
CS 473] Spring 2016

Y Homework 11 Z
Solutions will be released on Tuesday, May 3, 2016.

This homework will not be graded.
However, material covered by this homework may appear on the final exam.

1. The linear arrangement problem asks, given an n-vertex directed graph as input, for an
ordering v1, v2, . . . , vn of the vertices that maximizes the number of forward edges: directed
edges vi�v j such that i < j. Describe and analyze an efficient 2-approximation algorithm
for this problem. (Solving this problem exactly is NP-hard.)

2. Let G = (V, E) be an undirected graph, each of whose vertices is colored either red, green,
or blue. An edge in G is boring if its endpoints have the same color, and interesting if
its endpoints have different colors. The most interesting 3-coloring is the 3-coloring with
the maximum number of interesting edges, or equivalently, with the fewest boring edges.
Computing the most interesting 3-coloring is NP-hard, because the standard 3-coloring
problem is a special case.

(a) Let wow(G) denote the number of interesting edges in the most interesting 3-coloring
of G. Suppose we independently assign each vertex in G a random color from the
set {red,green,blue}. Prove that the expected number of interesting edges is at least
2
3wow(G).

(b) Prove that with high probability, the expected number of interesting edges is at least
1
2wow(G). [Hint: Use Chebyshev’s inequality. But wait. . . How do we know that we
can use Chebyshev’s inequality?]

(c) Let zzz(G) denote the number of boring edges in the most interesting 3-coloring of a
graph G. Prove that it is NP-hard to approximate zzz(G) within a factor of 1010100

.

3. Suppose we want to schedule a give set of n jobs on on a machine containing a row of p
identical processors. Our input consists of two arrays duration[1 .. n] and width[1 .. n]. A
valid schedule consists of two arrays start[1 .. n] and first[1 .. n] that satisfy the following
constraints:

• start[j]≥ 0 for all j.

• The jth job runs on processors first[j] through first[j]+width[j]−1, starting at time
start[j] and ending at time start[j] + duration[j].

• No processor can run more than one job simultaneously.

The makespan of a schedule is the largest finishing time: max j(start[j]+duration[j]). Our
goal is to compute a valid schedule with the smallest possible makespan.

(a) Prove that this scheduling problem is NP-hard.

CS 473 Homework 11 (“due” May 3) Spring 2016

(b) Describe a polynomial-time algorithm that computes a 3-approximation of the mini-
mum makespan of the given set of jobs. That is, if the minimum makespan is M , your
algorithm should compute a schedule with makespan at most 3M . You may assume
that p is a power of 2. [Hint: Assume that p is a power of 2.]

(c) Describe an algorithm that computes a 3-approximation of the minimum makespan
of the given set of jobs in O(n logn) time. Again, you may assume that p is a power
of 2.

2

