log n) time. [Hint: Find an algorithm to merge two sorted lists of
lengths k and ` in O(log

�k+`
k

�

) time.]

5. Suppose you are given a sorted array X [1 .. n] of distinct numbers and a positive integer k.
A set of k intervals covers X if every element of X lies inside one of the k intervals. Your
aim is to find k intervals [a1, z1], [a2, z2], . . . , [ak, zk] that cover X where the function
∑k

i=1(zi − ai)2 is as small as possible. Intuitively, you are trying to cover the points with k
intervals whose lengths are as close to equal as possible.

(a) Describe an algorithm that finds k intervals with minimum total squared length that
cover X . The running time of your algorithm should be a simple function of n and k.

(b) Consider the two-dimensional matrix M[1 .. n, 1 .. n] defined as follows:

M[i, j] =

¨

(X [j]− X [i])2 if i ≤ j

∞ otherwise

Prove that M satisfies the Monge property: M[i, j] +M[i′, j′]≤ M[i, j′] +M[i′, j]
for all indices i < i′ and j < j′.

13

Algorithms Lecture 6: Advanced Dynamic Programming [Sp’16]

(c) Describe an algorithm that finds k intervals with minimum total squared length that
cover X in O(nk) time. [Hint: Solve part (a) first, then use part (b).]

6. Suppose we want to summarize a large set S of values—for example, grade-point averages
for every student who has ever attended UIUC—using a variable-width histogram. To
construct a histogram, we choose a sorted sequence of breakpoints b0 < b1 < · · · < bk,
such that every element of S lies between b0 and bk. Then for each interval [bi−1, bi], the
histogram includes a rectangle whose height is the number of elements of S that lie inside
that interval.

0 100887872573532
A variable-width histogram with seven bins.

Unlike a standard histogram, which requires the intervals to have equal width, we
are free to choose the breakpoints arbitrarily. For statistical purposes, it is useful for the
areas of the rectangles to be as close to equal as possible. To that end, define the cost of a
histogram to be the sum of the squares of the rectangle areas; we seek a histogram with
minimum cost.

More formally, suppose we fix a sequence of breakpoints b0 < b1 < · · ·< bk. For each
index i, let ni denote the number of input values in the ith interval:

ni := #
�

x ∈ S
�

� bi−1 ≤ x < bi

	

.

Then the cost of the resulting histogram is
∑k

i=1 (ni(bi − bi−1))
2 . We want to compute a

histogram with minimum cost for the given set S, where every breakpoint bi is equal to
some value in S.⁴ In particular, b0 must be the minimum value in S, and bk must be the
maximum value in S. Informally, you are trying to compute a histogram with k rectangles
whose areas are as close to equal as possible.

Describe and analyze an algorithm to compute a variable-width histogramwithminimum
cost for a given set of data values. Your input is a sorted array S[1 .. n] of distinct real
numbers and an integer k. Your algorithm should return a sorted array B[0 .. k] of
breakpoints that minimizes the cost of the resulting histogram, where every breakpoint
B[i] is equal to some input value S[j], and in particular B[0] = S[1] and B[k] = S[n].

⁴Thanks to the non-linear cost function, removing this assumption makes the problem considerably more difficult!

© Copyright 2016 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu//teaching/algorithms/ for the most recent revision.

14

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu//teaching/algorithms/

	Advanced Dynamic Programming
	Saving Space: Divide and Conquer
	Saving Time: Sparseness
	Saving Time: Monotonicity
	Saving Time: More Monotoniticy
	Saving more time: Total monotonicity
	The SMAWK algorithm
	Using SMAWK
	Saving Time: Four Russians

