CS 473 4 Spring 2016

+ Homework 3 &u
Due Tuesday, February 9, 2016, at 8pm

Unless a problem specifically states otherwise, you may assume a function RANDOM
that takes a positive integer k as input and returns an integer chosen uniformly and
independently at random from {1,2,...,k} in O(1) time. For example, to flip a fair
coin, you could call Ranpom(2).

1. Suppose we want to write an efficient function RANDOMPERMUTATION(n) that returns a
permutation of the set {1,2,...,n} chosen uniformly at random.

(a) Prove that the following algorithm is not correct. [Hint: There is a one-line proof!]

RANDOMPERMUTATION(1):
fori—1ton
n[i]«—1i
fori—1ton
swap 7t[i] «— n[Ranpom(n)]

(b) Consider the following implementation of RANDOMPERMUTATION.

RANDOMPERMUTATION(N):
fori«<—1ton
n[i] « NULL
fori—1ton
j < Ranpowm(n)
while (r[j] != NULL)
j < Ranpowm(n)
n[jlei
return 1

Prove that this algorithm is correct and analyze its expected running time.

(c) Describe and analyze an implementation of RANDOMPERMUTATION that runs in
expected worst-case time O(n).

2. A majority tree is a complete ternary tree in which every leaf is labeled either 0 or 1.
The value of a leaf is its label; the value of any internal node is the majority of the values
of its three children. For example, if the tree has depth 2 and its leaves are labeled
1,0,0,0,1,0,1,1, 1, the root has value 0.

A majority tree with depth 2.

CS 473 Homework 3 (due February 16) Spring 2016

It is easy to compute value of the root of a majority tree of depth n in O(3") time, given
the sequence of 3" leaf labels as input, using a simple post-order traversal of the tree. Prove
that this simple algorithm is optimal, and then describe a better algorithm. More formally:

(a) Prove that any deterministic algorithm that computes the value of the root of a
majority tree must examine every leaf. [Hint: Consider the special case n = 1. Recurse.]

(b) Describe and analyze a randomized algorithm that computes the value of the root in
worst-case expected time O(c") for some explicit constant ¢ < 3. [Hint: Consider the
special case n = 1. Recurse.]

3. A meldable priority queue stores a set of keys from some totally-ordered universe (such
as the integers) and supports the following operations:

* MAKEQUEUE: Return a new priority queue containing the empty set.

* FINDMIN(Q): Return the smallest element of Q (if any).

* DELETEMIN(Q): Remove the smallest element in Q (if any).

* INSERT(Q, x): Insert element x into Q, if it is not already there.

* DECREASEKEY(Q, X, y): Replace an element x € Q with a smaller key y. (If y > x,
the operation fails.) The input is a pointer directly to the node in Q containing x.

* DELETE(Q, x): Delete the element x € Q. The input is a pointer directly to the node
in Q containing x.

* MELD(Q;,Q5): Return a new priority queue containing all the elements of Q; and Q5;
this operation destroys Q; and Q,.

A simple way to implement such a data structure is to use a heap-ordered binary tree,
where each node stores a key, along with pointers to its parent and two children. MELD
can be implemented using the following randomized algorithm:

MELD(Q,Q,):
if Q, is empty return Q,
if Q, is empty return Q,
if key(Qq) > key(Q>)
swap Q; <« Q,
with probability 1/2
left(Q,) < MELD(left(Q,),Q,)

else
right(Q;) <« MELD(right(Q;), Q)

return Q,

(a) Prove that for any heap-ordered binary trees Q; and Q, (not just those constructed by
the operations listed above), the expected running time of MELD(Q, Q) is O(logn),
where n = |Qq|+ |Q,|. [Hint: What is the expected length of a random root-to-leaf path
in an n-node binary tree, where each left/right choice is made with equal probability?]

(b) Prove that MELD(Q;,Q,) runs in O(logn) time with high probability.

(c) Show that each of the other meldable priority queue operations can be implemented
with at most one call to MELD and O(1) additional time. (It follows that each operation
takes only O(logn) time with high probability.)

