Chapter 26

Approximation Algorithms using Linear Programming

OLD CS 473: Fundamental Algorithms, Spring 2015 April 30, 2015

26.0.1 Weighted vertex cover

26.0.2 Weighted vertex cover

26.0.2.1 Weighted vertex cover

Weighted Vertex Cover problem G = (V, E).

Each vertex $v \in V$: cost c_v .

Compute a vertex cover of minimum cost.

- (A) vertex cover: subset of vertices V so each edge is covered.
- (B) NP-Hard
- (C) ...unweighted **Vertex Cover** problem.
- (D) ... write as an integer program (IP):
- (E) $\forall v \in V: x_v = 1 \iff v \text{ in the vertex cover.}$
- (F) $\forall \mathsf{vu} \in \mathsf{E}$: covered. $\Longrightarrow x_\mathsf{v} \lor x_\mathsf{u} \mathsf{true}$. $\Longrightarrow x_\mathsf{v} + x_\mathsf{u} \ge 1$.
- (G) minimize total cost: $\min \sum_{v \in V} x_v c_v$.

26.0.3 Weighted vertex cover

26.0.3.1 State as $IP \implies Relax \implies LP$

$$\begin{aligned} & \min & & \sum_{\mathbf{v} \in \mathsf{V}} \mathsf{c}_{\mathbf{v}} x_{\mathbf{v}}, \\ & \text{such that} & & x_{\mathbf{v}} \in \{0,1\} & & \forall \mathbf{v} \in \mathsf{V} \\ & & & x_{\mathbf{v}} + x_{\mathbf{u}} \geq 1 & & \forall \mathsf{vu} \in \mathsf{E}. \end{aligned} \tag{26.1}$$

- (A) ... **NP-H**ard.
- (B) relax the integer program.
- (C) allow x_{v} get values $\in [0, 1]$.
- (D) $x_{\mathsf{v}} \in \{0, 1\}$ replaced by $0 \le x_{\mathsf{v}} \le 1$. The resulting LP is

min	$\sum_{v\inV}c_{v}x_{v},$	
s.t.	$0 \le x_{v}$	$\forall v \in V, \\ \forall v \in V,$
	$x_{v} \leq 1$	$\forall v \in V,$
	$x_{v} + x_{u} \ge 1$	$\forall vu \in E.$

26.0.3.2 Weighted vertex cover – rounding the LP

- (A) Optimal solution to this **LP**: $\widehat{x_{v}}$ value of var X_{v} , $\forall v \in V$.
- (B) optimal value of LP solution is $\widehat{\alpha} = \sum_{v \in V} c_v \widehat{x}_v$.
- (C) optimal integer solution: $x_{\mathsf{v}}^{I}, \, \forall \mathsf{v} \in \mathsf{V} \text{ and } \alpha^{I}.$
- (D) Any valid solution to IP is valid solution for LP!
- (E) $\widehat{\alpha} \leq \alpha^{I}$. Integral solution not better than LP.
- (F) Got fractional solution (i.e., values of $\widehat{x_{\mathbf{v}}}$).
- (G) Fractional solution is better than the optimal cost.
- (H) Q: How to turn fractional solution into a (valid!) integer solution?
- (I) Using **rounding**.

26.0.3.3 How to round?

- (A) consider vertex \mathbf{v} and fractional value $\widehat{x}_{\mathbf{v}}$.
- (B) If $\widehat{x}_{v} = 1$ then include in solution!
- (C) If $\widehat{x}_{v} = 0$ then do **not** include in solution.
- (D) if $\hat{x}_{v} = 0.9 \implies \text{LP}$ considers v as being 0.9 useful.
- (E) The LP puts its money where its belief is...
- (F) ... $\widehat{\alpha}$ value is a function of this "belief" generated by the LP.
- (G) Big idea: Trust LP values as guidance to usefulness of vertices.

26.0.3.4 II: How to round?

$$\begin{aligned} & \min & \sum_{\mathbf{v} \in \mathbf{V}} \mathbf{c}_{\mathbf{v}} x_{\mathbf{v}}, \\ & \text{s.t.} & 0 \leq x_{\mathbf{v}} & \forall \mathbf{v} \in \mathbf{V} \\ & x_{\mathbf{v}} \leq 1 & \forall \mathbf{v} \in \mathbf{V} \\ & x_{\mathbf{v}} + x_{\mathbf{u}} \geq 1 & \forall \mathbf{v} \mathbf{u} \in \mathbf{E} \end{aligned}$$

- (A) Pick all vertices ≥ threshold of usefulness according to LP.
- (B) $S = \left\{ \mathbf{v} \mid \widehat{x}_{\mathbf{v}} \ge 1/2 \right\}.$
- (C) Claim: S a valid vertex cover, and cost is low.
- (A) Indeed, edge cover as: $\forall vu \in E \text{ have } \widehat{x_v} + \widehat{x_u} \geq 1.$
- (B) $\widehat{x}_{\mathsf{v}}, \widehat{x}_{\mathsf{u}} \in (0,1)$
 - $\implies \widehat{x_{\mathsf{v}}} \ge 1/2 \text{ or } \widehat{x_{\mathsf{u}}} \ge 1/2.$
 - \implies $\mathbf{v} \in S$ or $\mathbf{u} \in S$ (or both).
 - \implies S covers all the edges of G.

26.0.3.5 Cost of solution

Cost of S:

$$\mathsf{c}_S = \sum_{\mathsf{v} \in S} \mathsf{c}_\mathsf{v} = \sum_{\mathsf{v} \in S} 1 \cdot \mathsf{c}_\mathsf{v} \le \sum_{\mathsf{v} \in S} 2\widehat{x}_\mathsf{v} \cdot \mathsf{c}_\mathsf{v} \le 2 \sum_{\mathsf{v} \in \mathsf{V}} \widehat{x}_\mathsf{v} \mathsf{c}_\mathsf{v} = 2\widehat{\alpha} \le 2\alpha^I,$$

since $\widehat{x_{\mathbf{v}}} \geq 1/2$ as $\mathbf{v} \in S$.

 α^I is cost of the optimal solution \Longrightarrow

Theorem 26.0.1. The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

26.0.4 The lessons we can take away

26.0.4.1 Or not - boring, boring, boring.

- (A) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
- (B) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
- (C) Solving a *relaxation* of an optimization problem into a LP provides us with insight.
- (D) But... have to be creative in the rounding.

26.0.5 Revisiting Set Cover 26.0.5.1 Revisiting Set Cover

- (A) Purpose: See new technique for an approximation algorithm.
- (B) Not better than greedy algorithm already seen $O(\log n)$ approximation.

Problem: Set Cover

Instance: (S, \mathcal{F})

S - a set of n elements

 \mathcal{F} - a family of subsets of S, s.t. $\bigcup_{X \in \mathcal{F}} X = S$.

Question: The set $\mathcal{X} \subseteq F$ such that \mathcal{X} contains as few sets as possible, and \mathcal{X} covers S.

26.0.5.2 Set Cover - IP & LP

min
$$\alpha = \sum_{U \in \mathcal{F}} x_U,$$

s.t. $x_U \in \{0, 1\}$ $\forall U \in \mathcal{F},$
 $\sum_{U \in \mathcal{F}, s \in U} x_U \ge 1$ $\forall s \in S.$

Next, we relax this IP into the following LP.

$$\min \qquad \alpha = \sum_{U \in \mathcal{F}} x_U,$$

$$0 \le x_U \le 1 \qquad \forall U \in \mathcal{F},$$

$$\sum_{U \in \mathcal{F}, s \in U} x_U \ge 1 \qquad \forall s \in S.$$

26.0.5.3 Set Cover – IP & LP

- (A) LP solution: $\forall U \in \mathcal{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}.$
- (B) Opt IP solution: $\forall U \in \mathcal{F}, x_U^I$, and α^I .
- (C) Use LP solution to guide in rounding process.
- (D) If $\widehat{x_U}$ is close to 1 then pick U to cover.
- (E) If $\widehat{x_U}$ close to 0 do not.
- (F) Idea: Pick $U \in \mathcal{F}$: randomly choose U with **probability** $\widehat{x_U}$.
- (G) Resulting family of sets 9.
- (H) Z_S : indicator variable. 1 if $S \in \mathcal{G}$.
- (I) Cost of \mathfrak{G} is $\sum_{S \in \mathfrak{F}} Z_S$, and the expected cost is $\mathbf{E}[\cos t \circ \mathfrak{G}] = \mathbf{E}[\sum_{S \in \mathfrak{F}} Z_S] = \sum_{S \in \mathfrak{F}} \mathbf{E}[Z_S] = \sum_{S \in \mathfrak{F}} \mathbf{Pr}[S \in \mathfrak{G}] = \sum_{S \in \mathfrak{F}} \widehat{x_S} = \widehat{\alpha} \leq \alpha^I$.
- (J) In expectation, 9 is not too expensive.
- (K) Bigus problumos: \mathcal{G} might fail to cover some element $s \in S$.

26.0.5.4 **Set Cover** – Rounding continued

- (A) **Solution**: Repeat rounding stage $m = 10\lceil \lg n \rceil = O(\log n)$ times.
- (B) n = |S|.
- (C) \mathfrak{G}_i : random cover computed in *i*th iteration.
- (D) $\mathcal{H} = \bigcup_i \mathcal{G}_i$. Return \mathcal{H} as the required cover.

26.0.5.5 The set \mathcal{H} covers S

(A) For an element $s \in S$, we have that

$$\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U} \ge 1,\tag{26.2}$$

(B) probability s not covered by \mathcal{G}_i (ith iteration set).

$$\begin{aligned} &\mathbf{Pr}\Big[s \text{ not covered by } \mathcal{G}_i\Big] \\ &= \mathbf{Pr}\Big[\text{ no } U \in \mathcal{F}, \text{ s.t. } s \in U \text{ picked into } \mathcal{G}_i\Big] \\ &= \prod_{U \in \mathcal{F}, s \in U} \mathbf{Pr}\Big[U \text{ was not picked into } \mathcal{G}_i\Big] \\ &= \prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U}) \\ &= \exp\Big(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\Big) \leq \exp(-1) \leq \frac{1}{2}, \leq \frac{1}{2} \end{aligned}$$

26.0.6 The set \mathcal{H} covers S

26.0.6.1 Probability of a single item to be covered

- (A) $\Pr[s \text{ not covered by } \mathcal{G}_i] \leq 1/2.$
- (B) Number of iterations of rounding $m = O(\log n)$.
- (C) Covering with sets in $\mathcal{G}_1, \ldots, \mathcal{G}_m$.
- (D) probability s is not covered in all m iterations

$$P_{s} = \mathbf{Pr} \Big[s \text{ not covered by } \mathfrak{G}_{1}, \dots, \mathfrak{F}_{m} \Big]$$

$$\leq \mathbf{Pr} \Big[(s \notin \mathfrak{F}_{1}) \cap (s \notin \mathfrak{F}_{2}) \cap \dots \cap (s \notin \mathfrak{F}_{m}) \Big]$$

$$\leq \mathbf{Pr} \Big[s \notin \mathfrak{F}_{1} \Big] \mathbf{Pr} \Big[s \notin \mathfrak{F}_{2} \Big] \cdots \mathbf{Pr} \Big[s \notin \mathfrak{F}_{m} \Big]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \dots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

26.0.7 The set \mathcal{H} covers S

26.0.7.1 Probability of all items to be covered

- (A) n = |S|,
- (B) Probability of $s \in S$, not to be in $\mathcal{G}_1 \cup \ldots \cup \mathcal{F}_m$ is

$$P_s < \frac{1}{n^{10}}$$
.

(C) probability one of n elements of S is not covered by $\mathcal H$ is

$$\sum_{s \in S} \mathbf{Pr}[s \notin \mathcal{G}_1 \cup \ldots \cup \mathcal{F}_m] = \sum_{s \in S} P_s < n(1/n^{10}) = 1/n^9.$$

XXX

26.0.7.2 Reminder: LP for Set Cover

$$\min \qquad \alpha = \sum_{U \in \mathcal{F}} x_U,$$

$$0 \le x_U \le 1 \qquad \forall U \in \mathcal{F},$$

$$\sum_{U \in \mathcal{F}, s \in U} x_U \ge 1 \qquad \forall s \in S.$$

- (A) Solve the LP.
- (B) $\widehat{x_U}$: Value of x_u in the optimal LP solution.
- (C) Fractional solution: $\widehat{\alpha} = \sum_{U \in \mathcal{F}} \widehat{x_U}$.
- (D) Integral solution (what we want): $\alpha^I \geq \widehat{\alpha}$.

26.0.7.3 Cost of solution

- (A) (S, \mathcal{F}) : Given instance of **Set Cover**.
- (B) For $U \in \mathcal{F}$, $\widehat{x_U}$: LP value for set U in optimal solution.
- (C) For \mathfrak{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathfrak{G}_i$.
- (D) Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}\left[\sum_{U \in \mathcal{F}} Z_U\right] = \sum_{U \in \mathcal{F}} \mathbf{E}[Z_U] = \sum_{U \in \mathcal{F}} \widehat{x_U} = \widehat{\alpha} < \alpha^I.$
- (E) \implies Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^I). XXX
- (F) Expected size of the solution is

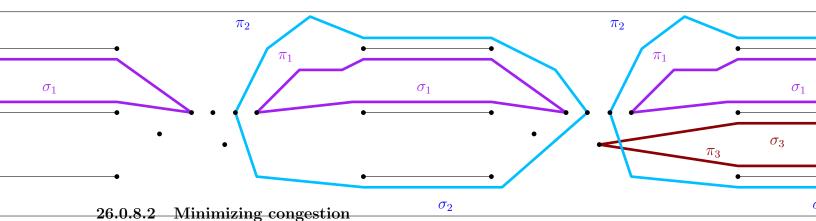
$$\mathbf{E}[|\mathcal{H}|] = \mathbf{E}[|\cup_i \mathcal{G}_i|] \le \mathbf{E}\left[\sum_i |\mathcal{G}_i|\right] \le m\alpha^I = O(\alpha^I \log n).$$

26.0.7.4 The result

Theorem 26.0.2. By solving an LP one can get an $O(\log n)$ -approximation to **Set Cover** by a randomized algorithm. The algorithm succeeds with high probability.

26.0.8 Minimizing congestion

26.0.8.1 Minimizing congestion by example



- (A) G: graph. n vertices.
- (B) π_i , σ_i paths with the same endpoints v_i , $u_i \in V(G)$, for $i = 1, \ldots, t$.
- (C) Rule I: Send one unit of flow from v_i to u_i .
- (D) Rule II: Choose whether to use π_i or σ_i .
- (E) Target: No edge in G is being used too much.

Definition 26.0.3. Given a set X of paths in a graph G, the congestion of X is the maximum number of paths in X that use the same edge.

26.0.8.3 Minimizing congestion

(A) IP \Longrightarrow LP:

$$\begin{aligned} & \min & & w \\ & \text{s.t.} & & x_i \geq 0 \\ & & x_i \leq 1 \\ & & \sum_{\mathbf{e} \in \pi_i} x_i + \sum_{\mathbf{e} \in \sigma_i} (1 - x_i) \leq w \end{aligned} \qquad i = 1, \dots, t,$$

- (B) $\hat{x_i}$: value of x_i in the optimal LP solution.
- (C) \widehat{w} : value of w in LP solution.
- (D) Optimal congestion must be bigger than \widehat{w} .
- (E) X_i : random variable one with probability $\hat{x_i}$, and zero otherwise.
- (F) If $X_i = 1$ then use π to route from \mathbf{v}_i to \mathbf{u}_i .
- (G) Otherwise use σ_i .

26.0.8.4 Minimizing congestion

- (A) Congestion of e is $Y_e = \sum_{e \in \pi_i} X_i + \sum_{e \in \sigma_i} (1 X_i)$.
- (B) And in expectation

$$\alpha_{e} = \mathbf{E} \Big[Y_{e} \Big] = \mathbf{E} \left[\sum_{e \in \pi_{i}} X_{i} + \sum_{e \in \sigma_{i}} (1 - X_{i}) \right]$$
$$= \sum_{e \in \pi_{i}} \mathbf{E} \Big[X_{i} \Big] + \sum_{e \in \sigma_{i}} \mathbf{E} \Big[(1 - X_{i}) \Big]$$
$$= \sum_{e \in \pi_{i}} \widehat{x}_{i} + \sum_{e \in \sigma_{i}} (1 - \widehat{x}_{i}) \leq \widehat{w}.$$

(C) \widehat{w} : Fractional congestion (from LP solution).

26.0.8.5Minimizing congestion - continued

- (A) $Y_{\mathsf{e}} = \sum_{\mathsf{e} \in \pi_i} X_i + \sum_{\mathsf{e} \in \sigma_i} (1 X_i)$. (B) Y_{e} is just a sum of independent 0/1 random variables!
- (C) Chernoff inequality tells us sum can not be too far from expectation!

26.0.8.6 Minimizing congestion - continued

(A) By Chernoff inequality:

$$\mathbf{Pr}\big[Y_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}}\big] \leq \exp\left(-\frac{\alpha_{\mathsf{e}}\delta^2}{4}\right) \leq \exp\left(-\frac{\widehat{w}\delta^2}{4}\right).$$

(B) Let
$$\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$$
. We have that

$$\mathbf{Pr}\Big[Y_{\mathsf{e}} \ge (1+\delta)\alpha_{\mathsf{e}}\Big] \le \exp\left(-\frac{\delta^2 \widehat{w}}{4}\right) \le \frac{1}{t^{100}},$$

- (C) If $t \ge n^{1/50} \implies \forall$ edges in graph congestion $\le (1 + \delta)\widehat{w}$.
- (D) t: Number of pairs, n: Number of vertices in G.

26.0.8.7 Minimizing congestion - continued

(A) Got: For
$$\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$$
. We have

$$\mathbf{Pr}\Big[Y_{\mathsf{e}} \ge (1+\delta)\alpha_{\mathsf{e}}\Big] \le \exp\left(-\frac{\delta^2 \widehat{w}}{4}\right) \le \frac{1}{t^{100}},$$

(B) Play with the numbers. If t = n, and $\widehat{w} \ge \sqrt{n}$. Then, the solution has congestion larger than the optimal solution by a factor of

$$1 + \delta = 1 + \sqrt{\frac{20}{\widehat{w}} \ln t} \le 1 + \frac{\sqrt{20 \ln n}}{n^{1/4}},$$

which is of course extremely close to 1, if n is sufficiently large.

26.0.8.8 Minimizing congestion: result

Theorem 26.0.4. (A) G: Graph n vertices.

- (B) $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- (C) π_i, σ_i : two different paths connecting s_i to t_i
- (D) \widehat{w} : Fractional congestion at least $n^{1/2}$.
- $(E) \ {\rm opt:} \ Congestion \ of \ optimal \ solution.$
- $(F) \implies In polynomial time (LP solving time) choose paths$
 - (A) congestion \forall edges: $\leq (1 + \delta)$ opt

$$(B) \ \delta = \sqrt{\frac{20}{\widehat{w}}} \ln t.$$

26.0.8.9 When the congestion is low

- (A) Assume \widehat{w} is a constant.
- (B) Can get a better bound by using the Chernoff inequality in its more general form.
- (C) set $\delta = c \ln t / \ln \ln t$, where c is a constant. For $\mu = \alpha_e$, we have that

$$\begin{aligned} \mathbf{Pr} \Big[Y_{\mathsf{e}} &\geq (1+\delta)\mu \Big] \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}} \right)^{\mu} \\ &= \exp \left(\mu \left(\delta - (1+\delta) \ln(1+\delta) \right) \right) \\ &= \exp \left(-\mu c' \ln t \right) \leq \frac{1}{t^{O(1)}}, \end{aligned}$$

where c' is a constant that depends on c and grows if c grows.

26.0.8.10 When the congestion is low

- (A) Just proved that...
- (B) if the optimal congestion is O(1), then...
- (C) algorithm outputs a solution with congestion $O(\log t/\log\log t)$, and this holds with high probability.

26.0.9 Reminder about Chernoff inequality

26.0.9.1 The Chernoff Bound — General Case

26.0.9.2 Chernoff inequality

Problem 26.0.5. Let $X_1, \ldots X_n$ be n independent Bernoulli trials, where

$$\mathbf{Pr}\left[X_i = 1\right] = p_i, \qquad \mathbf{Pr}\left[X_i = 0\right] = 1 - p_i,$$

$$Y = \sum_i X_i, \qquad and \qquad \mu = \mathbf{E}\left[Y\right].$$

We are interested in bounding the probability that $Y \geq (1 + \delta)\mu$.

26.0.9.3 Chernoff inequality

Theorem 26.0.6 (Chernoff inequality). For any $\delta > 0$,

$$\mathbf{Pr}\Big[Y > (1+\delta)\mu\Big] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.$$

Or in a more simplified form, for any $\delta \leq 2e - 1$,

$$\mathbf{Pr}\Big[Y > (1+\delta)\mu\Big] < \exp(-\mu\delta^2/4),$$

and

$$\mathbf{Pr}\Big[Y > (1+\delta)\mu\Big] < 2^{-\mu(1+\delta)},$$

for $\delta \geq 2e - 1$.

26.0.9.4 More Chernoff...

Theorem 26.0.7. Under the same assumptions as the theorem above, we have

$$\Pr[Y < (1 - \delta)\mu] \le \exp(-\mu \frac{\delta^2}{2}).$$