OLD CS 473: Fundamental Algorithms, Spring 2015

co-NP, Self-Reductions

Lecture 29
May 35, 2015

The class NP

Two equivalent definitions:
(1) Language L is in NP if there is a non-deterministic polynomial time algorithm \boldsymbol{A} (Turing Machine) that decides \boldsymbol{L}.
(1) For $\boldsymbol{x} \in \boldsymbol{L}, \boldsymbol{A}$ has some non-deterministic choice of moves that will make \boldsymbol{A} accept \boldsymbol{x}
(3) For $\boldsymbol{x} \notin \boldsymbol{L}$, no choice of moves will make \boldsymbol{A} accept \boldsymbol{x}
(2) L has an efficient certifier $C(\cdot, \cdot)$.
(1) C is a polynomial time deterministic algorithm
(2) For $\boldsymbol{x} \in \boldsymbol{L}$ there is a string \boldsymbol{y} (proof) of length polynomial in $|\boldsymbol{x}|$ such that $\boldsymbol{C}(\boldsymbol{x}, \boldsymbol{y})$ accepts

- For $\boldsymbol{x} \notin \boldsymbol{L}$, no string \boldsymbol{y} will make $\boldsymbol{C}(\boldsymbol{x}, \boldsymbol{y})$ accept

Complementation

Definition

Given a decision problem \boldsymbol{X}, its complement $\overline{\boldsymbol{X}}$ is the collection of all instances s such that $s \notin L(X)$

Equivalently, in terms of languages:

Definition

Given a language L over alphabet $\boldsymbol{\Sigma}$, its complement \bar{L} is the language $\boldsymbol{\Sigma}^{*} \backslash \boldsymbol{L}$.

P is closed under complementation

Proposition

Decision problem \boldsymbol{X} is in P if and only if $\overline{\boldsymbol{X}}$ is in P .

Proof.

(1) If \boldsymbol{X} is in P let \boldsymbol{A} be a polynomial time algorithm for \boldsymbol{X}.
(2) Construct polynomial time algorithm \boldsymbol{A}^{\prime} for \bar{X} as follows: given input $\boldsymbol{x}, \boldsymbol{A}^{\prime}$ runs \boldsymbol{A} on \boldsymbol{x} and if \boldsymbol{A} accepts $\boldsymbol{x}, \boldsymbol{A}^{\prime}$ rejects \boldsymbol{x} and if A rejects x then A^{\prime} accepts x.
(3) Only if direction is essentially the same argument.

Examples of complement problems

Some languages
(1) UnSAT: CNF formulas φ that are not satisfiable
(2) No-Hamilton-Cycle: graphs G that do not have a Hamilton cycle
(3) No-3-Color: graphs G that are not 3-colorable

Above problems are complements of known NP problems (viewed as languages).

Natural Problems in co-NP

(1) Tautology: given a Boolean formula (not necessarily in CNF form), is it true for all possible assignments to the variables?
(2) Graph expansion: given a graph \boldsymbol{G}, is it an expander? A graph $G=(V, E)$ is an expander if and only if for each $S \subset V$ with $|S| \leq|V| / 2,|N(S)| \geq|S|$. Expanders are very important graphs in theoretical computer science and mathematics.

Factorization, Primality

Problem: Primality
Instance: An integer \boldsymbol{n}.
Question: Is the number n prime?

Problem: Factoring

Instance: Integers $\boldsymbol{n}, \boldsymbol{k}$.
Question: Does the number n has a factor $\leq k$? Formally, is there ℓ, such that $2 \leq \ell \leq k$, such that ℓ divides n ?
(1) Primality is in P .
(2) Factoring is in NP \cap co-NP.

P, NP, co-NP

co- P : complement of P. Language \boldsymbol{X} is in co- P iff $\bar{X} \in P$

Proposition

$\mathrm{P}=\mathrm{co}-\mathrm{P}$.

Proposition

$P \subseteq N P \cap$ co-NP.
Saw that $P \subseteq N P$. Same proof shows $P \subseteq$ co-NP.

Factoring is a very naughty problem

Problem: Factoring

Instance: Integers $\boldsymbol{n}, \boldsymbol{k}$.
Question: Does the number n has a factor $\leq k$? Formally, is there ℓ, such that $2 \leq \ell \leq k$, such that ℓ divides \boldsymbol{n} ?

If answer is:

(1) NO: certificate is all prime factors of \boldsymbol{n}. Certification: multiply the given numbers.
(2) YES: Certificate is the factor $\boldsymbol{\ell}$. Verify it divides \boldsymbol{n}.

Belief: Unlikely Factoring is NP-Complete. Can be solved in polynomial time on a quantum computer.

```
P,NP, and co-NP
```


Open Problems:
(1) Does NP $=$ co-NP?

Consensus opinion: No.
(2) Is $P=N P \cap$ co-NP?

No real consensus.

```
P,NP, and co-NP
```


Proposition

If $\mathrm{P}=\mathrm{NP}$ then $\mathrm{NP}=\mathrm{co}-\mathrm{NP}$.

Proof.

$P=c o-P$
If $P=N P$ then co- $N P=$ co- $P=P$.

NP \cap co-NP: Example

Example

Bipartite Matching: Given bipartite graph $G=(U \cup V, E)$, does G have a perfect matching?
Bipartite Matching $\in N P \cap$ co-NP
(1) If G is a yes-instance, then proof is just the perfect matching.
(2) If G is a no-instance, then by Hall's Theorem, there is a subset of vertices $A \subseteq U$ such that $|N(A)|<|A|$.

Example (More interesting...)
Factoring $\in N P \cap$ co-NP, and we do not know if it is in P!

Good Characterization $=$ Efficient Solution

(1) Bipartite Matching has a polynomial time algorithm
(2) Do all problems in NP \cap co-NP have polynomial time algorithms? That is, is $\mathrm{P}=\mathrm{NP} \cap$ co-NP? Problems in NP \cap co-NP have been proved to be in P many years later
(1) Linear programming (Khachiyan 1979)
(1) Duality easily shows that it is in NP \cap co-NP
(2) Primality Testing (Agarwal-Kayal-Saxena 2002)
(1) Easy to see that PRIME is in co-NP (why?)
(2) PRIME is in NP - not easy to show! (Vaughan Pratt 1975)

P, NP and co-NP

Possible scenarios:
(1) $P=N P$. Then $P=N P=$ co-NP.
(2) NP $=$ co-NP and $P \neq N P$ (and hence also $P \neq$ co-NP).

- NP \neq co-NP. Then $P \neq N P$ and also $P \neq$ co-NP.

Most people believe that the last scenario is the likely one
Question: Suppose $P \neq N P$. Is every problem that is in NP $\backslash P$ is also NP-Complete?

Theorem (Ladner)

If $\mathrm{P} \neq \mathrm{NP}$ then there is a problem/language $\boldsymbol{X} \in \mathrm{NP} \backslash \mathrm{P}$ such that X is not NP-Complete.

Karp vs Turing Reduction and NP vs co-NP

Question: Why restrict to Karp reductions for NP-Completeness?

Lemma

If $\boldsymbol{X} \in$ co-NP and \boldsymbol{Y} is NP-Complete then $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ under Turing reduction.

Thus, Turing reductions cannot distinguish NP and co-NP.

Decision "reduces to" Search

(1) Efficient algorithm for search implies efficient algorithm for decision.
(2) If decision problem is difficult then search problem is also difficult.
(3) Can an efficient algorithm for decision imply an efficient algorithm for search?
Yes, for all the problems we have seen. In fact for all NP-Complete Problems.

Back to Decision versus Search

(1) Recall, decision problems are those with yes/no answers, while search problems require an explicit solution for a yes instance

Example

(1) Satisfiability
(1) Decision: Is the formula φ satisfiable?
(2) Search: Find assignment that satisfies φ
(2) Graph coloring
(1) Decision: Is graph G 3-colorable?
(2) Search: Find a 3-coloring of the vertices of \boldsymbol{G}

Self Reduction

Definition

A problem is said to be self reducible if the search problem reduces (by Turing reduction) in polynomial time to decision problem. In other words, there is an algorithm to solve the search problem that has polynomially many steps, where each step is either
(1) A conventional computational step, or
(2) a call to subroutine solving the decision problem.

Back to SAT

Proposition

SAT is self reducible.
In other words, there is a polynomial time algorithm to find the satisfying assignment if one can periodically check if some formula is satisfiable.

Self-Reduction for NP-Complete Problems

Theorem

Every NP-Complete problem/language L is self-reducible.
Proof is not hard but requires understanding of proof of Cook-Levin theorem.

Note that proof is only for complete languages, not for all languages in NP. Otherwise Factoring would be in polynomial time and we would not rely on it for our current security protocols.

Easy and instructive to prove self-reducibility for specific NP-Complete problems such as Independent Set, Vertex Cover, Hamiltonian Cycle, etc.
See discussion section problems.

Search Algorithm for SAT

given a Decision Algorithm for SAT
Input: SAT formula φ with n variables $x_{1}, x_{2}, \ldots, x_{n}$.
(1) set $x_{1}=0$ in φ and get new formula φ_{1}. check if φ_{1} is satisfiable using decision algorithm. if φ_{1} is satisfiable, recursively find assignment to $x_{2}, x_{3}, \ldots, x_{n}$ that satisfy φ_{1} and output $x_{1}=\mathbf{0}$ along with the assignment to x_{2}, \ldots, x_{n}.
(2) if φ_{1} is not satisfiable then set $x_{1}=\mathbf{1}$ in φ to get formula φ_{2}. if φ_{2} is satisfiable, recursively find assignment to $x_{2}, x_{3}, \ldots, x_{n}$ that satisfy φ_{2} and output $x_{1}=\mathbf{1}$ along with the assignment to x_{2}, \ldots, x_{n}.
(3) if φ_{1} and φ_{2} are both not satisfiable then φ is not satisfiable.

Algorithm runs in polynomial time if the decision algorithm for SAT runs in polynomial time. At most $2 \boldsymbol{n}$ calls to decision algorithm.

