
Chapter 666

Review session

OLD CS 473: Fundamental Algorithms, Spring 2015
February 24, 2015

666.0.0.1 Why Graphs?

(A) Graphs help model networks which are ubiquitous: transportation networks (rail, roads,
airways), social networks (interpersonal relationships), information networks (web page
links) etc etc.

(B) Fundamental objects in Computer Science, Optimization, Combinatorics
(C) Many important and useful optimization problems are graph problems
(D) Graph theory: elegant, fun and deep mathematics

666.0.0.2 Basic Graph Search

Given G = (V,E) and vertex u ∈ V :

Explore(u):
Initialize S = {u}
while there is an edge (x, y) with x ∈ S and y ̸∈ S do

add y to S

666.0.0.3 DFS in Directed Graphs

DFS(G)
Mark all nodes u as unvisited

T is set to ∅
time = 0
while there is an unvisited node u do

DFS(u)

Output T

DFS(u)
Mark u as visited

pre(u) = + + time
for each edge (u, v) in Out(u) do

if v is not marked

add edge (u, v) to T
DFS(v)

post(u) = + + time

1

666.0.0.4 pre and post numbers

Node u is active in time interval [pre(u), post(u)]

Proposition 666.0.1. For any two nodes u and v, the two intervals [pre(u), post(u)] and
[pre(v), post(v)] are disjoint or one is contained in the other.

666.0.0.5 Connectivity and Strong Connected Components

Definition 666.0.2. Given a directed graph G, u is strongly connected to v if u can reach
v and v can reach u. In other words v ∈ rch(u) and u ∈ rch(v).

Basic Graph Theory
Breadth First search
Depth First Search

Directed Graphs

Digraphs and Connectivity
Digraph Representation
Searching

Directed Graphs

AB C

DE F

G H

Definition

A directed graph (also called a digraph) is G = (V ,E), where

V is a set of vertices or nodes

E ⊆ V × V is set of ordered pairs of vertices called edges

Viswanathan CS473ug

666.0.0.6 Directed Graph Connectivity Problems

(A) Given G and nodes u and v, can u reach v?
(B) Given G and u, compute rch(u).
(C) Given G and u, compute all v that can reach u, that is all v such that u ∈ rch(v).
(D) Find the strongly connected component containing node u, that is SCC(u).
(E) Is G strongly connected (a single strong component)?
(F) Compute all strongly connected components of G.

First four problems can be solve in O(n +m) time by adapting BFS/DFS to directed
graphs. The last one requires a clever DFS based algorithm.

666.0.0.7 DFS Properties

Generalizing ideas from undirected graphs:
(A) DFS(u) outputs a directed out-tree T rooted at u
(B) A vertex v is in T if and only if v ∈ rch(u)
(C) For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either

disjoint are one is contained in the other.
(D) The running time of DFS(u) is O(k) where k =

∑
v∈rch(u) |Adj(v)| plus the time to

initialize the Mark array.
(E) DFS(G) takes O(m + n) time. Edges in T form a disjoint collection of of out-trees.

Output of DFS(G) depends on the order in which vertices are considered.

2

666.0.0.8 DFS Tree

Edges of G can be classified with respect to
the DFS tree T as:
(A) Tree edges that belong to T
(B) A forward edge is a non-tree edges

(x, y) such that pre(x) < pre(y) <
post(y) < post(x).

(C) A backward edge is a non-tree edge
(x, y) such that pre(y) < pre(x) <
post(x) < post(y).

(D) A cross edge is a non-tree edges (x, y)
such that the intervals [pre(x), post(x)]
and [pre(y), post(y)] are disjoint.

666.0.0.9 Algorithms via DFS

SC(G, u) = {v | u is strongly connected to v}
(A) Find the strongly connected component containing node u. That is, compute SCC(G, u).

SCC(G, u) = rch(G, u) ∩ rch(Grev, u)

Hence, SCC(G, u) can be computed with two DFSes, one in G and the other in Grev.
Total O(n+m) time.

666.0.1 Linear Time Algorithm

666.0.1.1 ...for computing the strong connected components in G

do DFS(Grev) and sort vertices in decreasing post order.

Mark all nodes as unvisited

for each u in the computed order do
if u is not visited then

DFS(u)
Let Su be the nodes reached by u
Output Su as a strong connected component

Remove Su from G

Analysis Running time is O(n+m). (Exercise)

Example: Makefile

3

666.0.1.2 BFS with Distances

BFS(s)
Mark all vertices as unvisited and for each v set dist(v) = ∞
Initialize search tree T to be empty

Mark vertex s as visited and set dist(s) = 0
set Q to be the empty queue

enq(s)
while Q is nonempty do

u = deq(Q)
for each vertex v ∈ Adj(u) do

if v is not visited do
add edge (u, v) to T
Mark v as visited, enq(v)
and set dist(v) = dist(u) + 1

Proposition 666.0.3. BFS(s) runs in O(n+m) time.

666.0.1.3 BFS with Layers

BFSLayers(s):
Mark all vertices as unvisited and initialize T to be empty

Mark s as visited and set L0 = {s}
i = 0
while Li is not empty do

initialize Li+1 to be an empty list

for each u in Li do
for each edge (u, v) ∈ Adj(u) do
if v is not visited

mark v as visited

add (u, v) to tree T
add v to Li+1

i = i+ 1

Running time: O(n+m)

666.0.2 Checking if a graph is bipartite...

666.0.2.1 Linear time algorithm

Corollary 666.0.4. There is an O(n + m) time algorithm to check if G is bipartite and
output an odd cycle if it is not.

4

s

b c

d

e

f

g t

9

15

6

10

-8 20

30

18

11

16

-16

19

3

6

44

666.0.2.2 Dijkstra’s Algorithm

Initialize for each node v, dist(s, v) = ∞
Initialize S = {s}, dist(s, s) = 0
for i = 1 to |V | do

Let v be such that dist(s, v) = minu∈V−S dist(s, u)
S = S ∪ {v}
for each u in Adj(v) do

dist(s, u) = min
(
dist(s, u), dist(s, v) + ℓ(v, u)

)
(A) Using Fibonacci heaps. Running time: O(m+ n log n).
(B) Can compute shortest path tree.

666.0.2.3 Single-Source Shortest Paths with Negative Edge Lengths

Single-Source Shortest Path Problems In-
put: A directed graph G = (V,E)
with arbitrary (including negative) edge
lengths. For edge e = (u, v), ℓ(e) =
ℓ(u, v) is its length.

• Given nodes s, t find shortest path
from s to t.

• Given node s find shortest path
from s to all other nodes.

s

2 3

4

5

6

7 t

9

15

6

10

-8 20

30

18

11

16

-16

19

6

6

44

666.0.2.4 Negative Length Cycles

Definition 666.0.5. A cycle C is a negative length cycle if the sum of the edge lengths of
C is negative.

666.0.2.5 A Generic Shortest Path Algorithm

Dijkstra’s algorithm does not work with negative edges.

Relax(e = (u, v))
if (d(s, v) > d(s, u) + ℓ(u, v)) then

d(s, v) = d(s, u) + ℓ(u, v)

5

GenericShortestPathAlg:
d(s, s) = 0
for each node u ̸= s do

d(s, u) = ∞

while there is a tense edge do
Pick a tense edge e
Relax(e)

Output d(s, u) values

666.0.2.6 Bellman-Ford to detect Negative Cycles

for each u ∈ V do
d(s, u) = ∞

d(s, s) = 0

for i = 1 to |V | − 1 do
for each edge e = (u, v) do

Relax(e)

for each edge e = (u, v) do
if e = (u, v) is tense then

Stop and output that s can reach

a negative length cycle

Output for each u ∈ V : d(s, u)

(A) Total running time: O(mn).
(B) Can detect negative cycle reachable from s.
(C) Appropriate construction - detect any negative cycle in a graph.

666.0.3 Shortest paths in DAGs

666.0.3.1 Algorithm for DAGs

ShorestPathInDAG(G, s):
s = v1, v2, vi+1, . . . , vn be a topological sort of G
for i = 1 to n do

d(s, vi) = ∞
d(s, s) = 0

for i = 1 to n− 1 do
for each edge e in Adj(vi) do

Relax(e)

return d(s, ·) values computed

Running time: O(m+ n) time algorithm! Works for negative edge lengths and hence can
find longest paths in a DAG.

6

666.0.3.2 Reduction

Reducing problem A to problem B:
(A) Algorithm for A uses algorithm for B as a black box.
(B) Example: Uniqueness (or distinct element) to sorting.

666.0.3.3 Recursion

(A) Recursion is a very powerful and fundamental technique.
(B) Basis for several other methods.

(A) Divide and conquer.
(B) Dynamic programming.
(C) Enumeration and branch and bound etc.
(D) Some classes of greedy algorithms.

(C) Recurrences arise in analysis.

Examples seen:

(A) Recursion: Tower of Hanoi, Selection sort, Quick Sort.
(B) Divide & Conquer:

(A) Merge sort.
(B) Multiplying large numbers.

666.0.4 Solving recurrences using recursion trees

666.0.4.1 An illustrated example: Merge sort...

n

n/2 n/2

n/4 n/4 n/4 n/4

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n

= cn

= cn

= cn

= cn
...

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n

= cn

= cn

= cn

= cn
...

+

+

= cn log n = O(n log n)

666.0.5 Solving recurrences

666.0.5.1 The other “technique” - guess and verify

(A) Guess solution to recurrence.
(B) Verify it via induction.

Solved in class:

7

(A) T (n) = 2T (n/2) + n/ log n.
(B) T (n) = T (

√
n) + 1.

(C) T (n) =
√
nT (

√
n) + n.

(D) T (n) = T (n/4) + T (3n/4) + n

666.0.5.2 Closest Pair - the problem

Input Given a set S of n points on the plane

Goal Find p, q ∈ S such that d(p, q) is minimum

Algorithm:

One can compute closest pair points in the plane in O(n log n) time using divide and conquer.

666.0.5.3 Median selection

Problem

Given list L of n numbers, and a number k find kth smallest number in n.

(A) Quick Sort can be modified to solve it (but worst case running time is quadratic (if
lucky linear time).

(B) Seen divide & conquer algorithm...
Involved, but linear running time.

8

666.0.6 Recursive algorithm for Selection

666.0.6.1 A feast for recursion

select(A, j):
n = |A|
if n ≤ 10 then

Compute jth smallest element in A using brute force.

Form lists L1, L2, . . . , L⌈n/5⌉ where Li = {A[5i− 4], . . . , A[5i]}
Find median bi of each Li using brute-force

B is the array of b1, b2, . . . , b⌈n/5⌉.
b = select(B, ⌈n/10⌉)
Partition A into Aless or equal and Agreater using b as pivot

if |Aless or equal| = j then
return b

if |Aless or equal| > j) then
return select(Aless or equal, j)

else
return select(Agreater, j − |Aless or equal|)

666.0.6.2 Back to Recursion

Seen some simple recursive algorithms:
(A) Binary search.
(B) Fast exponentiation.
(C) Fibonacci numbers.
(D) Maximum weight independent set.

9

