OLD CS 473: Fundamental Algorithms, Spring

 2015
Final review...

Lecture 27
May 5, 2015

Multiple choice

(B) Consider any two problems \boldsymbol{X} and \boldsymbol{Y} both of them in NPC.

There always exists a polynomial time reduction from X to Y.
False: True: \square Answer depends on whether $P=N P:$:

Multiple choice

(D) Given a 2SAT formula F, there is always an assignment to its variables that satisfies at least $(\mathbf{7} / \mathbf{8}) m$ of its clauses. False: True: \square Answer depends on whether $\mathrm{P}=\mathrm{NP}$:

Multiple choice

(G) Given a directed graph G with positive weights on the edges, and a number k, finding if there is simple path in G from s to t (two given vertices of G) with weight $\geq \boldsymbol{k}$, can be done in polynomial time.
\qquad True: \square

Answer depends on whether the flow $0.7 f+0.3 g$ is always a valid maximum flow in G . False: True:
F) Given a network flow G with lower bounds and capacities on the edges (say all numbers are integers that are smaller than \boldsymbol{n}). Assume \boldsymbol{f} and \boldsymbol{g} are two different maximum flows in G that complies with the lower bounds and capacity constraints. Then,

Multiple choice

(H) Given a directed graph G with (positive or negative) weights on its edges, computing the shortest walk from s to t in G can be done in polynomial time. False: True: \square Answer depends on whether $P=N P$: \qquad

2: Short Questions.

(A)
(II) $B(n)=12 B(\lfloor n / 4\rfloor)+B(\lfloor n / 2\rfloor)+n^{2}$, for $n>10$ and $B(i)=\mathbf{1}$ for $\mathbf{1} \leq i \leq \mathbf{1 0}$.

2: Short Questions.

(A) Give a tight asymptotic bound for each of the following recurrences.
(I) $A(n)=A(n-3\lceil\log n\rceil)+A(\lceil\log n\rceil)+\log n$, for $n>2$ and $A(1)=A(2)=1$.

2: Short Questions.

(B) Convert the following boolean circuit (i.e., an instance of Circuit-SAT) into a CNF formula (i.e., an instance of SAT) such that the resulting formula is satisfiable if and only if the circuit sat instance is satisfiable. Use $x_{a}, x_{b}, x_{c}, x_{d}, \ldots$ as the variable names for the corresponding gates in the drawing. (You may need additional variables.) Note, that a node $(\Lambda, g$ in the figure below denotes an and gate, where \boldsymbol{g} is its label.

Scratch slide

Scratch slide

3: Balancing vampires.

There are n vampires $p_{1}, \ldots, p_{\boldsymbol{n}}$ in Champaign. i th vampire has integer score $\boldsymbol{w}_{\boldsymbol{i}} \geq \mathbf{0}$ of how well it can climb mountains. Task: Divide the vampires into two teams, and you want the division of teams to be as fair as possible. The score of a team is the sum of the scores of all the vampires in that team. Minimize the differences of the scores of the two teams. Assume that for all $i, w_{i} \leq W$.
(A) Given integers $\alpha, \boldsymbol{\beta} \geq \mathbf{0}$, and $\boldsymbol{T}_{\alpha}, \boldsymbol{T}_{\beta}$, such that $\alpha+\beta=\boldsymbol{n}$, describe an algorithm, as fast as possible, to compute the partition into two teams, such that the first team has $\boldsymbol{\alpha}$ players of total score \boldsymbol{T}_{α}, and the second team has $\boldsymbol{\beta}$ players with total score $\boldsymbol{T}_{\boldsymbol{\beta}}$. What is the running time of your algorithm? (For any credit, it has to be polynomial in \boldsymbol{n} and \boldsymbol{W}.)
(To simplify things, you can solve the decision version problem first, and describe shortly how to modify it to yield the desired partition.)

3 (B): Balancing vampires.

(B) Describe an algorithm, as fast as possible, to compute the scores of the two teams in an optimal division that is as balanced as possible, when requiring that the two teams have exactly the same number of players (assume \boldsymbol{n} is even). What is the running time of your algorithm?

3 (C): Balancing vampires.

(C) State formally the decision version of the problem in (B), and prove that it is NP-Complete. (There are several possible solutions for this part - pick the one you find most natural. Note, that the teams must have the same number of players.)

4: MAX Cut and MAX 2SAT.

Problem: MAX Cut
Instance: Undirected graph \boldsymbol{G} with \boldsymbol{n} vertices and \boldsymbol{m} edges, and an integer \boldsymbol{k}.
Question: Is there an undirected cut in \boldsymbol{G} that cuts at least \boldsymbol{k} edges?

Problem: MAX 2SAT

Instance: A 2CNF formula \boldsymbol{F}, and an integer \boldsymbol{k}.
Question: Is there a truth assignment in \boldsymbol{F} that satisfies at least \boldsymbol{k} clauses.

You are given that MAX Cut is NP-Complete. Prove that MAX 2SAT is NP-Complete by a reduction to/from MAX Cut (be sure to do the reduction in the right direction!).
Hint: Think about how to encode a cut, by associating a boolean variable with each vertex of the graph. It might be a good idea to verify your answer by considering a graph with two vertices and a single edge between them and checking all possibilities for this case.

Scratch slide

Scratch slide

Scratch slide

Scratch slide

8: Network flow.

You are given a network flow G (with integer capacities on the edges, and a source \boldsymbol{s} and a sink \boldsymbol{t}), and a maximum flow \boldsymbol{f} on it (you can assume \boldsymbol{f} is integral). You want increase the maximum flow in \boldsymbol{G} by one unit by applying a single augmenting path to f. Naturally, to be able to do that, you must increase the capacity of some of the edges of G. In particular, for every edge $e \in E(G)$, there is an associated cost $\operatorname{cost}(e)$ of increasing its capacity by one unit. Describe an algorithm, that computes (as fast as possible), the cheapest collection of edges of \boldsymbol{G}, such that if we increase the capacity on each of these edges by $\mathbf{1}$, then one can find an augmenting path to \boldsymbol{f} that increases its flow by one unit. How fast is your algorithm? Provide an argument that explains why your algorithm is correct.

