
CS 473 ] Spring 2016

Y Homework 5 Z
Due Tuesday, March 1, 2016, at 8pm

Unless a problem specifically states otherwise, you may assume a function Random
that takes a positive integer k as input and returns an integer chosen uniformly and
independently at random from {1,2, . . . , k} in O(1) time. For example, to flip a fair
coin, you could call Random(2).

1. Reservoir sampling is a method for choosing an item uniformly at random from an
arbitrarily long stream of data.

GetOneSample(stream S):
`← 0
while S is not done

x ← next item in S
`← `+ 1
if Random(`) = 1

sample← x (?)
return sample

At the end of the algorithm, the variable ` stores the length of the input stream S; this
number is not known to the algorithm in advance. If S is empty, the output of the algorithm
is (correctly!) undefined. In the following, consider an arbitrary non-empty input stream S,
and let n denote the (unknown) length of S.

(a) Prove that the item returned by GetOneSample(S) is chosen uniformly at random
from S.

(b) Describe and analyze an algorithm that returns a subset of k distinct items chosen
uniformly at random from a data stream of length at least k. The integer k is given as
part of the input to your algorithm. Prove that your algorithm is correct.

For example, if k = 2 and the stream contains the sequence 〈«,ª,©,¨〉, the
algorithm should return the subset {©,«} with probability 1/6.



CS 473 Homework 5 (due March 8) Spring 2016

2. In this problem, we will derive a streaming algorithm that computes an accurate estimate en
of the number of distinct items in a data stream S. Suppose S contains n unique items (but
possible several copies of each item); the algorithm does not know n in advance. Given an
accuracy parameter 0< ε < 1 and a confidence parameter 0< δ < 1 as part of the input,
our final algorithm will guarantee that Pr[|en− n|> εn]< δ.

As a first step, fix a positive integer m that is large enough that we don’t have to
worry about round-off errors in the analysis. Our first algorithm chooses a hash function
h: U → [m] at random from a 2-uniform family, computes the minimum hash value
ħh=min{h(x) | x ∈ S}, and finally returns the estimate en= m/ħh.

(a) Prove that Pr [en> (1+ ε)n]≤ 1/(1+ ε). [Hint: Markov’s inequality]

(b) Prove that Pr [en< (1− ε)n]≤ 1− ε. [Hint: Chebyshev’s inequality]

(c) We can improve this estimator by maintaining the k smallest hash values, for some
integer k > 1. Let enk = k·m/ħhk, where ħhk is the kth smallest element of {h(x) | x ∈ S}.

Estimate the smallest value of k (as a function of the accuracy parameter ε) such
that Pr[|enk − n|> εn]≤ 1/4.

(d) Now suppose we run d copies of the previous estimator in parallel to generate d
independent estimates enk,1, enk,2, . . . , enk,d , for some integer d > 1. Each copy uses its
own independently chosen hash function, but they all use the same value of k that
you derived in part (c). Let eN be the median of these d estimates.

Estimate the smallest value of d (as a function of the confidence parameter δ)
such that Pr[|eN − n|> εn]≤ δ.
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