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Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of
distinct subproblems is small; polynomial in the original problem
size.

2 Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation.

3 Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. Evaluate
the total running time.

4 Optimize the resulting algorithm further
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Dynamic programming...

1 Longest increasing subsequence.

2 Computing the solution itself (not only its value).

3 Maximum Weight Independent Set in Trees.

4 Dynamic programs can be also solved as problems on DAGs.

5 Edit distance: O(nm) [but linear space!].

6 Floyd-Warshall: O
(
n3

)
.

7 Knapsack: O(nW ) (pseudo-polynomial).

8 TSP: O(n32n) time and O(n22n) space.
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Greedy algorithms...
Greed has its place, but be careful not to be too greedy!

1 Must prove correctness of greedy algorithms.

2 Interval scheduling (so many variants that do not work).
Proved correctness by showing that one can map the greedy
solution to optimal.

3 Interval Partitioning/Coloring.
Proved the depth of instance was # colors used by greedy.

4 Scheduling to Minimize Lateness.
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Minimum spanning tree

1 Algorithms can be interpreted as being greedy.

2 Prim: T maintained by algorithm will be a tree. Start with a
node in T . In each iteration, pick edge with least attachment
cost to T .

3 Reverse delete: Delete edges keeping connectivity. Deleting
edges from most expensive to cheapest.

4 Kruskal: Add edges in increasing price. Add edge only if merges
two trees in the current forest.

5 Bor̊uvka’s: Every vertex pick cheapest edge out of it. Collapse
connected components of chosen edges. Repeat till have a single
tree.
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Why MST algorithms work?

Definition
An edge e = (u, v) is a safe edge if there is some partition of V
into S and V \ S and e is the unique minimum cost edge crossing S
(one end in S and the other in V \ S).

Definition
An edge e = (u, v) is an unsafe edge if there is some cycle C such
that e is the unique maximum cost edge in C .

Proposition
If edge costs are distinct then every edge is either safe or unsafe.

Lemma
If e is a safe edge then every minimum spanning tree contains e.
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Why MST algorithms work?
Even more

Lemma
Let G be a connected graph with distinct edge costs, then the set of
safe edges form a connected graph.

Corollary
Let G be a connected graph with distinct edge costs, then set of safe
edges form the unique MST of G .

Lemma
If e is an unsafe edge then no MST of G contains e.
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Data structures for MST

1 Heap.

2 Fibonacci heap.

3 Union-find - path compression and union by rank.
(Amazing running time - O(α(m, n)) per operation,)
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Randomized algorithms

1 Basic concepts in discrete probability:
Random variable, probability, expectation, linearity of
expectation, independent events, conditional probability,
indicator variables.

2 Types of randomized algorithms: Las Vegas and Monte Carlo.
3 Why randomization works - concentration of mass.
4 Proved:

Theorem
Let Xn be the number heads when flipping a coin indepdently n
times. Then

Pr

[
Xn ≤

n
4

]
≤ 2 · 0.68n/4 and Pr

[
Xn ≥

3n
4

]
≤ 2 · 0.68n/4
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Randomized algorithms

1 Proved QuickSort has O(n log n) expected running time.

2 Proved QuickSort has O(n log n) running time with high
probability.

3 Proved QuickSelect has O(n) expected running time.
4 Hashing.

1 Why randomization is a must.
2 2-universal hash functions families.
3 Showed/proved a 2-universal hash family.

Guess two random numbers α and β. Hash function is
h(x) = (αx + β) mod p.
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Network Flow

1 Definitions.

2 Edge flow ⇔ path flow.

3 Max-flow problem.

4 Cuts and minimum-cut.

5 flow ≤ cut capacity.

6 Max-flow Min-cut Theorem.

7 Residual network.

8 Augmenting paths.

9 Ford-Fulkerson Algorithm.

10 Proved correctness of Ford-Fulkerson Algorithm if capacities are
integral.
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Network Flow II

1 Ford-Fulkerson running time is O(mC).
2 Mentioned the strongly polynomial time algorithm by

Edmonds-Karp.
3 Computing minimum cut from max-flow.
4 One can convert a flow to an acyclic flow.
5 A flow can be decomposed into paths from the source to the

target + cycles.
6 Computing edge-disjoint paths using flow.
7 Computing vertex-disjoint paths using flow.
8 Menger’s theorem (# edge to cut = # edge disjoint paths).
9 Multiple sinks/sources.
10 Matching in bipartite graph.
11 Perfect matching.
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Network Flow III

1 Deciding if a specific team can win the Pennant using network
flow.

2 Project scheduling.

3 Mentioned extensions to min-cost flow, and lower bounds on
flow.

4 Circulations.

5 Survey design (using lower/upper bounds on flow).
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