OLD CS 473: Fundamental Algorithms, Spring 2015

Approximation Algorithms using Linear Programming

Lecture 26 April 30, 2015

26.1.1: Weighted vertex cover

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

vertex cover: subset of vertices V so each edge is covered.

- **2** NP-Hard
- 3 ... unweighted Vertex Cover problem.
- ... write as an integer program (IP):
- $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- $\forall \mathsf{vu} \in \mathsf{E}$: covered. $\implies x_{\mathsf{v}} \lor x_{\mathsf{u}}$ true. $\implies x_{\mathsf{v}} + x_{\mathsf{u}} \ge 1$.
- **7** minimize total cost: min $\sum_{v \in V} x_v c_v$.

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- vertex cover: subset of vertices V so each edge is covered.
- **2** NP-Hard
- 3 ... unweighted Vertex Cover problem.
- ... write as an integer program (IP):
- $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- $\forall \mathsf{vu} \in \mathsf{E}$: covered. $\implies x_{\mathsf{v}} \lor x_{\mathsf{u}}$ true. $\implies x_{\mathsf{v}} + x_{\mathsf{u}} \ge 1$.
- **7** minimize total cost: min $\sum_{v \in V} x_v c_v$.

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- vertex cover: subset of vertices V so each edge is covered.
- **Overlapha NP-Hard**
- Interpretation in the second state of the s
- ... write as an integer program (IP):
- **5** $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- $\forall vu \in E: \text{ covered.} \implies x_v \lor x_u \text{ true.} \implies x_v + x_u \ge 1.$
- **7** minimize total cost: min $\sum_{v \in V} x_v c_v$.

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- vertex cover: subset of vertices V so each edge is covered.
- **2** NP-Hard
- Interpretation in the second state of the s
- ④ ... write as an integer program (IP):
- **5** $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- $\forall vu \in E$: covered. $\implies x_v \lor x_u$ true. $\implies x_v + x_u \ge 1$.
- **7** minimize total cost: min $\sum_{v \in V} x_v c_v$.

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- vertex cover: subset of vertices V so each edge is covered.
- **2** NP-Hard
- ...unweighted Vertex Cover problem.
- In write as an integer program (IP):
- **(a)** $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- $\forall vu \in E$: covered. $\implies x_v \lor x_u$ true. $\implies x_v + x_u \ge 1$.
- **7** minimize total cost: min $\sum_{v \in V} x_v c_v$.

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- vertex cover: subset of vertices V so each edge is covered.
- **2** NP-Hard
- ...unweighted Vertex Cover problem.
- In write as an integer program (IP):
- **(a)** $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- **(**) $\forall \mathbf{vu} \in \mathsf{E}$: covered. $\implies x_{\mathsf{v}} \lor x_{\mathsf{u}}$ true. $\implies x_{\mathsf{v}} + x_{\mathsf{u}} \ge 1$.
- **7** minimize total cost: $\min \sum_{v \in V} x_v c_v$.

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- vertex cover: subset of vertices V so each edge is covered.
- **2** NP-Hard
- Interpretation in the second state of the s
- In write as an integer program (IP):
- **(a)** $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- **(**) $\forall \mathbf{vu} \in \mathsf{E}$: covered. $\implies x_{\mathbf{v}} \lor x_{\mathbf{u}}$ true. $\implies x_{\mathbf{v}} + x_{\mathbf{u}} \ge 1$.
- **7** minimize total cost: $\min \sum_{v \in V} x_v c_v$.

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- vertex cover: subset of vertices V so each edge is covered.
- **2** NP-Hard
- ...unweighted Vertex Cover problem.
- In write as an integer program (IP):
- **(a)** $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- **(**) $\forall \mathsf{vu} \in \mathsf{E}$: covered. $\implies x_{\mathsf{v}} \lor x_{\mathsf{u}}$ true. $\implies x_{\mathsf{v}} + x_{\mathsf{u}} \ge 1$.
- **7** minimize total cost: $\min \sum_{v \in V} x_v c_v$.

Weighted Vertex Cover problem

 $\mathsf{G}=(\mathsf{V},\mathsf{E}).$

Each vertex $\mathbf{v} \in V$: cost $\mathbf{c}_{\mathbf{v}}$.

Compute a vertex cover of minimum cost.

- vertex cover: subset of vertices V so each edge is covered.
- **2** NP-Hard
- ...unweighted Vertex Cover problem.
- In write as an integer program (IP):
- **(a)** $\forall \mathbf{v} \in V: x_{\mathbf{v}} = 1 \iff \mathbf{v}$ in the vertex cover.
- **(**) $\forall \mathsf{vu} \in \mathsf{E}$: covered. $\implies x_{\mathsf{v}} \lor x_{\mathsf{u}}$ true. $\implies x_{\mathsf{v}} + x_{\mathsf{u}} \ge 1$.
- **a** minimize total cost: $\min \sum_{v \in V} x_v c_v$.

$$\begin{array}{ll} \min & \sum_{\mathsf{v}\in\mathsf{V}}\mathsf{c}_{\mathsf{v}}\mathsf{x}_{\mathsf{v}},\\ \text{such that} & \mathsf{x}_{\mathsf{v}}\in\{\mathbf{0},\mathbf{1}\} & \forall\mathsf{v}\in\mathsf{V} \quad (1)\\ & \mathsf{x}_{\mathsf{v}}+\mathsf{x}_{\mathsf{u}}\geq\mathbf{1} & \forall\mathsf{v}\mathsf{u}\in\mathsf{E}. \end{array}$$

1 ... NP-Hard.

- 2 relax the integer program.
- 3 allow x_v get values $\in [0, 1]$.
- $x_v \in \{0, 1\}$ replaced by $0 \le x_v \le 1$. The resulting LP is

 $\begin{array}{ll} \mbox{min} & \sum_{\mathbf{v}\in \mathsf{V}} \mathsf{c}_{\mathbf{v}} x_{\mathbf{v}}, \\ \mbox{s.t.} & \mathbf{0} \leq x_{\mathbf{v}} & \forall \mathbf{v} \in \mathsf{V}, \\ & x_{\mathbf{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathsf{V}, \\ & x_{\mathbf{v}} + x_{\mathbf{u}} \geq \mathbf{1} & \forall \mathbf{v} \mathbf{u} \in \mathsf{E}. \end{array}$

$$\begin{array}{ll} \min & \sum_{\mathsf{v}\in\mathsf{V}}\mathsf{c}_{\mathsf{v}}x_{\mathsf{v}},\\ \text{such that} & x_{\mathsf{v}}\in\{\mathbf{0},\mathbf{1}\} & \forall\mathsf{v}\in\mathsf{V} \quad (1)\\ & x_{\mathsf{v}}+x_{\mathsf{u}}\geq\mathbf{1} & \forall\mathsf{v}\mathsf{u}\in\mathsf{E}. \end{array}$$

1 ... NP-Hard.

- 2 relax the integer program.
- 3 allow x_v get values $\in [0, 1]$.
- $x_v \in \{0, 1\}$ replaced by $0 \le x_v \le 1$. The resulting LP is

$$\begin{array}{ll} \min & \sum_{\mathbf{v}\in \mathsf{V}}\mathsf{c}_{\mathbf{v}}x_{\mathbf{v}},\\ \text{s.t.} & \mathbf{0}\leq x_{\mathbf{v}} & \forall \mathbf{v}\in\mathsf{V},\\ & x_{\mathbf{v}}\leq \mathbf{1} & \forall \mathbf{v}\in\mathsf{V},\\ & x_{\mathbf{v}}+x_{\mathbf{u}}\geq \mathbf{1} & \forall \mathbf{vu}\in\mathsf{E}. \end{array}$$

$$\begin{array}{ll} \min & \sum_{v \in V} c_v x_v, \\ \text{such that} & x_v \in \{0, 1\} & \forall v \in V \quad (1) \\ & x_v + x_u \geq 1 & \forall v u \in E. \end{array}$$

1 ... NP-Hard.

- Prelax the integer program.
- 3 allow x_v get values $\in [0, 1]$.
- $x_v \in \{0, 1\}$ replaced by $0 \le x_v \le 1$. The resulting LP is

 $\begin{array}{ll} \min & \sum_{\mathbf{v}\in \mathsf{V}}\mathsf{c}_{\mathbf{v}}x_{\mathbf{v}},\\ \text{s.t.} & \mathbf{0} \leq x_{\mathbf{v}} & \forall \mathbf{v} \in \mathsf{V},\\ & x_{\mathbf{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathsf{V},\\ & x_{\mathbf{v}} + x_{\mathbf{u}} \geq \mathbf{1} & \forall \mathbf{vu} \in \mathsf{E}. \end{array}$

Sariel (UIUC)

$$\begin{array}{ll} \mbox{min} & \sum_{\mathsf{v}\in\mathsf{V}}\mathsf{c}_{\mathsf{v}}\mathsf{x}_{\mathsf{v}},\\ \mbox{such that} & \mathsf{x}_{\mathsf{v}}\in\{\mathbf{0},\mathbf{1}\} & \forall\mathsf{v}\in\mathsf{V} & (1)\\ & \mathsf{x}_{\mathsf{v}}+\mathsf{x}_{\mathsf{u}}\geq\mathbf{1} & \forall\mathsf{v}\mathsf{u}\in\mathsf{E}. \end{array}$$

1 ... NP-Hard.

- Prelax the integer program.
- allow x_v get values $\in [0, 1]$.
- $x_v \in \{0, 1\}$ replaced by $0 \le x_v \le 1$. The resulting LP is

 $\begin{array}{ll} \min & \sum_{\mathbf{v}\in \mathsf{V}}\mathsf{c}_{\mathbf{v}}x_{\mathbf{v}},\\ \text{s.t.} & \mathbf{0} \leq x_{\mathbf{v}} & \forall \mathbf{v} \in \mathsf{V},\\ & x_{\mathbf{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathsf{V},\\ & x_{\mathbf{v}} + x_{\mathbf{u}} \geq \mathbf{1} & \forall \mathbf{v} \mathbf{u} \in \mathsf{E}. \end{array}$

$$\begin{array}{ll} \min & \sum_{\mathsf{v}\in\mathsf{V}}\mathsf{c}_{\mathsf{v}}\mathsf{x}_{\mathsf{v}},\\ \text{such that} & \mathsf{x}_{\mathsf{v}}\in\{\mathbf{0},\mathbf{1}\} & \forall\mathsf{v}\in\mathsf{V} \quad (1)\\ & \mathsf{x}_{\mathsf{v}}+\mathsf{x}_{\mathsf{u}}\geq\mathbf{1} & \forall\mathsf{v}\mathsf{u}\in\mathsf{E}. \end{array}$$

1 ... NP-Hard.

- Prelax the integer program.
- allow x_v get values $\in [0, 1]$.
- $\begin{array}{ll} \textbf{@} & x_{\mathsf{v}} \in \{0,1\} \text{ replaced by} \\ & \textbf{0} \leq x_{\mathsf{v}} \leq 1. \text{ The} \\ & \text{resulting LP is} \end{array}$

 $\begin{array}{ll} \min & \sum_{\mathbf{v}\in \mathsf{V}} \mathsf{c}_{\mathbf{v}} x_{\mathbf{v}}, \\ \text{s.t.} & \mathbf{0} \leq x_{\mathbf{v}} & \forall \mathbf{v} \in \mathsf{V}, \\ & x_{\mathbf{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathsf{V}, \\ & x_{\mathbf{v}} + x_{\mathbf{u}} \geq \mathbf{1} & \forall \mathbf{v} \mathbf{u} \in \mathsf{E}. \end{array}$

$$\begin{array}{ll} \min & \sum_{\mathsf{v}\in\mathsf{V}}\mathsf{c}_{\mathsf{v}}\mathsf{x}_{\mathsf{v}},\\ \text{such that} & \mathsf{x}_{\mathsf{v}}\in\{\mathbf{0},\mathbf{1}\} & \forall\mathsf{v}\in\mathsf{V} \quad (1)\\ & \mathsf{x}_{\mathsf{v}}+\mathsf{x}_{\mathsf{u}}\geq\mathbf{1} & \forall\mathsf{v}\mathsf{u}\in\mathsf{E}. \end{array}$$

1 ... NP-Hard.

- Prelax the integer program.
- allow x_v get values $\in [0, 1]$.
- $\begin{array}{ll} \textbf{0} & x_{\mathsf{v}} \in \{0,1\} \text{ replaced by} \\ \textbf{0} \leq x_{\mathsf{v}} \leq 1. \text{ The} \\ \text{resulting LP is} \end{array}$

$$\begin{array}{ll} \mbox{min} & \sum_{\mathbf{v}\in \mathsf{V}} \mathsf{c}_{\mathbf{v}} x_{\mathbf{v}}, \\ \mbox{s.t.} & \mathbf{0} \leq x_{\mathbf{v}} & \forall \mathbf{v} \in \mathsf{V}, \\ & x_{\mathbf{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathsf{V}, \\ & x_{\mathbf{v}} + x_{\mathbf{u}} \geq \mathbf{1} & \forall \mathbf{v} \mathbf{u} \in \mathsf{E}. \end{array}$$

- **(**) Optimal solution to this LP: $\hat{x_v}$ value of var X_v , $\forall v \in V$.
- 2) optimal value of LP solution is $\hat{\alpha} = \sum_{v \in V} c_v \hat{x_v}$.
- (3) optimal integer solution: x'_{v} , $\forall v \in V$ and α' .
- Any valid solution to IP is valid solution for LP!
- 5 $\hat{\alpha} \leq \alpha'$. Integral solution not better than LP.
- Got fractional solution (i.e., values of $\widehat{x_v}$).
- 7 Fractional solution is better than the optimal cost.
- 8 Q: How to turn fractional solution into a (valid!) integer solution?
- **9** Using **rounding**.

- **(**) Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- 2) optimal value of LP solution is $\widehat{\alpha} = \sum_{\mathbf{v} \in V} \mathbf{c}_{\mathbf{v}} \widehat{x}_{\mathbf{v}}$.
- (3) optimal integer solution: x'_{v} , $\forall v \in V$ and α' .
- Any valid solution to IP is valid solution for LP!
- 5 $\hat{\alpha} \leq \alpha'$. Integral solution not better than LP.
- Got fractional solution (i.e., values of $\widehat{x_v}$).
- 7 Fractional solution is better than the optimal cost.
- Q: How to turn fractional solution into a (valid!) integer solution?
- Using rounding.

- **(**) Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- **2** optimal value of LP solution is $\hat{\alpha} = \sum_{\mathbf{v} \in V} \mathbf{c}_{\mathbf{v}} \hat{x}_{\mathbf{v}}$.
- **3** optimal integer solution: x_v^{\prime} , $\forall v \in V$ and α^{\prime} .
- Any valid solution to IP is valid solution for LP!
- 5 $\hat{\alpha} \leq \alpha'$. Integral solution not better than LP.
- Got fractional solution (i.e., values of $\widehat{x_v}$).
- 7 Fractional solution is better than the optimal cost.
- Q: How to turn fractional solution into a (valid!) integer solution?
- **9** Using **rounding**.

- **(**) Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- 2) optimal value of LP solution is $\hat{\alpha} = \sum_{\mathbf{v} \in V} \mathbf{c}_{\mathbf{v}} \hat{x}_{\mathbf{v}}$.
- **3** optimal integer solution: x_v^{\prime} , $\forall v \in V$ and α^{\prime} .
- Any valid solution to IP is valid solution for LP!
- $\widehat{\alpha} \leq \alpha'$. Integral solution not better than LP.
- Got fractional solution (i.e., values of $\widehat{x_v}$).
- 7 Fractional solution is better than the optimal cost.
- Q: How to turn fractional solution into a (valid!) integer solution?
- Using rounding.

- **(**) Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- 2) optimal value of LP solution is $\hat{\alpha} = \sum_{\mathbf{v} \in V} \mathbf{c}_{\mathbf{v}} \hat{x}_{\mathbf{v}}$.
- **3** optimal integer solution: $x'_{\mathbf{v}}$, $\forall \mathbf{v} \in V$ and α' .
- **4** Any valid solution to IP is valid solution for LP! **5** $\hat{\alpha} \leq \alpha'$.

- Got fractional solution (i.e., values of $\widehat{x_v}$).
- 7 Fractional solution is better than the optimal cost.
- Q: How to turn fractional solution into a (valid!) integer solution?
- Using rounding.

- **(**) Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- 2) optimal value of LP solution is $\hat{\alpha} = \sum_{\mathbf{v} \in V} \mathbf{c}_{\mathbf{v}} \hat{x}_{\mathbf{v}}$.
- **3** optimal integer solution: x_v^I , $\forall v \in V$ and α^I .
- ④ Any valid solution to IP is valid solution for LP!
 ⑤ α̂ ≤ α'. Integral solution not better than LP.
- Got fractional solution (i.e., values of $\widehat{x_v}$).
- 7 Fractional solution is better than the optimal cost.
- 8 Q: How to turn fractional solution into a (valid!) integer solution?
- Using rounding.

- **(**) Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- 2) optimal value of LP solution is $\hat{\alpha} = \sum_{\mathbf{v} \in V} \mathbf{c}_{\mathbf{v}} \hat{x}_{\mathbf{v}}$.
- **3** optimal integer solution: x_v^I , $\forall v \in V$ and α^I .
- **4** Any valid solution to **IP** is valid solution for **LP**! **5** $\hat{\alpha} \leq \alpha'$.

- **6** Got fractional solution (i.e., values of $\widehat{x_v}$).
- 7 Fractional solution is better than the optimal cost.
- Q: How to turn fractional solution into a (valid!) integer solution?
- **9** Using **rounding**.

- **(1)** Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- 2) optimal value of LP solution is $\hat{\alpha} = \sum_{v \in V} c_v \hat{x_v}$.
- **3** optimal integer solution: x_v^I , $\forall v \in V$ and α^I .
- Any valid solution to IP is valid solution for LP!
 \$\hlow{\alpha} \le \alpha'\$.

- **6** Got fractional solution (i.e., values of \hat{x}_{v}).
- Fractional solution is better than the optimal cost.
- Q: How to turn fractional solution into a (valid!) integer solution?
- **9** Using **rounding**.

- **(1)** Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- 2) optimal value of LP solution is $\hat{\alpha} = \sum_{v \in V} c_v \hat{x_v}$.
- **3** optimal integer solution: x_v^{\prime} , $\forall v \in V$ and α^{\prime} .
- **4** Any valid solution to **IP** is valid solution for **LP**! **5** $\hat{\alpha} \leq \alpha'$.

- **6** Got fractional solution (i.e., values of \hat{x}_{v}).
- Fractional solution is better than the optimal cost.
- Q: How to turn fractional solution into a (valid!) integer solution?
- **9** Using **rounding**.

- **(1)** Optimal solution to this LP: \hat{x}_{v} value of var X_{v} , $\forall v \in V$.
- 2) optimal value of LP solution is $\hat{\alpha} = \sum_{v \in V} c_v \hat{x_v}$.
- **3** optimal integer solution: x_v^I , $\forall v \in V$ and α^I .
- Any valid solution to IP is valid solution for LP!
 \$\hlow{\alpha} \le \alpha'\$.

- **6** Got fractional solution (i.e., values of \hat{x}_{v}).
- Fractional solution is better than the optimal cost.
- Q: How to turn fractional solution into a (valid!) integer solution?
- Using rounding.

- **(1)** consider vertex **v** and fractional value $\widehat{x_v}$.
- 2) If $\hat{x_v} = 1$ then include in solution!
- 3 If $\widehat{x_v} = \mathbf{0}$ then do include in solution.
- if $\hat{x_v} = 0.9 \implies \text{LP}$ considers **v** as being **0.9** useful.
- The LP puts its money where its belief is...
- ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- O Big idea: Trust LP values as guidance to usefulness of vertices.

- **(1)** consider vertex **v** and fractional value $\widehat{x_v}$.
- **2** If $\hat{x_v} = 1$ then include in solution!
- 3 If $\widehat{x_v} = \mathbf{0}$ then do include in solution.
- if $\hat{x_v} = 0.9 \implies \text{LP}$ considers **v** as being **0.9** useful.
- 5 The LP puts its money where its belief is...
- ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- O Big idea: Trust LP values as guidance to usefulness of vertices.

- **(1)** consider vertex **v** and fractional value $\widehat{x_v}$.
- **2** If $\hat{x}_v = 1$ then include in solution!
- **3** If $\hat{x}_v = \mathbf{0}$ then do **<u>not**</u> include in solution.
- if $\hat{x_v} = 0.9 \implies \text{LP}$ considers **v** as being **0.9** useful.
- ${f 5}$ The LP puts its money where its belief is...
- ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- O Big idea: Trust LP values as guidance to usefulness of vertices.

- **(1)** consider vertex **v** and fractional value $\hat{x_v}$.
- **2** If $\hat{x}_v = 1$ then include in solution!
- **3** If $\hat{x}_v = 0$ then do not include in solution.
- if $\hat{x_v} = 0.9 \implies \text{LP}$ considers **v** as being **0.9** useful.
- 5 The LP puts its money where its belief is...
- ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- O Big idea: Trust LP values as guidance to usefulness of vertices.

- **(1)** consider vertex **v** and fractional value $\hat{x_v}$.
- **2** If $\hat{x}_v = 1$ then include in solution!
- **3** If $\hat{x}_v = 0$ then do not include in solution.
- **(a)** if $\hat{x}_v = 0.9 \implies \text{LP}$ considers **v** as being **0.9** useful.
- 5 The LP puts its money where its belief is...
- ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- O Big idea: Trust LP values as guidance to usefulness of vertices.

- **(1)** consider vertex **v** and fractional value $\hat{x_v}$.
- **2** If $\hat{x}_v = 1$ then include in solution!
- 3 If $\hat{x}_v = 0$ then do not include in solution.
- **(a)** if $\hat{x}_v = 0.9 \implies \text{LP}$ considers **v** as being **0.9** useful.
- The LP puts its money where its belief is...
- ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- **1** Big idea: Trust LP values as guidance to usefulness of vertices.

- **(1)** consider vertex **v** and fractional value $\widehat{x_v}$.
- **2** If $\hat{x}_v = 1$ then include in solution!
- 3 If $\hat{x}_v = 0$ then do not include in solution.
- **(a)** if $\hat{x}_v = 0.9 \implies \text{LP}$ considers **v** as being **0.9** useful.
- ${f 9}$ The ${
 m LP}$ puts its money where its belief is...
- **(a)** ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- O Big idea: Trust LP values as guidance to usefulness of vertices.

- **(1)** consider vertex **v** and fractional value $\widehat{x_v}$.
- **2** If $\hat{x}_v = 1$ then include in solution!
- 3 If $\hat{x_v} = 0$ then do not include in solution.
- **(a)** if $\hat{x}_v = 0.9 \implies \text{LP}$ considers **v** as being **0.9** useful.
- ${f 9}$ The ${
 m LP}$ puts its money where its belief is...
- **(6)** ... $\hat{\alpha}$ value is a function of this "belief" generated by the LP.
- **@** Big idea: Trust LP values as guidance to usefulness of vertices.

Pick all vertices

threshold of usefulness according to LP.

$$S = \left\{ \mathbf{v} \mid \widehat{x_{\mathbf{v}}} \geq 1/2 \right\}.$$

1 Indeed, edge cover as: $\forall \mathbf{vu} \in E$ have $\hat{x_v} + \hat{x_u} \ge 1$.

$$\begin{array}{ll} \widehat{x_v}, \widehat{x_u} \in (0,1) \\ \implies \widehat{x_v} \ge 1/2 \text{ or } \widehat{x_u} \ge 1/2. \\ \implies v \in S \text{ or } u \in S \text{ (or both).} \\ \implies S \text{ covers all the edges of G.} \end{array}$$

- Pick all vertices

 threshold of usefulness according to LP.
- 2 $S = \{ v \mid \widehat{x_v} \ge 1/2 \}.$
- 3 Claim: *S* a valid vertex cover, and cost is low.
- **1** Indeed, edge cover as: $\forall \mathbf{vu} \in E$ have $\hat{x_v} + \hat{x_u} \ge 1$.

Pick all vertices

threshold of usefulness according to LP.

$$S = \left\{ v \mid \widehat{x_v} \ge 1/2 \right\}.$$

3 Claim: *S* a valid vertex cover, and cost is low.

1 Indeed, edge cover as: $\forall \mathbf{vu} \in E$ have $\widehat{x_v} + \widehat{x_u} \ge 1$.

● Pick all vertices ≥ threshold of usefulness according to LP.

$$S = \left\{ v \mid \widehat{x_v} \ge 1/2 \right\}.$$

() Indeed, edge cover as: $\forall \mathbf{vu} \in \mathsf{E}$ have $\widehat{x_v} + \widehat{x_u} \ge 1$.

$$\begin{array}{l} \widehat{x_v}, \widehat{x_u} \in (0,1) \\ \implies \widehat{x_v} \geq 1/2 \text{ or } \widehat{x_u} \geq 1/2. \\ \implies v \in S \text{ or } u \in S \text{ (or both).} \\ \implies S \text{ covers all the edges of G.} \end{array}$$

● Pick all vertices ≥ threshold of usefulness according to LP.

$$S = \left\{ v \mid \widehat{x_v} \ge 1/2 \right\}.$$

() Indeed, edge cover as: $\forall vu \in E$ have $\hat{x_v} + \hat{x_u} \ge 1$.

$$\widehat{x_{\mathsf{v}}}, \widehat{x_{\mathsf{u}}} \in (0, 1)$$

$$\implies \widehat{x_{v}} \ge 1/2 \text{ or } \widehat{x_{u}} \ge 1/2.$$
$$\implies v \in S \text{ or } u \in S \text{ (or both)}.$$
$$\implies S \text{ covers all the edges of } G$$

● Pick all vertices ≥ threshold of usefulness according to LP.

$$S = \left\{ v \mid \widehat{x_v} \ge 1/2 \right\}.$$

• Indeed, edge cover as: $\forall \mathbf{vu} \in \mathsf{E}$ have $\widehat{x_{\mathsf{v}}} + \widehat{x_{\mathsf{u}}} \ge 1$.

$$\begin{array}{l} \widehat{x_v}, \widehat{x_u} \in (0, 1) \\ \Longrightarrow \ \widehat{x_v} \ge 1/2 \text{ or } \widehat{x_u} \ge 1/2. \\ \Longrightarrow \ v \in S \text{ or } u \in S \text{ (or both)} \\ \Longrightarrow \ S \text{ covers all the edges of } \end{array}$$

● Pick all vertices ≥ threshold of usefulness according to LP.

$$S = \left\{ v \mid \widehat{x_v} \ge 1/2 \right\}.$$

3 Claim: *S* a valid vertex cover, and cost is low.

() Indeed, edge cover as: $\forall \mathbf{vu} \in E$ have $\widehat{x_v} + \widehat{x_u} \ge 1$.

$$\widehat{x_{v}}, \widehat{x_{u}} \in (0, 1) \implies \widehat{x_{v}} \ge 1/2 \text{ or } \widehat{x_{u}} \ge 1/2. \implies v \in S \text{ or } u \in S \text{ (or both).} \implies S \text{ covers all the edges of } G.$$

● Pick all vertices ≥ threshold of usefulness according to LP.

$$S = \left\{ v \mid \widehat{x_v} \ge 1/2 \right\}.$$

3 Claim: *S* a valid vertex cover, and cost is low.

() Indeed, edge cover as: $\forall \mathbf{vu} \in E$ have $\widehat{x_v} + \widehat{x_u} \ge 1$.

$$\widehat{x_{v}}, \widehat{x_{u}} \in (0, 1) \implies \widehat{x_{v}} \ge 1/2 \text{ or } \widehat{x_{u}} \ge 1/2. \implies v \in S \text{ or } u \in S \text{ (or both).} \\ \implies S \text{ covers all the edges of G.}$$

Cost of solution

Cost of **S**:

 $\mathsf{c}_{\mathcal{S}} = \sum_{\mathsf{v} \in \mathcal{S}} \mathsf{c}_{\mathsf{v}} = \sum_{\mathsf{v} \in \mathcal{S}} \mathbf{1} \cdot \mathsf{c}_{\mathsf{v}} \leq \sum_{\mathsf{v} \in \mathcal{S}} 2\widehat{x_{\mathsf{v}}} \cdot \mathsf{c}_{\mathsf{v}} \leq 2\sum_{\mathsf{v} \in \vee} \widehat{x_{\mathsf{v}}} \mathsf{c}_{\mathsf{v}} = 2\widehat{\alpha} \leq 2\alpha',$

since $\widehat{x_v} \ge 1/2$ as $v \in S$. α' is cost of the optimal solution \implies

Theorem

The **Weighted Vertex Cover** problem can be **2**-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

Cost of solution

Cost of **S**:

 $\mathsf{c}_{\mathcal{S}} = \sum_{\mathsf{v} \in \mathcal{S}} \mathsf{c}_{\mathsf{v}} = \sum_{\mathsf{v} \in \mathcal{S}} \mathbf{1} \cdot \mathsf{c}_{\mathsf{v}} \leq \sum_{\mathsf{v} \in \mathcal{S}} 2\widehat{x_{\mathsf{v}}} \cdot \mathsf{c}_{\mathsf{v}} \leq 2\sum_{\mathsf{v} \in \mathsf{V}} \widehat{x_{\mathsf{v}}} \mathsf{c}_{\mathsf{v}} = 2\widehat{\alpha} \leq 2\alpha',$

since $\hat{x_v} \ge 1/2$ as $v \in S$. α' is cost of the optimal solution \implies

Theorem

The **Weighted Vertex Cover** problem can be **2**-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

Cost of solution

Cost of **S**:

 $\mathsf{c}_{\mathcal{S}} = \sum_{\mathsf{v} \in \mathcal{S}} \mathsf{c}_{\mathsf{v}} = \sum_{\mathsf{v} \in \mathcal{S}} \mathbf{1} \cdot \mathsf{c}_{\mathsf{v}} \leq \sum_{\mathsf{v} \in \mathcal{S}} 2\widehat{x_{\mathsf{v}}} \cdot \mathsf{c}_{\mathsf{v}} \leq 2\sum_{\mathsf{v} \in \mathsf{V}} \widehat{x_{\mathsf{v}}} \mathsf{c}_{\mathsf{v}} = 2\widehat{\alpha} \leq 2\alpha',$

since $\widehat{x_v} \ge 1/2$ as $v \in S$. α' is cost of the optimal solution \implies

Theorem

The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

- Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
- Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
- Solving a relaxation of an optimization problem into a LP provides us with insight.
- ④ But... have to be creative in the rounding.

- Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
- Ont aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
- Solving a relaxation of an optimization problem into a LP provides us with insight.
- ④ But... have to be creative in the rounding.

- Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
- Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
- Solving a relaxation of an optimization problem into a LP provides us with insight.
- ④ But... have to be creative in the rounding.

- Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
- Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
- Solving a relaxation of an optimization problem into a LP provides us with insight.
- But... have to be creative in the rounding.

26.1.2: Revisiting Set Cover

Revisiting Set Cover

Purpose: See new technique for an approximation algorithm.

Not better than greedy algorithm already seen O(log n) approximation.

Problem: Set Cover

Instance: (S, \mathcal{F}) S - a set of n elements \mathcal{F} - a family of subsets of S, s.t. $\bigcup_{X \in \mathcal{F}} X = S$. **Question:** The set $\mathcal{X} \subseteq F$ such that \mathcal{X} contains as few sets as possible, and \mathcal{X} covers S.

Revisiting Set Cover

- Purpose: See new technique for an approximation algorithm.
- Not better than greedy algorithm already seen O(log n) approximation.

Problem: Set Cover

Instance: (S, \mathcal{F}) S - a set of n elements \mathcal{F} - a family of subsets of S, s.t. $\bigcup_{X \in \mathcal{F}} X = S$. **Question:** The set $\mathcal{X} \subseteq F$ such that \mathcal{X} contains as few sets as possible, and \mathcal{X} covers S.

Revisiting Set Cover

- Purpose: See new technique for an approximation algorithm.
- Not better than greedy algorithm already seen O(log n) approximation.

Problem: Set Cover

Instance: (S, \mathcal{F}) *S* - a set of *n* elements \mathcal{F} - a family of subsets of *S*, s.t. $\bigcup_{X \in \mathcal{F}} X = S$. **Question:** The set $\mathcal{X} \subseteq F$ such that \mathcal{X} contains as few sets as possible, and \mathcal{X} covers *S*.

Next, we relax this IP into the following LP.

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ & \mathbf{0} \leq x_U \leq \mathbf{1} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq \mathbf{1} & \forall s \in S. \end{array}$$

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ \text{s.t.} & x_U \in \{0, 1\} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}. s \in U} x_U \geq 1 & \forall s \in S. \end{array}$$

Next, we relax this IP into the following LP.

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ & \mathbf{0} \leq x_U \leq \mathbf{1} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq \mathbf{1} & \forall s \in S. \end{array}$$

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ \text{s.t.} & x_U \in \{0, 1\} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq 1 & \forall s \in S. \end{array}$$

Next, we relax this IP into the following LP.

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ & \mathbf{0} \leq x_U \leq \mathbf{1} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq \mathbf{1} & \forall s \in S. \end{array}$$

1 LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}$.

- 2 Opt IP solution: $\forall U \in \mathfrak{F}, x_{U}^{l}$, and α^{l} .
- **3** Use LP solution to guide in rounding process.
- If $\widehat{x_U}$ is close to 1 then pick U to cover.
- **5** If $\widehat{x_U}$ close to **0** do not.
- Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- Z_S : indicator variable. 1 if $S \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \operatorname{of} \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \leq \alpha'.$

- **1** LP solution: $\forall U \in \mathcal{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_{U}$, and α' .
- **3** Use LP solution to guide in rounding process.
- 4 If $\widehat{x_U}$ is close to 1 then pick U to cover.
- **5** If $\widehat{x_U}$ close to **0** do not.
- Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- Z_S : indicator variable. 1 if $S \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$

- **1** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_U$, and α' .
- **③** Use LP solution to guide in rounding process.
- 4 If $\widehat{x_U}$ is close to 1 then pick U to cover.
- **5** If $\widehat{x_U}$ close to **0** do not.
- Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **8** Z_s : indicator variable. **1** if $s \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$

- **1** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_U$, and α' .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- **5** If $\widehat{x_U}$ close to **0** do not.
- Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- Z_S : indicator variable. 1 if $S \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$

- **1** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_U$, and α' .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- **(a)** If $\widehat{x_U}$ close to **(b)** do not.
- Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- Z_s : indicator variable. 1 if $s \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$

- **1** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_U$, and α' .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- **(a)** If $\widehat{x_U}$ close to **(b)** do not.
- **(a)** Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- Z_s : indicator variable. 1 if $s \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$

- **1** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}, \text{ and } \widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_U$, and α' .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- **(a)** If $\widehat{x_U}$ close to **(b)** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- Z_s : indicator variable. 1 if $s \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$
- In expectation, G is not too expensive.

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_U$, and α' .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x_U^{l}$, and α^{l} .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **(a)** Z_s : indicator variable. **1** if $s \in G$.
- **9** Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \leq \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_U$, and α' .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- **9** Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \leq \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x_U^{l}$, and α^{l} .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- **9** Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\text{cost of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \leq \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x_U^{l}$, and α^{l} .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- **9** Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\text{cost of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x_U^{l}$, and α^{l} .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- **9** Cost of \mathcal{G} is $\sum_{S \in \mathcal{F}} Z_S$, and the expected cost is $\mathbf{E}[\text{cost of } \mathcal{G}] = \mathbf{E}[\sum_{S \in \mathcal{F}} Z_S] = \sum_{S \in \mathcal{F}} \mathbf{E}[Z_S] = \sum_{S \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{S \in \mathcal{F}} \widehat{x_S} = \widehat{\alpha} \le \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x_U^{l}$, and α^{l} .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- **9** Cost of \mathcal{G} is $\sum_{S \in \mathcal{F}} Z_S$, and the expected cost is $\mathbf{E}[\text{cost of } \mathcal{G}] = \mathbf{E}[\sum_{S \in \mathcal{F}} Z_S] = \sum_{S \in \mathcal{F}} \mathbf{E}[Z_S] = \sum_{S \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{S \in \mathcal{F}} \widehat{x_S} = \widehat{\alpha} \le \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.
Set Cover – IP & LP

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x_U^{l}$, and α^{l} .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\operatorname{cost} \text{ of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \leq \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.

Sariel (UIUC)

Set Cover – IP & LP

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x_U^{l}$, and α^{l} .
- **3** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- **9** Cost of \mathcal{G} is $\sum_{S \in \mathcal{F}} Z_S$, and the expected cost is $\mathbf{E}[\text{cost of } \mathcal{G}] = \mathbf{E}[\sum_{S \in \mathcal{F}} Z_S] = \sum_{S \in \mathcal{F}} \mathbf{E}[Z_S] = \sum_{S \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{S \in \mathcal{F}} \widehat{x_S} = \widehat{\alpha} \le \alpha'.$
- In expectation, G is not too expensive.
- **u** Bigus problumos: G might fail to cover some element $s \in S$.

Set Cover – IP & LP

- **(1)** LP solution: $\forall U \in \mathfrak{F}, \widehat{x_U}$, and $\widehat{\alpha}$.
- **2** Opt IP solution: $\forall U \in \mathfrak{F}, x'_U$, and α' .
- **③** Use LP solution to guide in rounding process.
- **(4)** If $\widehat{x_U}$ is close to **1** then pick **U** to cover.
- If $\widehat{x_U}$ close to **0** do not.
- **(a)** Idea: Pick $U \in \mathfrak{F}$: randomly choose U with probability $\widehat{x_U}$.
- Resulting family of sets 9.
- **a** Z_{S} : indicator variable. **1** if $S \in G$.
- **9** Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_s$, and the expected cost is $\mathbf{E}[\text{cost of } \mathcal{G}] = \mathbf{E}[\sum_{s \in \mathcal{F}} Z_s] = \sum_{s \in \mathcal{F}} \mathbf{E}[Z_s] = \sum_{s \in \mathcal{F}} \Pr[S \in \mathcal{G}] = \sum_{s \in \mathcal{F}} \widehat{x_s} = \widehat{\alpha} \le \alpha'.$
- 0 In expectation, G is not too expensive.
 - **D** Bigus problumos: \mathcal{G} might fail to cover some element $s \in S$.

Set Cover – Rounding continued

- Solution: Repeat rounding stage m = 10 ⌈lg n⌉ = O(log n) times.
- **2** n = |S|.
- **3** G_i : random cover computed in *i*th iteration.
- $\mathcal{H} = \bigcup_i \mathcal{G}_i$. Return \mathcal{H} as the required cover.

Set Cover – Rounding continued

- Solution: Repeat rounding stage m = 10 ⌈lg n⌉ = O(log n) times.
- **2** n = |S|.
- (a) G_i : random cover computed in *i*th iteration.
- **4** $\mathcal{H} = \bigcup_i \mathcal{G}_i$. Return \mathcal{H} as the required cover.

() For an element $s \in S$, we have that

$$\sum_{\boldsymbol{U}\in\mathcal{F},s\in\boldsymbol{U}}\widehat{\boldsymbol{x}_{\boldsymbol{U}}}\geq\mathbf{1},$$

Pr s not covered by \mathcal{G}_i (*i*th iteration set).
Pr s not covered by \mathcal{G}_i

=
$$\Pr[\text{ no } U \in \mathcal{F}, \text{ s.t. } s \in U \text{ picked into } \mathcal{G}_i]$$

= $\prod_{U \in \mathcal{F}, s \in U} \Pr[U \text{ was not picked into } \mathcal{G}_i]$

$$= \prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \le \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$$

$$= \expig(-\sum_{oldsymbol{U}\in \mathfrak{F}, s\inoldsymbol{U}}\widehat{x_{oldsymbol{U}}}ig) \leq \exp(-1) \leq rac{1}{2}$$

16

$$\sum_{U\in\mathfrak{F},s\in U}\widehat{x_U}\geq 1,$$

2 probability *s* not covered by \mathcal{G}_i (*i*th iteration set). $\Pr[s \text{ not covered by } \mathcal{G}_i]$ $= \Pr[\text{ no } U \in \mathcal{F}, \text{ s.t. } s \in U \text{ picked into } \mathcal{G}_i]$ $= \prod_{U \in \mathcal{F}, s \in U} \Pr[U \text{ was not picked into } \mathcal{G}_i]$ $= \prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$ $= \exp\left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\right) \leq \exp(-1) \leq \frac{1}{2},$

L

16

$$\sum_{J\in\mathfrak{F},s\in U}\widehat{x_U}\geq 1,$$

Pr[s not covered by \mathcal{G}_i (*i*th iteration set).
Pr[s not covered by \mathcal{G}_i]
= Pr[no $U \in \mathcal{F}$, s.t. $s \in U$ picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} \Pr[U$ was not picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$ = $\exp\left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\right) \leq \exp(-1) \leq \frac{1}{2}$,

L

16

() For an element $s \in S$, we have that

$$\sum_{U\in\mathfrak{F},s\in U}\widehat{x_U}\geq 1,$$

Pr[s not covered by
$$\mathcal{G}_i$$
 (*i*th iteration set).
Pr[s not covered by \mathcal{G}_i]
= Pr[no $U \in \mathcal{F}$, s.t. $s \in U$ picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} \Pr[U$ was not picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$
= $\exp\left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\right) \leq \exp(-1) \leq \frac{1}{2}$,

() For an element $s \in S$, we have that

$$\sum_{U\in\mathfrak{F},s\in U}\widehat{x_U}\geq 1,$$

Pr[s not covered by
$$\mathcal{G}_i$$
 (*i*th iteration set).
Pr[s not covered by \mathcal{G}_i]
= Pr[no $U \in \mathcal{F}$, s.t. $s \in U$ picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} \Pr[U$ was not picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$
= $\exp\left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\right) \leq \exp(-1) \leq \frac{1}{2}$,

() For an element $s \in S$, we have that

$$\sum_{U\in\mathfrak{F},s\in U}\widehat{x_U}\geq 1,$$

Pr[s not covered by
$$\mathcal{G}_i$$
 (*i*th iteration set).
Pr[s not covered by \mathcal{G}_i]
= Pr[no $U \in \mathcal{F}$, s.t. $s \in U$ picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} \Pr[U$ was not picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$
= $\exp\left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\right) \leq \exp(-1) \leq \frac{1}{2}$,

() For an element $s \in S$, we have that

$$\sum_{U\in\mathfrak{F},s\in U}\widehat{x_U}\geq 1,$$

Pr[s not covered by
$$\mathcal{G}_i$$
 (*i*th iteration set).
Pr[s not covered by \mathcal{G}_i]
= Pr[no $U \in \mathcal{F}$, s.t. $s \in U$ picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} \Pr[U$ was not picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$
= $\exp\left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\right) \leq \exp(-1) \leq \frac{1}{2}$,

() For an element $s \in S$, we have that

$$\sum_{U\in\mathfrak{F},s\in U}\widehat{x_U}\geq 1,$$

Pr[s not covered by
$$\mathcal{G}_i$$
 (*i*th iteration set).
Pr[s not covered by \mathcal{G}_i]
= Pr[no $U \in \mathcal{F}$, s.t. $s \in U$ picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} \Pr[U$ was not picked into \mathcal{G}_i]
= $\prod_{U \in \mathcal{F}, s \in U} (1 - \widehat{x_U}) \leq \prod_{U \in \mathcal{F}, s \in U} \exp(-\widehat{x_U})$
= $\exp\left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_U}\right) \leq \exp(-1) \leq \frac{1}{2}$,

() For an element $s \in S$, we have that

$$\sum_{\boldsymbol{U}\in\mathcal{F},s\in\boldsymbol{U}}\widehat{\boldsymbol{x}_{\boldsymbol{U}}}\geq\mathbf{1},$$

Pr s not covered by G_i (*i*th iteration set). $\Pr\left[s \text{ not covered by } G_i\right] \leq \frac{1}{2}$

16

Probability of a single item to be covered

() $\Pr[s \text{ not covered by } \mathcal{G}_i] \leq 1/2.$

- 2 Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in g_1, \ldots, g_m .
- I probability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

- **()** $\Pr[s \text{ not covered by } \mathcal{G}_i] \leq 1/2.$
- ② Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in $\mathcal{G}_1, \ldots, \mathcal{G}_m$.
- I probability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

- **()** $\Pr[s \text{ not covered by } \mathcal{G}_i] \leq 1/2.$
- ② Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in $\mathcal{G}_1, \ldots, \mathcal{G}_m$.
- I probability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

The set ${f H}$ covers ${f S}$

- Pr s not covered by $G_i \leq 1/2$.
 - ② Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in g_1, \ldots, g_m .
- In probability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

The set ${f H}$ covers ${f S}$

- Pr s not covered by $G_i \leq 1/2$.
 - ② Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in g_1, \ldots, g_m .
- In probability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

- Pr s not covered by $G_i \leq 1/2$.
 - ② Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in g_1, \ldots, g_m .
- In probability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

- Pr s not covered by $G_i \leq 1/2$.
 - ② Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in g_1, \ldots, g_m .
- In probability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

- Pr s not covered by $G_i \leq 1/2$.
 - ② Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in g_1, \ldots, g_m .
- oprobability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

- Pr s not covered by $G_i \leq 1/2$.
 - ② Number of iterations of rounding $m = O(\log n)$.
- 3 Covering with sets in g_1, \ldots, g_m .
- In probability s is not covered in all m iterations

$$P_{s} = \Pr\left[s \text{ not covered by } \mathcal{G}_{1}, \dots, \mathcal{F}_{m}\right]$$

$$\leq \Pr\left[(s \notin \mathcal{F}_{1}) \cap (s \notin \mathcal{F}_{2}) \cap \dots \cap (s \notin \mathcal{F}_{m})\right]$$

$$\leq \Pr\left[s \notin \mathcal{F}_{1}\right] \Pr\left[s \notin \mathcal{F}_{2}\right] \cdots \Pr\left[s \notin \mathcal{F}_{m}\right]$$

$$= \frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2} = \left(\frac{1}{2}\right)^{m} < \frac{1}{n^{10}},$$

1 n = |S|,

2 Probability of $s \in S$, not to be in $\mathfrak{G}_1 \cup \ldots \cup \mathfrak{F}_m$ is

 $P_s < \frac{1}{n^{10}}.$

3 probability one of \pmb{n} elements of \pmb{S} is not covered by $\pmb{\mathcal{H}}$ is

 $\sum_{s \in S} \Pr[s \notin \mathfrak{G}_1 \cup \ldots \cup \mathfrak{F}_m] = \sum_{s \in S} P_s < n(1/n^{10}) = 1/n^9.$

(1) n = |S|,

② Probability of $s \in S$, not to be in $\mathfrak{G}_1 \cup \ldots \cup \mathfrak{F}_m$ is

 $P_s < \frac{1}{n^{10}}.$

In probability one of n elements of S is not covered by \mathfrak{H} is

$$\sum_{s \in S} \Pr[s \notin \mathcal{G}_1 \cup \ldots \cup \mathcal{F}_m] = \sum_{s \in S} P_s < n(1/n^{10}) = 1/n^9.$$

(1) n = |S|,

② Probability of $s \in S$, not to be in $\mathfrak{G}_1 \cup \ldots \cup \mathfrak{F}_m$ is

 $P_s < \frac{1}{n^{10}}.$

(a) probability one of n elements of ${f S}$ is not covered by ${f H}$ is

$$\sum_{s \in S} \Pr[s \notin \mathcal{G}_1 \cup \ldots \cup \mathcal{F}_m] = \sum_{s \in S} P_s < n(1/n^{10}) = 1/n^9.$$

(1) n = |S|,

② Probability of $s \in S$, not to be in $\mathfrak{G}_1 \cup \ldots \cup \mathfrak{F}_m$ is

 $P_s < \frac{1}{n^{10}}.$

(a) probability one of n elements of ${f S}$ is not covered by ${f H}$ is

$$\sum_{s \in S} \Pr[s \notin \mathcal{G}_1 \cup \ldots \cup \mathcal{F}_m] = \sum_{s \in S} P_s < n(1/n^{10}) = 1/n^9.$$

(1) n = |S|,

② Probability of $s \in S$, not to be in $\mathfrak{G}_1 \cup \ldots \cup \mathfrak{F}_m$ is

 $P_s < \frac{1}{n^{10}}.$

 ${f 3}$ probability one of n elements of ${f S}$ is not covered by ${f {\cal H}}$ is

$$\sum_{s \in S} \Pr[s \notin \mathcal{G}_1 \cup \ldots \cup \mathcal{F}_m] = \sum_{s \in S} P_s < n(1/n^{10}) = 1/n^9.$$

XXX

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ & \mathbf{0} \leq x_U \leq \mathbf{1} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq \mathbf{1} & \forall s \in S. \end{array}$$

- **2** $\widehat{x_{U}}$: Value of x_{u} in the optimal LP solution.
- **3** Fractional solution: $\widehat{\alpha} = \sum_{U \in \mathcal{F}} \widehat{x_U}$.
- Integral solution (what we want): $\alpha' \geq \widehat{\alpha}$.

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ & \mathbf{0} \leq x_U \leq \mathbf{1} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq \mathbf{1} & \forall s \in S. \end{array}$$

- **2** $\widehat{x_{U}}$: Value of x_{u} in the optimal LP solution.
- **3** Fractional solution: $\widehat{\alpha} = \sum_{U \in \mathcal{F}} \widehat{x_U}$.
- Integral solution (what we want): $\alpha' \geq \widehat{\alpha}$.

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ & \mathbf{0} \leq x_U \leq \mathbf{1} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq \mathbf{1} & \forall s \in S. \end{array}$$

- **2** $\widehat{x_{u}}$: Value of x_{u} in the optimal LP solution.
- **3** Fractional solution: $\hat{\alpha} = \sum_{U \in \mathcal{F}} \widehat{x_U}$.
- Integral solution (what we want): $\alpha' \geq \hat{\alpha}$.

$$\begin{array}{ll} \min & \alpha = \sum_{U \in \mathcal{F}} x_U, \\ & \mathbf{0} \leq x_U \leq \mathbf{1} & \forall U \in \mathcal{F}, \\ & \sum_{U \in \mathcal{F}, s \in U} x_U \geq \mathbf{1} & \forall s \in S. \end{array}$$

- **2** $\widehat{x_{u}}$: Value of x_{u} in the optimal LP solution.
- **(a)** Fractional solution: $\widehat{\alpha} = \sum_{U \in \mathcal{F}} \widehat{x_U}$.
- Integral solution (what we want): $\alpha' \geq \widehat{\alpha}$.

Cost of solution

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_U}$: LP value for set U in optimal solution.
- (a) For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}\left[\sum_{U \in \mathcal{F}} Z_U\right] = \sum_{U \in \mathcal{F}} \mathbf{E}[Z_U] = \sum_{U \in \mathcal{F}} \widehat{x_U}$ $= \widehat{\alpha} \le \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

Cost of solution

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- (a) For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}\left[\sum_{U \in \mathcal{F}} Z_U\right] = \sum_{U \in \mathcal{F}} \mathbf{E}[Z_U] = \sum_{U \in \mathcal{F}} \widehat{x_U}$ $= \widehat{\alpha} \le \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

Cost of solution

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}[\sum_{U \in \mathcal{F}} Z_U] = \sum_{U \in \mathcal{F}} \mathbf{E}[Z_U] = \sum_{U \in \mathcal{F}} \widehat{x_U}$ $= \widehat{\alpha} \le \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- 6 Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$
- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- **(a)** Expected number of sets in the *i*th sample: $E[|\mathcal{G}_i|] = E[\sum_{U \in \mathcal{F}} Z_U] = \sum_{U \in \mathcal{F}} E[Z_U] = \sum_{U \in \mathcal{F}} \widehat{x_U}$ $= \widehat{\alpha} \le \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- 6 Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- **@** Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}[\sum_{U \in \mathcal{F}} Z_U] = \sum_{U \in \mathcal{F}} \mathbf{E}[Z_U] = \sum_{U \in \mathcal{F}} \widehat{x_U}$ $= \widehat{\alpha} \le \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- 6 Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- **(a)** Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}[\sum_{u \in \mathcal{F}} Z_u] = \sum_{u \in \mathcal{F}} \mathbf{E}[Z_u] = \sum_{u \in \mathcal{F}} \widehat{x_u}$ $= \widehat{\alpha} \le \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- 6 Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- **(a)** Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}[\sum_{u \in \mathcal{F}} Z_u] = \sum_{u \in \mathcal{F}} \mathbf{E}[Z_u] = \sum_{u \in \mathcal{F}} \widehat{x_u}$ $= \widehat{\alpha} \le \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- 6 Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- **@** Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}[\sum_{\boldsymbol{U}\in\mathcal{F}} \boldsymbol{Z}_{\boldsymbol{U}}] = \sum_{\boldsymbol{U}\in\mathcal{F}} \mathbf{E}[\boldsymbol{Z}_{\boldsymbol{U}}] = \sum_{\boldsymbol{U}\in\mathcal{F}} \widehat{\boldsymbol{x}_{\boldsymbol{U}}}$ $= \widehat{\boldsymbol{\alpha}} \leq \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathsf{E}[|\mathcal{H}|] = \mathsf{E}[|\cup_i \mathcal{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- Section Each iteration expected cost of cover ≤ cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathbf{E}[|\mathcal{H}|] = \mathbf{E}[|\cup_i \mathcal{G}_i|] \leq \mathbf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- **@** Expected number of sets in the *i*th sample: $\mathbf{E}[|\mathcal{G}_i|] = \mathbf{E}[\sum_{U \in \mathcal{F}} Z_U] = \sum_{U \in \mathcal{F}} \mathbf{E}[Z_U] = \sum_{U \in \mathcal{F}} \widehat{x_U}$ $= \widehat{\alpha} \le \alpha'.$
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathbf{E}[|\mathcal{H}|] = \mathbf{E}[|\cup_i \mathcal{G}_i|] \leq \mathbf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- Section Each iteration expected cost of cover ≤ cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathbf{E}[|\mathcal{H}|] = \mathbf{E}[|\cup_i \mathcal{G}_i|] \leq \mathbf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- Section Each iteration expected cost of cover ≤ cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathbf{E}[|\mathcal{H}|] = \mathbf{E}[|\cup_i \mathcal{G}_i|] \leq \mathbf{E}\left[\sum_i |\mathcal{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

- **(** S, \mathcal{F}): Given instance of **Set Cover**.
- **2** For $U \in \mathcal{F}$, $\widehat{x_{U}}$: LP value for set U in optimal solution.
- **3** For \mathcal{G}_i : Indicator variable $Z_u = 1 \iff U \in \mathcal{G}_i$.
- Each iteration expected cost of cover \leq cost of optimal solution (i.e., α'). XXX
- Expected size of the solution is

$$\mathsf{E}[|\mathfrak{H}|] = \mathsf{E}[|\cup_i \mathfrak{G}_i|] \leq \mathsf{E}\left[\sum_i |\mathfrak{G}_i|\right] \leq m\alpha' = O(\alpha' \log n).$$

The result

Theorem

By solving an LP one can get an $O(\log n)$ -approximation to Set Cover by a randomized algorithm. The algorithm succeeds with high probability.

26.1.3: Minimizing congestion

- G: graph. *n* vertices.
- 2 π_i, σ_i paths with the same endpoints v_i, u_i ∈ V(G), for i = 1,..., t.
- 8 Rule I: Send one unit of flow from v_i to u_i.
- **4** Rule II: Choose whether to use π_i or σ_i .
- Target: No edge in G is being used too much.

Definition

Given a set X of paths in a graph G, the **congestion** of X is the maximum number of paths in X that use the same edge.

- **2** $\hat{x_i}$: value of x_i in the optimal LP solution.
- 3 \widehat{w} : value of w in LP solution.
- Optimal congestion must be bigger than \widehat{w} .
- **5** X_i : random variable one with probability $\hat{x_i}$, and zero otherwise.
- **6** If $X_i = 1$ then use π to route from \mathbf{v}_i to \mathbf{u}_i .
- **7** Otherwise use σ_i .

 $\begin{array}{cccc} \mathbf{D} & \mathrm{IP} \implies \mathrm{LP}: \\ & \min & w \\ & \mathrm{s.t.} & x_i \geq 0 & & i = 1, \dots, t, \\ & & x_i \leq 1 & & i = 1, \dots, t, \\ & & & \sum_{\mathbf{e} \in \pi_i} x_i + \sum_{\mathbf{e} \in \sigma_i} (1 - x_i) \leq w & & \forall \mathbf{e} \in E. \end{array}$

- 2) $\hat{x_i}$: value of x_i in the optimal LP solution.
- 3 \widehat{w} : value of w in LP solution.
- Optimal congestion must be bigger than \widehat{w} .
- **5** X_i : random variable one with probability \hat{x}_i , and zero otherwise.
- If $X_i = 1$ then use π to route from \mathbf{v}_i to \mathbf{u}_i .
- **7** Otherwise use σ_i .

 $\begin{array}{cccc} \mathbf{D} & \mathrm{IP} \implies \mathrm{LP}: \\ & \min & w \\ & \mathrm{s.t.} & x_i \geq 0 & & i = 1, \dots, t, \\ & & x_i \leq 1 & & i = 1, \dots, t, \\ & & & \sum_{\mathbf{e} \in \pi_i} x_i + \sum_{\mathbf{e} \in \sigma_i} (1 - x_i) \leq w & & \forall \mathbf{e} \in E. \end{array}$

- (a) \hat{x}_i : value of x_i in the optimal LP solution.
- 3 \widehat{w} : value of w in LP solution.
- Optimal congestion must be bigger than \widehat{w} .
- **5** X_i : random variable one with probability \hat{x}_i , and zero otherwise.
- If $X_i = 1$ then use π to route from \mathbf{v}_i to \mathbf{u}_i .
- **7** Otherwise use σ_i .

 $\begin{array}{rcl} \mathrm{IP} \implies \mathrm{LP}: \\ & \min & w \\ & \mathrm{s.t.} & x_i \geq 0 & i = 1, \dots, t, \\ & & x_i \leq 1 & i = 1, \dots, t, \\ & & \sum_{\mathbf{e} \in \pi_i} x_i + \sum_{\mathbf{e} \in \sigma_i} (1 - x_i) \leq w & \forall \mathbf{e} \in E. \end{array}$

- 2 $\widehat{x_i}$: value of x_i in the optimal LP solution.
- (a) \widehat{w} : value of w in LP solution.
- Optimal congestion must be bigger than \widehat{w} .
- **5** X_i : random variable one with probability $\hat{x_i}$, and zero otherwise.
- If $X_i = 1$ then use π to route from v_i to u_i .
- **7** Otherwise use σ_i .

 $IP \implies LP:$ $\min \quad w$ s.t. $x_i \ge 0$ $i = 1, \dots, t,$ $x_i \le 1$ $\sum_{e \in \pi_i} x_i + \sum_{e \in \sigma_i} (1 - x_i) \le w$ $\forall e \in E.$

- 2 $\widehat{x_i}$: value of x_i in the optimal LP solution.
- (a) \widehat{w} : value of w in LP solution.
- Optimal congestion must be bigger than \widehat{w} .
- **(a)** X_i : random variable one with probability \hat{x}_i , and zero otherwise.
- If $X_i = 1$ then use π to route from v_i to u_i .
- **7** Otherwise use σ_i .

 $IP \implies LP:$ $\min \quad w$ s.t. $x_i \ge 0$ $i = 1, \dots, t,$ $x_i \le 1$ $\sum_{e \in \pi_i} x_i + \sum_{e \in \sigma_i} (1 - x_i) \le w$ $\forall e \in E.$

- 2 $\widehat{x_i}$: value of x_i in the optimal LP solution.
- (a) \widehat{w} : value of w in LP solution.
- Optimal congestion must be bigger than \widehat{w} .
- **(a)** X_i : random variable one with probability \hat{x}_i , and zero otherwise.
- **6** If $X_i = 1$ then use π to route from \mathbf{v}_i to \mathbf{u}_i .

7 Otherwise use σ_i .

- 2 $\widehat{x_i}$: value of x_i in the optimal LP solution.
- (a) \widehat{w} : value of w in LP solution.
- Optimal congestion must be bigger than \widehat{w} .
- **(a)** X_i : random variable one with probability \hat{x}_i , and zero otherwise.
- **6** If $X_i = 1$ then use π to route from \mathbf{v}_i to \mathbf{u}_i .
- Otherwise use *\sigma_i*.

- **(**) Congestion of **e** is $Y_e = \sum_{e \in \pi_i} X_i + \sum_{e \in \sigma_i} (1 X_i)$.
- And in expectation

$$egin{aligned} lpha_{\mathrm{e}} &= \mathsf{E}\Big[Y_{\mathrm{e}}\Big] = \mathsf{E}iggl[\sum_{\mathrm{e}\in\pi_{i}}X_{i} + \sum_{\mathrm{e}\in\sigma_{i}}(1-X_{i})\Big] \ &= \sum_{\mathrm{e}\in\pi_{i}}\mathsf{E}iggl[X_{i}iggr] + \sum_{\mathrm{e}\in\sigma_{i}}\mathsf{E}iggl[(1-X_{i})iggr] \ &= \sum_{\mathrm{e}\in\pi_{i}}\widehat{x_{i}} + \sum_{\mathrm{e}\in\sigma_{i}}(1-\widehat{x_{i}}) \leq \widehat{w}. \end{aligned}$$

3 $\widehat{\boldsymbol{w}}$: Fractional congestion (from LP solution).

() Congestion of **e** is $Y_{e} = \sum_{e \in \pi_{i}} X_{i} + \sum_{e \in \sigma_{i}} (1 - X_{i})$.

2 And in expectation

$$\begin{aligned} \alpha_{\mathbf{e}} &= \mathbf{E}\Big[Y_{\mathbf{e}}\Big] = \mathbf{E}\left[\sum_{\mathbf{e}\in\pi_{i}}X_{i} + \sum_{\mathbf{e}\in\sigma_{i}}(1-X_{i})\right] \\ &= \sum_{\mathbf{e}\in\pi_{i}}\mathbf{E}\Big[X_{i}\Big] + \sum_{\mathbf{e}\in\sigma_{i}}\mathbf{E}\Big[(1-X_{i})\Big] \\ &= \sum_{\mathbf{e}\in\pi_{i}}\widehat{x}_{i} + \sum_{\mathbf{e}\in\sigma_{i}}(1-\widehat{x}_{i}) \leq \widehat{w}. \end{aligned}$$

3 $\widehat{\boldsymbol{w}}$: Fractional congestion (from LP solution).

() Congestion of **e** is $Y_{e} = \sum_{e \in \pi_{i}} X_{i} + \sum_{e \in \sigma_{i}} (1 - X_{i})$.

2 And in expectation

$$\begin{aligned} \alpha_{\mathbf{e}} &= \mathbf{E}\Big[Y_{\mathbf{e}}\Big] = \mathbf{E}\left[\sum_{\mathbf{e}\in\pi_{i}}X_{i} + \sum_{\mathbf{e}\in\sigma_{i}}(1-X_{i})\right] \\ &= \sum_{\mathbf{e}\in\pi_{i}}\mathbf{E}\Big[X_{i}\Big] + \sum_{\mathbf{e}\in\sigma_{i}}\mathbf{E}\Big[(1-X_{i})\Big] \\ &= \sum_{\mathbf{e}\in\pi_{i}}\widehat{x}_{i} + \sum_{\mathbf{e}\in\sigma_{i}}(1-\widehat{x}_{i}) \leq \widehat{w}. \end{aligned}$$

(a) \widehat{w} : Fractional congestion (from LP solution).

- 2 $Y_{\rm e}$ is just a sum of independent 0/1 random variables!
- Chernoff inequality tells us sum can not be too far from expectation!

- **2** $Y_{\rm e}$ is just a sum of independent 0/1 random variables!
- Chernoff inequality tells us sum can not be too far from expectation!

- **2** $Y_{\rm e}$ is just a sum of independent 0/1 random variables!
- Other the second sec

By Chernoff inequality:

$$\mathsf{Pr}\big[\mathsf{Y}_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}}\big] \leq \exp\!\left(-\frac{\alpha_{\mathsf{e}}\delta^2}{4}\right) \leq \exp\!\left(-\frac{\widehat{w}\delta^2}{4}\right)\!.$$

2 Let
$$\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$$
. We have that

$$\mathsf{Pr}\Big[\mathsf{Y}_{\mathsf{e}} \geq (1+\delta)lpha_{\mathsf{e}}\Big] \leq \expigg(-rac{\delta^2 \widehat{w}}{4}igg) \leq rac{1}{t^{100}},$$

3 If $t \ge n^{1/50} \implies \forall$ edges in graph congestion $\le (1 + \delta)\widehat{w}$.

• *t*: Number of pairs, *n*: Number of vertices in G.

By Chernoff inequality:

$$\mathsf{Pr}\big[\mathsf{Y}_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}}\big] \leq \exp\!\left(-\frac{\alpha_{\mathsf{e}}\delta^2}{4}\right) \leq \exp\!\left(-\frac{\widehat{w}\delta^2}{4}\right).$$

2 Let
$$\delta = \sqrt{\frac{400}{\widehat{w}}} \ln t$$
. We have that

$$\mathsf{Pr}\Big[\mathsf{Y}_{\mathsf{e}} \geq (1+\delta)lpha_{\mathsf{e}}\Big] \leq \expigg(-rac{\delta^2 \widehat{w}}{4}igg) \leq rac{1}{t^{100}},$$

3 If $t \ge n^{1/50} \implies \forall$ edges in graph congestion $\le (1 + \delta)\widehat{w}$.

• *t*: Number of pairs, *n*: Number of vertices in G.
Minimizing congestion - continued

By Chernoff inequality:

$$\mathsf{Pr}\big[\mathsf{Y}_{\mathsf{e}} \geq (1+\delta)\alpha_{\mathsf{e}}\big] \leq \exp\!\left(-\frac{\alpha_{\mathsf{e}}\delta^2}{4}\right) \leq \exp\!\left(-\frac{\widehat{w}\delta^2}{4}\right).$$

2 Let
$$\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$$
. We have that

$$\mathsf{Pr}\Big[\mathsf{Y}_{\mathsf{e}} \geq (1+\delta)lpha_{\mathsf{e}}\Big] \leq \expigg(-rac{\delta^2\widehat{w}}{4}igg) \leq rac{1}{t^{100}},$$

If t ≥ n^{1/50} ⇒ ∀ edges in graph congestion ≤ (1 + δ)w.
t: Number of pairs, n: Number of vertices in G.

Sariel (UIUC)

Minimizing congestion - continued

a Got: For
$$\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$$
. We have

$$\mathsf{Pr}\Big[Y_{\mathsf{e}} \geq (1+\delta) lpha_{\mathsf{e}} \Big] \leq \expigg(-rac{\delta^2 \widehat{w}}{4} igg) \leq rac{1}{t^{100}},$$

2 Play with the numbers. If t = n, and w ≥ √n. Then, the solution has congestion larger than the optimal solution by a factor of

$$1+\delta=1+\sqrt{rac{20}{\widehat{w}}\ln t}\leq 1+rac{\sqrt{20\ln n}}{n^{1/4}},$$

which is of course extremely close to 1, if *n* is sufficiently large.

29

Minimizing congestion - continued

a Got: For
$$\delta = \sqrt{\frac{400}{\widehat{w}} \ln t}$$
. We have

$$\mathsf{Pr}\Big[\mathsf{Y}_{\mathsf{e}} \geq (1+\delta)lpha_{\mathsf{e}}\Big] \leq \expigg(-rac{\delta^2 \widehat{w}}{4}igg) \leq rac{1}{t^{100}},$$

Play with the numbers. If t = n, and $\widehat{w} \geq \sqrt{n}$. Then, the solution has congestion larger than the optimal solution by a factor of

$$1+\delta=1+\sqrt{\frac{20}{\widehat{w}}\ln t}\leq 1+\frac{\sqrt{20\ln n}}{n^{1/4}},$$

which is of course extremely close to 1, if n is sufficiently large.

Theorem

- **()** *G*: *Graph n vertices*.
- $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3 π_i, σ_i : two different paths connecting s_i to t_i
- \widehat{w} : Fractional congestion at least $n^{1/2}$.
- **5 opt**: Congestion of optimal solution.
- In polynomial time (LP solving time) choose paths
 congestion ∀ edges: < (1 + δ)opt

$$\delta = \sqrt{\frac{20}{2} \ln t}.$$

30

Theorem

- G: Graph n vertices.
- **2** $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3 π_i, σ_i : two different paths connecting s_i to t_i
- \widehat{w} : Fractional congestion at least $n^{1/2}$.
- **5 opt**: Congestion of optimal solution.
- \implies In polynomial time (LP solving time) choose paths
 - congestion \forall edges: $\leq (1 + \delta)$ opt

$$\delta = \sqrt{\frac{20}{\widehat{w}} \ln t}.$$

Theorem

- G: Graph n vertices.
- **2** $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3) π_i, σ_i : two different paths connecting s_i to t_i
- \widehat{w} : Fractional congestion at least $n^{1/2}$.
- **5 opt**: Congestion of optimal solution.
- $\odot \implies$ In polynomial time (LP solving time) choose paths
 - congestion \forall edges: $\leq (1 + \delta)$ opt

$$\delta = \sqrt{\frac{20}{\widehat{w}} \ln t}.$$

30

Theorem

- **()** G: Graph **n** vertices.
- **2** $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3 π_i, σ_i : two different paths connecting s_i to t_i
- (a) \widehat{w} : Fractional congestion at least $n^{1/2}$.
- opt: Congestion of optimal solution.
- \implies In polynomial time (LP solving time) choose paths
 - congestion \forall edges: $\leq (1 + \delta)$ opt

$$\delta = \sqrt{\frac{20}{\widehat{w}} \ln t}.$$

30

Theorem

- **()** G: Graph **n** vertices.
- **2** $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3 π_i, σ_i : two different paths connecting s_i to t_i
- (a) \widehat{w} : Fractional congestion at least $n^{1/2}$.
- opt: Congestion of optimal solution.
- In polynomial time (LP solving time) choose paths
 congestion ∀ edges: < (1 + δ)opt

$$\mathbf{2} \ \ \delta = \sqrt{\frac{20}{\widehat{w}}} \ln t.$$

Theorem

- G: Graph n vertices.
- **2** $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3 π_i, σ_i : two different paths connecting s_i to t_i
- (a) \widehat{w} : Fractional congestion at least $n^{1/2}$.
- opt: Congestion of optimal solution.
- $\bigcirc \implies$ In polynomial time (LP solving time) choose paths

1 congestion \forall edges: $\leq (1 + \delta)$ opt

$$\delta = \sqrt{\frac{20}{\widehat{w}}} \ln t.$$

Theorem

G: Graph **n** vertices.

2 $\delta = \sqrt{\frac{20}{\widehat{w}} \ln t}$.

- **2** $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3 π_i, σ_i : two different paths connecting s_i to t_i
- (a) \widehat{w} : Fractional congestion at least $n^{1/2}$.
- opt: Congestion of optimal solution.
- \implies In polynomial time (LP solving time) choose paths
 - congestion \forall edges: $\leq (1 + \delta)$ opt

Theorem

- **()** G: Graph **n** vertices.
- **2** $(s_1, t_1), \ldots, (s_t, t_t)$: pairs o vertices
- 3 π_i, σ_i : two different paths connecting s_i to t_i
- (a) \widehat{w} : Fractional congestion at least $n^{1/2}$.
- opt: Congestion of optimal solution.
- $\bigcirc \implies$ In polynomial time (LP solving time) choose paths
 - congestion \forall edges: $\leq (1 + \delta)$ opt

$$\delta = \sqrt{\frac{20}{\widehat{w}}} \ln t.$$

a Assume \widehat{w} is a constant.

- 2 Can get a better bound by using the Chernoff inequality in its
- 3 set $\delta = c \ln t / \ln \ln t$, where c is a constant. For $\mu = \alpha_{e}$, we

$$egin{aligned} &\mathsf{Pr}\Big[Y_{\mathsf{e}} \geq (1+\delta)\mu\Big] \leq \left(rac{\mathrm{e}^{\delta}}{(1+\delta)^{1+\delta}}
ight)^{\mu} \ &= \expigg(\mu(\delta-(1+\delta)\ln(1+\delta))igg) \ &= \expigg(-\mu c'\ln tigg) \leq rac{1}{t^{O(1)}}, \end{aligned}$$

- **a** Assume \widehat{w} is a constant.
- 2 Can get a better bound by using the Chernoff inequality in its more general form.
- **3** set $\delta = c \ln t / \ln \ln t$, where c is a constant. For $\mu = \alpha_{e}$, we have that

$$\begin{split} \mathsf{Pr}\Big[\mathsf{Y}_{\mathsf{e}} &\geq (1+\delta)\mu\Big] \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\ &= \exp\Big(\mu(\delta-(1+\delta)\ln(1+\delta))\Big) \\ &= \exp\Big(-\mu c'\ln t\Big) \leq \frac{1}{t^{O(1)}}, \end{split}$$

where c' is a constant that depends on c and grows if c grows.

Sariel (UIUC)

Just proved that...

- **2** if the optimal congestion is O(1), then...
- algorithm outputs a solution with congestion O(log t / log log t), and this holds with high probability.

- Just proved that...
- 2) if the optimal congestion is O(1), then...
- algorithm outputs a solution with congestion
 O(log t / log log t), and this holds with high probability.

- Just proved that...
- If the optimal congestion is O(1), then...
- algorithm outputs a solution with congestion O(log t / log log t), and this holds with high probability.

26.1.4: Reminder about Chernoff inequality

$26.1.4.1: {\tt The \ Chernoff \ Bound - General \ Case}$

Chernoff inequality

Problem

Let X_1, \ldots, X_n be *n* independent Bernoulli trials, where

$$\Pr[X_i = 1] = p_i, \qquad \Pr[X_i = 0] = 1 - p_i,$$
$$Y = \sum_i X_i, \qquad \text{and} \qquad \mu = \mathsf{E}[Y].$$

We are interested in bounding the probability that $Y \ge (1 + \delta)\mu$.

Chernoff inequality

Theorem (Chernoff inequality) For any $\delta > 0$,

$$\mathsf{Pr}\Big[\mathsf{Y} > (1+\delta)\mu\Big] < \left(rac{\mathrm{e}^{\delta}}{(1+\delta)^{1+\delta}}
ight)^{\mu}.$$

Or in a more simplified form, for any $\delta \leq 2e - 1$,

$$\mathsf{Pr}\Big[m{Y} > (m{1}+\delta)\mu\Big] < \expig(-\mu\delta^2/4ig),$$

and

$$\mathsf{Pr}\Big[\mathsf{Y} > (1+\delta)\mu\Big] < 2^{-\mu(1+\delta)},$$

for $\delta \geq 2e - 1$.

Sariel (UIUC)

More Chernoff...

Theorem

Under the same assumptions as the theorem above, we have

$$\mathsf{Pr}\Big[\mathsf{Y} < (1-\delta)\mu\Big] \leq \expigg(-\murac{\delta^2}{2}igg).$$