OLD CS 473: Fundamental Algorithms, Spring 2015

Discussion 12

April 16, 2015
12.1. Building 3CNF formulas.

CNF formula (conjunctive normal form) is a boolean formula that is the 'and' of clauses, where every clause is the 'or' of literals, where every literal is either a variable or its negation. For example, a CNF formula is

$$
\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{4} \vee \overline{x_{5}}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right)
$$

A formula is 3CNF if every clause contains exactly 3 literals that are of three distinct variables. An example of a 3CNF formula:

$$
\left(\overline{x_{1}} \vee x_{2} \vee \overline{x_{5}}\right) \wedge\left(\overline{x_{2}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge\left(\overline{x_{1}} \vee x_{4} \vee \overline{x_{5}}\right) \wedge\left(\overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}\right)
$$

(A) Consider the following boolean function f and g defined by a truth table. Generate a 3CNF formulas that computes these two functions.

x	y	z	$f(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

(i)

x	y	z	$g(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

(ii)
(B) Given an arbitrary boolean formula $f(x, y, z)$, describe how to convert it into an equivalent 3CNF formula.
(C) Argue that any boolean formula with n variables can be converted into a n CNF formula (i.e., CNF formula where every clause has at most n variables).
(D) Show how to convert an n CNF to a 3CNF. (As such, any boolean formula has an equivalent 3CNF formula.)
(E) Why one can not convert an n CNF to a 2CNF?
12.2. From Set Cover to Monotone SAt.

Consider an instance I of a CNF formula specified by clauses $C_{1}, C_{2}, \ldots, C_{k}$ over a set of boolean variables $x_{1}, x_{2}, \ldots, x_{n}$. We say that I is monotone if each term in each clause consists of a nonnegated variable i.e. each term is equal to x_{i}, for some i, rather than $\overline{x_{i}}$
(i.e., no negations are allowed). They could be easily satisfied by setting each variable to 1. For example, suppose we have three clauses $\left(x_{1} \vee x_{2}\right),\left(x_{1} \vee x_{3}\right),\left(x_{3} \vee x_{2}\right)$. These could be satisfied by setting all three variables to 1 , or by setting x_{1} and x_{2} to 1 and x_{3} to 0 . Given a monotone instance of CNF formula, together with a number k, the problem Monotone Satisfiability asks whether there is a satisfying assignment for the instance in which at most k variables are set to 1 .
The Set Cover problem asks, given a collection \mathcal{F} of subsets $S_{1}, S_{2}, \ldots, S_{m}$ of a ground set $U=\{1, \ldots, n\}$, what is the minimum number of sets of \mathcal{F} whose union is U ?
(A) Given a decision instance of Set Cover (i.e., given S, \mathcal{F}, and a k - is there a cover of U by k subsets?), show a Karp reduction to Monotone Satisfiability.
(B) Show how to solve the optimization version of Set Cover (i.e., you are given U, \mathcal{F}, and you have to compute the minimum number of sets of \mathcal{F} that cover the ground set) by an algorithm performing a polynomial number of calls to a solver of Monotone Satisfiability.

12.3. From Circuit-SAT to SAT.

Convert the following Circuit-SAT instance into a SAT formula such that the resulting formula is satisfiable if and only if the curcuit sat instance is satisfiable. Use $x_{a}, x_{b}, x_{c}, x_{d}$ as the variable names for the four unknowns shown in the figure. You may need additional variables.

12.4. Reducing from 3 -coloring to Sat.

SAT is a decision problem that asks whether a given boolean formula in conjunctive normal form (CNF) has an assignment that makes the formula true. The 3-Coloring problem is a decision problem that asks given an undirected graph G, can its vertices be colored with three colors, so that every edge touches vertices with two different colors? Give a polynomial time reduction from 3-coloring to 3SAT.
Comment: We will show an intricate reduction in lecture from 3SAT to 3 -coloring which shows that the latter problem is hard.

