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Weighted vertex cover

Weighted Vertex Cover problem
G = (V,E).

Each vertex v € V: cost c,.

Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.

2
3

4

Sariel (UIUC) OLD CS473 Spring 2015 4 /31



Weighted vertex cover

Weighted Vertex Cover problem
G = (V,E).

Each vertex v € V: cost c,.

Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.
@ NP-Hard
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Weighted vertex cover

Weighted Vertex Cover problem
G = (V,E).

Each vertex v € V: cost c,.

Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.
@ NP-Hard
@ ...unweighted Vertex Cover problem.
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Weighted vertex cover

Weighted Vertex Cover problem

G = (V,E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.
@ NP-Hard

@ ...unweighted Vertex Cover problem.

@ ... write as an integer program (IP):
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Weighted vertex cover

Weighted Vertex Cover problem

G = (V,E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.
@ NP-Hard

@ ...unweighted Vertex Cover problem.

@ ... write as an integer program (IP):

@ VeV x,=1 <= vin the vertex cover.
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Weighted vertex cover

Weighted Vertex Cover problem

G = (V,E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.
@ NP-Hard

@ ...unweighted Vertex Cover problem.

@ ... write as an integer program (IP):

@ VeV x,=1 <= vin the vertex cover.

@ Vvu € E: covered.
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Weighted vertex cover

Weighted Vertex Cover problem

G = (V,E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.
@ NP-Hard

@ ...unweighted Vertex Cover problem.

@ ... write as an integer program (IP):

@ VeV x,=1 <= vin the vertex cover.

@ Vvu € E: covered. =— x, V x, true.
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Weighted vertex cover

Weighted Vertex Cover problem

G = (V,E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.

@ NP-Hard

@ ...unweighted Vertex Cover problem.

@ ... write as an integer program (IP):

@ VeV x,=1 <= vin the vertex cover.

@ Vvu € E: covered. — x, V x, true. — x, + x, > 1.
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Weighted vertex cover

Weighted Vertex Cover problem
G = (V,E).

Each vertex v € V: cost c,.

Compute a vertex cover of minimum cost.

@ vertex cover: subset of vertices V so each edge is covered.

@ NP-Hard

@ ...unweighted Vertex Cover problem.

@ ... write as an integer program (IP):

@ VeV x,=1 <= vin the vertex cover.

@ Vvu € E: covered. — x, V x, true. — x, + x, > 1.

@ minimize total cost: min»_ _,, x,C,.

vev
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Weighted vertex cover

State as — Relax = LP

min E Cy Xy,

vev
such that  x, € {0,1} Yv €V (1)
X +x,>1 Yvu € E
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Weighted vertex cover

State as — Relax = LP

min E Cy Xy,

vev
such that  x, € {0,1} Yv €V (1)
X+ x, > 1 Yvu € E.

@ ... NP-Hard.
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Weighted vertex cover

State as — Relax = LP

min E Cy Xy,

vev
such that  x, € {0,1} Yv €V (1)
X+ x, > 1 Yvu € E.

@ ... NP-Hard.
@ relax the integer program.
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Weighted vertex cover

State as — Relax = LP

min E Cy Xy,

vev
such that  x, € {0,1} Yv €V (1)
X+ x, > 1 Yvu € E.

@ ... NP-Hard.
@ relax the integer program.

@ allow x, get values

€ [0, 1].
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Weighted vertex cover

State as — Relax = LP

min E Cy Xy,

vev
such that  x, € {0,1} Yv €V (1)
X+ x, > 1 Yvu € E.

@ ... NP-Hard.
@ relax the integer program.

@ allow x, get values
€ [0,1].

@ x, € {0,1} replaced by
0< x, <1 The
resulting LP is
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Weighted vertex cover

State as — Relax = LP

min E Cy Xy,

vev
such that  x, € {0,1} Yv €V (1)
X+ x, > 1 Yvu € E.
@ ... NP-Hard.
@ relax the integer program. |min Z Cv Xy,
@ allow x, get values vev
e [0,1]. s.t. 0< x Vv eV,
@ x, € {0,1} replaced by x <1 Vv eV,
0< x, <1 The X, +x, > 1 Vvu € E.
resulting LP is
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Weighted vertex cover — rounding the LP

@ Optimal solution to this LP: X, value of var X,, Vv € V.
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Weighted vertex cover — rounding the LP

@ Optimal solution to this LP: X, value of var X,, Vv € V.

@ optimal value of LP solution is & = Y\ CuXy-

vev
3
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Weighted vertex cover — rounding the LP

@ Optimal solution to this LP: X, value of var X,, Vv € V.

@ optimal value of LP solution is & = Y\ CuXy-

vev
@ optimal integer solution: x!, Vv € V and a'.
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Weighted vertex cover — rounding the LP

@ Optimal solution to this LP: x, value of var X,, Vv € V.

@ optimal value of LP solution is & = Y\ CuXy-

vev
@ optimal integer solution: x!, Vv € V and a'.
@ Any valid solution to IP is valid solution for LP!
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Weighted vertex cover — rounding the LP

@ Optimal solution to this LP: x, value of var X,, Vv € V.

@ optimal value of LP solution is & = Y\ CuXy-

vev
@ optimal integer solution: x!, Vv € V and a'.
@ Any valid solution to IP is valid solution for LP!

@ a<all
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Weighted vertex cover — rounding the LP

@ Optimal solution to this LP: x, value of var X,, Vv € V.

@ optimal value of LP solution is & = Y\ CuXy-

vev
@ optimal integer solution: x!, Vv € V and a'.
@ Any valid solution to IP is valid solution for LP!
@ a<all

Integral solution not better than LP.
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Weighted vertex cover — rounding the LP

@ Optimal solution to this LP: x, value of var X,, Vv € V.

@ optimal value of LP solution is & = Y\ CuXy-

vev
@ optimal integer solution: x!, Vv € V andea’.
@ Any valid solution to IP is valid solution for LP!
@ a<all

Integral solution not better than LP.
@ Got fractional solution (i.e., values of X,).
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Weighted vertex cover — rounding the LP

Optimal solution to this LP: x, value of var X,, Vv € V.

optimal value of LP solution is & = > .y CuXy.

vev
optimal integer solution: x!, Vv € V and a'.

o

Q

o

@ Any valid solution to IP is valid solution for LP!
@ a<all

Integral solution not better than LP.
@ Got fractional solution (i.e., values of X,).

o

Fractional solution is better than the optimal cost.
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Weighted vertex cover — rounding the LP

Optimal solution to this LP: x, value of var X,, Vv € V.

optimal value of LP solution is & = > .y CuXy.

vev
optimal integer solution: x!, Vv € V and a'.

Any valid solution to IP is valid solution for LP!
a<a.

Integral solution not better than LP.

Got fractional solution (i.e., values of X;).

Fractional solution is better than the optimal cost.

Q: How to turn fractional solution into a (valid!) integer
solution?
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Weighted vertex cover — rounding the LP

Optimal solution to this LP: x, value of var X,, Vv € V.

optimal value of LP solution is & = > .y CuXy.

vev
optimal integer solution: x!, Vv € V and a'.

Any valid solution to IP is valid solution for LP!
a<a.

Integral solution not better than LP.

Got fractional solution (i.e., values of X;).

Fractional solution is better than the optimal cost.

Q: How to turn fractional solution into a (valid!) integer
solution?

Using rounding.
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How to round?

@ consider vertex v and fractional value X, .
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How to round?

@ consider vertex v and fractional value X, .

@ If x, = 1 then include in solution!
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How to round?

@ consider vertex v and fractional value X, .

@ If x, = 1 then include in solution!

@ If x, = 0 then do n_Ot include in solution.
s
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How to round?

@ consider vertex v and fractional value X, .
@ If x, = 1 then include in solution!
@ If x, = 0 then do not include in solution.
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How to round?

@ consider vertex v and fractional value X, .

@ If x, = 1 then include in solution!

@ If x, = 0 then do not include in solution.

@ ifx, =0.9 — LP considers v as being 0.9 useful.
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How to round?

@ consider vertex v and fractional value X, .

@ If x, = 1 then include in solution!

@ If x, = 0 then do not include in solution.

@ ifx, =0.9 — LP considers v as being 0.9 useful.
@ The LP puts its money where its belief is...
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How to round?

@ consider vertex v and fractional value X, .

@ If x, = 1 then include in solution!

@ If x, = 0 then do not include in solution.

@ ifx, =0.9 — LP considers v as being 0.9 useful.

@ The LP puts its money where its belief is...

@ ...« value is a function of this “belief” generated by the LP.
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How to round?

@ consider vertex v and fractional value X, .

@ If x, = 1 then include in solution!

@ If x, = 0 then do not include in solution.

@ ifx, =0.9 — LP considers v as being 0.9 useful.

@ The LP puts its money where its belief is...

@ ...« value is a function of this “belief” generated by the LP.

@ Big idea: Trust LP values as guidance to usefulness of vertices.
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lI: How to round?

1
min E CyXys

veV
st. 0< x, Yv eV ;
x, <1 Vv eV

X, +x,>1 VYvwu€eeE

Sariel (UIUC) OLD CS473 Spring 2015 8 /31



lI: How to round?

min Zc N @ Pick all vertices > threshold
vXvs of usefulness according to
vev
LP.
st. 0< x, Yv eV ;
x, <1 Vv eV

X, +x,>1 VYvwu€eeE
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lI: How to round?

@ Pick all vertices > threshold

min Z CuXvsy of usefulness according to
vev LP
st. 0< x, Vv € V '

'Y s:{v ‘221/2}.
@ Claim: S a valid vertex
cover, and cost is low.

x, <1 Vv eV
X, +x,>1 VYvwu€eeE
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lI: How to round?

min E CyXys

veVv
st. 0< x,

x, <1

X, +x,>1 VYvwu€eeE

@ Pick all vertices > threshold
of usefulness according to
LP.

'Y s:{v ‘221/2}.
@ Claim: S a valid vertex
cover, and cost is low.

Vv €V
Yv eV

@ Indeed, edge cover as: Vvu € E have x, + x, > 1.

2
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lI: How to round?

@ Pick all vertices > threshold

min Z CuXvsy of usefulness according to
vev LP
st. 0< x, Vv € V '

'Y s:{v ‘221/2}.
@ Claim: S a valid vertex
cover, and cost is low.

x, <1 Vv eV
X, +x,>1 VYvwu€eeE

@ Indeed, edge cover as: Vvu € E have x, + x, > 1.
@ x,x, €(0,1)
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lI: How to round?

min E CyXys

veV
st. 0< x, Yv eV
x, <1 Vv eV

X, +x,>1 VYvwu€eeE

@ Pick all vertices > threshold
of usefulness according to
LP.

os:{v )?\,21/2}.

@ Claim: S a valid vertex
cover, and cost is low.

@ Indeed, edge cover as: Vvu € E have x, + x, > 1.

@ x,x € (0,1)

= x, > 1/20rx, >1/2.
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lI: How to round?

min E CyXys

veV
st. 0< x, Yv eV
x, <1 Vv eV

X, +x,>1 VYvwu€eeE

@ Pick all vertices > threshold
of usefulness according to
LP.

os:{v )?\,21/2}.

@ Claim: S a valid vertex
cover, and cost is low.

@ Indeed, edge cover as: Vvu € E have x, + x, > 1.

@ x,x € (0,1)

= x, > 1/20rx, >1/2.
=> v € Soru € S (or both).
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lI: How to round?

@ Pick all vertices > threshold

min Z CuXvsy of usefulness according to
vev LP
st. 0< x, Yv eV ' ~
- S = v > 1/2 5.
x <1 wev| @ {v]% 2172}

@ Claim: S a valid vertex

X, +x,>1 VYvwu€eeE .
- cover, and cost is low.

@ Indeed, edge cover as: Vvu € E have x, + x, > 1.
@ x,x €(0,1)

= x, >1/2o0rx, >1/2.

=> v € Soru € S (or both).

= S covers all the edges of G.
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Cost of solution

Cost of S:
Cs =ch=21-cv < Z22,-c‘, < 22)?\@\,:2& < 2a,
veS veS veS vev

since x, > 1/2asv € S.
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Cost of solution

Cost of S:
Cs =ch=21-cv < Z22,-c‘, < 22)?\@\,:2& < 2a,
veS veS veS vev

since x, > 1/2asv € S.

o' is cost of the optimal solution =
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Cost of solution

Cost of S:
Cs =ch=21-cv < Z22,-c‘, < 22)?\,c\, =2a < 2a/,
veS veS veS vev

since x, > 1/2asv € S.

o' is cost of the optimal solution =

The Weighted Vertex Cover problem can be 2-approximated by
solving a single LP. Assuming computing the LP takes polynomial
time, the resulting approximation algorithm takes polynomial time.
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The lessons we can take away

Or not - boring, boring, boring.

@ Weighted vertex cover is simple, but resulting approximation
algorithm is non-trivial.
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The lessons we can take away

Or not - boring, boring, boring.

@ Weighted vertex cover is simple, but resulting approximation
algorithm is non-trivial.

@ Not aware of any other 2-approximation algorithm does not use
LP. (For the weighted case!)
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The lessons we can take away

Or not - boring, boring, boring.

@ Weighted vertex cover is simple, but resulting approximation
algorithm is non-trivial.

@ Not aware of any other 2-approximation algorithm does not use
LP. (For the weighted case!)

@ Solving a relaxation of an optimization problem into a LP
provides us with insight.
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The lessons we can take away

Or not - boring, boring, boring.

Weighted vertex cover is simple, but resulting approximation
algorithm is non-trivial.

Not aware of any other 2-approximation algorithm does not use
LP. (For the weighted case!)

Solving a relaxation of an optimization problem into a LLP
provides us with insight.

But... have to be creative in the rounding.
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26.1.2: Revisiting Set Cover

Sariel (UIUC) OLD CS473 11 Spring 2015 11 /31



Revisiting Set Cover

@ Purpose: See new technique for an approximation algorithm.

2
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Revisiting Set Cover

@ Purpose: See new technique for an approximation algorithm.

@ Not better than greedy algorithm already seen O(log n)
approximation.
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Revisiting Set Cover

@ Purpose: See new technique for an approximation algorithm.

@ Not better than greedy algorithm already seen O(log n)
approximation.

Problem: Set Cover

Instance: (S,F)

S - a set of n elements

F - a family of subsets of S, s.t. UXG}-X =S.
Question: The set X C F such that X contains as
few sets as possible, and X covers S.
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Set Cover - IP & LP

min a = E Xy,

uesr
s.t. xy € {0,1} VYU € 7,

Y o xw>1 Vs € S.
UueF,seu
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Set Cover - IP & LP

min a = E Xy,

vesF
s.t. xy € {0,1} VYU € 7,
Y o xw>1 Vs € S.

UueF,seu

Next, we relax this IP into the following LP.
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Set Cover - IP & LP

min a = E Xy,

vesF
s.t. xy € {0,1} VYU € 7,
Y o xw>1 Vs € S.
UueF,seu

Next, we relax this IP into the following LP.

min a = E Xy,

UesF
0<xy<1 VYU € 7,
Yo oxw>1 Vs € S.

UeF,seu
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Set Cover - IP & LP

@ LP solution: YU € F, xy, and a..
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Set Cover - IP & LP

@ LP solution: YU € F, xy, and a..
@ Opt IP solution: VU € F, x/,, and o'.
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Set Cover - IP & LP

@ LP solution: YU € F, xy, and a..
@ Opt IP solution: VU € F, x/,, and o'.
@ Use LP solution to guide in rounding process.
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Set Cover - IP & LP

@ LP solution: YU € F, xy, and a..

@ Opt IP solution: VU € F, x/,, and o'.

@ Use LP solution to guide in rounding process.
@ If xy is close to 1 then pick U to cover.
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Set Cover - IP & LP

@ LP solution: YU € F, xy, and a..

@ Opt IP solution: VU € F, x/,, and o'.

@ Use LP solution to guide in rounding process.
@ If xy is close to 1 then pick U to cover.

@ If xy close to 0 do not.
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Set Cover - IP & LP

LP solution: YU € F, xy, and au.

Opt IP solution: YU € ¥, x,, and a'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.

~ 960600666
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Set Cover - IP & LP

- 900 60 6 0 6

©

10

11

LP solution: YU € F, xy, and au.

Opt IP solution: YU € ¥, x,, and a'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.
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Set Cover - IP & LP

- 9060606666

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is

E [cost of §]
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is

E[cost of G| = E[> gcq Zs]
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is

E[cost of G| = E[> gcq Zs] = D seq E[Zs]
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is
Elcost of G| = E[> geq Zs] = D ses E[Zs] =
> ses Pr[S € G
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is
E[cost of §] = E[> seq Zs} > serE[Zs] =
> sex Pr[S €G] = sesXs
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is
E[cost of §] = E[> seq Zs} ZSG? E[Zs] =
YsesPr[S €G] =Y sesxs =@
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is
Elcost of G| = E[> geq Zs] = D ses E[Zs] =
> s PriSe§| = Dserxs = a < ol
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is
Elcost of G| = E[> geq Zs] = D ses E[Zs] =
> s PriSe§| = Dserxs = a < ol

@ In expectation, G is not too expensive.
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Set Cover - IP & LP

LP solution: YU € F, xy, and a.

Opt IP solution: YU € ¥, x/,, and o'.

Use LP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

|dea: Pick U € F: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zsest Zs, and the expected cost is
Elcost of G| = E[> geq Zs] = D ses E[Zs] =
> s PriSe§| = Dserxs = a < ol

@ In expectation, G is not too expensive.

@ Bigus problumos: G might fail to cover some element s € S.
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Set Cover — Rounding continued

@ Solution: Repeat rounding stage m = 10[lg n] = O(log n)
times.
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Set Cover — Rounding continued

@ Solution: Repeat rounding stage m = 10[lg n] = O(log n)
times.

@ n=1S|

@ G;: random cover computed in ith iteration.

@ H = U;G;. Return HH as the required cover.
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr|s not covered by 9,-}
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr[s not covered by 9,-}
= Pr[ nolU € F, sit. s € U picked into 9,-}
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr[s not covered by 9,-}

=Pr[noU €7, st. s € U picked into G;]
= HUe:?,seu Pr[U was not picked into 9,-}
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr[s not covered by 9,-}

=Pr[noU €7, st. s € U picked into G;]
= HUe:?,seu Pr[U was not picked into 9,-}

- 11 a-%)

UeF,seU
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr[s not covered by 9,-}

=Pr[noU €7, st. s € U picked into G;]
= HUe:?,seu Pr[U was not picked into 9,-}

[ a-s)< J] exe(-%0)

uedF,scU UETF,scU
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr[s not covered by 9,-}

=Pr[noU €7, st. s € U picked into G;]
= HUe:?,seu Pr[U was not picked into 9,-}

[ a-s)< J] exe(-%0)

uedF,scU UETF,scU
= exp (‘ Zue?,seu XU)
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr[s not covered by 9,-}

=Pr[noU €7, st. s € U picked into G;]
= HUe:?,seu Pr[U was not picked into 9,-}

[ a-s)< J] exe(-%0)

uedF,scU UETF,scU
= exp(— 2 ues,seu XU) < exp(—1)
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr[s not covered by 9,-}

=Pr[noU €7, st. s € U picked into G;]
= HUe:?,seu Pr[U was not picked into 9,-}

[ a-s)< J] exe(-%0)

uedF,scU UETF,scU
— o= 1
= exp(— ZUET,SGUXU> <exp(—1) < 3,
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The set H covers S

@ For an element s € S, we have that

Y oxu>1, (2)

UeF,selU

@ probability s not covered by G; (ith iteration set).
Pr|s not covered by 9,-} < %
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.

2
3

4
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.
@ Number of iterations of rounding m = O(log n).

3

4
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.

@ Number of iterations of rounding m = O(log n).
@ Covering with sets in G1,...,G,.

4
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.

@ Number of iterations of rounding m = O(log n).
@ Covering with sets in G1,...,G,.
@ probability s is not covered in all m iterations

Ps = Pr[s not covered by Gi,..., 9’,,,]
< Pr[(s F)N(s F)N...N(s ?m)}
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.

@ Number of iterations of rounding m = O(log n).
@ Covering with sets in G1,...,G,.
@ probability s is not covered in all m iterations

P, = Pr[s not covered by Gy, ... ,9’,,,]
< Pr{(sesq)m(sezafz)n...m(sg?m)}
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.

@ Number of iterations of rounding m = O(log n).
@ Covering with sets in G1,...,G,.
@ probability s is not covered in all m iterations

Ps

Pr :s not covered by Gy, ... ,9’,,,]
Pr:(sesq)m(sezafz)n...m(sg?m)}
Pr:s ¢ 3"1] Pr[s ¢ 3—'2] ---Pr[s ¢ 3’,,,]
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.

@ Number of iterations of rounding m = O(log n).
@ Covering with sets in G1,...,G,.
@ probability s is not covered in all m iterations

Ps

Pr -s not covered by Gi,..., 9’,,,]
Pr:(s ¢F)N(s¢F)N...0(s ¢ ?m)}

Pr:s ¢ 3"1] Pr[s ¢ 3—'2] ---Pr[s ¢ 3’,,,]
1 1 1

— X — X eee X —
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.

@ Number of iterations of rounding m = O(log n).
@ Covering with sets in G1,...,G,.
@ probability s is not covered in all m iterations

Ps

Pr :s not covered by Gy, ... ,9’,,,]
Pr:(sesq)m(sezafz)n...m(sg?m)}
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The set H covers S

Probability of a single item to be covered

@ Pr|s not covered by 9,-} <1/2.

@ Number of iterations of rounding m = O(log n).
@ Covering with sets in G1,...,G,.
@ probability s is not covered in all m iterations

Ps

Pr :s not covered by Gy, ... ,9’,,,]
Pr:(sesq)m(sezafz)n...m(sg?m)}
Pr:s ¢ 3"1] Pr[s ¢ 3—'2] ---Pr[s ¢ 3’,,,]

1><1>< ><1_ 1 "'< 1
272 2 \2

IA

IA
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The set H covers S

Probability of all items to be covered

@ n=|S|
@ Probability of s € S, nottobein G U...UF,, is
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The set H covers S

Probability of all items to be covered

@ n=|S|
@ Probability of s € S, nottobein G U...UF,, is
p 1
s < ST

@ probability one of n elements of S is not covered by JH is

ZPr[s Gi1U...UF,]

seS
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The set H covers S

Probability of all items to be covered

@ n=|S|
@ Probability of s € S, nottobein G U...UF,, is
p 1
s < ST

@ probability one of n elements of S is not covered by JH is

Y Prls GU...UF,] =D P,

seS seS
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The set H covers S

Probability of all items to be covered

@ n=|S|
@ Probability of s € S, nottobein G U...UF,, is
p 1
s < ST

@ probability one of n elements of S is not covered by JH is

SPrls  GiU...UFL] =D P < n(1/n')

seS seS

Spring 2015
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The set H covers S

Probability of all items to be covered

@ n=|S|
@ Probability of s € S, nottobein G U...UF,, is
p 1
s < ST

@ probability one of n elements of S is not covered by JH is

S Prs¢ G U...UF,] => P.<n(1/n) =1/r’.

seSs seS

Spring 2015 18 /
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Reminder: LP for Set Cover

min a = E Xy,

uesF
0<xy<1 YU € 7,
Y oxw>1 Vs € S.

UeF,seU

@ Solve the LP.

2
3

4
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Reminder: LP for Set Cover

min a = E Xy,

uesF
0<xy<1 YU € 7,
Y oxw>1 Vs € S.

UeF,seU

@ Solve the LP.
@ xy: Value of x, in the optimal LP solution.

3]

4
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Reminder: LP for Set Cover

min a = E Xy,

uesF
0<xy<1 YU € 7,
Y oxw>1 Vs € S.

UeF,seU

@ Solve the LP.
@ xy: Value of x, in the optimal LP solution.
@ Fractional solution: & = >~ ;4 Xu-
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Reminder: LP for Set Cover

min a = E Xy,

uesF
0<xy<1 YU € 7,
Y oxw>1 Vs € S.

UeF,seU

@ Solve the LP.
@ xy: Value of x, in the optimal LP solution.
@ Fractional solution: & = >~ ;4 Xu-

@ Integral solution (what we want): o/ > a.
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Cost of solution

@ (S, F): Given instance of Set Cover.

2
3

4
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Cost of solution

@ (S, F): Given instance of Set Cover.
@ For U € F, xy: LP value for set U in optimal solution.
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Cost of solution

@ (S, F): Given instance of Set Cover.
@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

4
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[|Gi]
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[Sill = E[Xyes Zu]
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

EUSill = E[Xyesr Zu] = X yes ELZU]
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[|91|] = E[Zue? ZU] = Zueg E[ZU] = Zueff@
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[l%ll] = E[Zue? ZU] = Zueg E[ZU] = Zueff@
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[|9 |]<— E[Zue? ZU] = Zueg E[ZU] = Zueff@
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[|9 |]<— E[ZUG? ZU] = Zueg E[ZU] = Zueff@

@ — Each iteration expected cost of cover < cost of optimal
solution (i.e., a'). XXX
@ Expected size of the solution is

E[|3]
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[|9 |]<— E[ZUG? ZU] = Zueg E[ZU] = Zueff@

@ — Each iteration expected cost of cover < cost of optimal
solution (i.e., a'). XXX
@ Expected size of the solution is

E[|F|] = E[|uiSi]
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[|9 |]<— E[ZUG? ZU] = Zueg E[ZU] = Zueff@

@ — Each iteration expected cost of cover < cost of optimal
solution (i.e., a'). XXX
@ Expected size of the solution is

E[I]] = E[JUiSil] <E

Z |9,~|]
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[|9 |]<— E[ZUG? ZU] = Zueg E[ZU] = Zueff@

@ — Each iteration expected cost of cover < cost of optimal
solution (i.e., a'). XXX
@ Expected size of the solution is

E[|H]|] = E[|UiGi]] <E < ma'

Z|9i|
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Cost of solution

@ (S, F): Given instance of Set Cover.

@ For U € F, xy: LP value for set U in optimal solution.
@ For G;: Indicator variable Z, =1 «<— U € G;.

@ Expected number of sets in the ith sample:

E[|9 |]<— E[ZUG? ZU] = Zueg E[ZU] = Zueff@

@ — Each iteration expected cost of cover < cost of optimal
solution (i.e., a'). XXX
@ Expected size of the solution is

E[|H]] = E[|uiSil]] £E < ma' = O0(a'logn).

Z|9i|
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The result

By solving an LP one can get an O(log n)-approximation to Set
Cover by a randomized algorithm. The algorithm succeeds with high
probability.

Sariel (UIUC) OLD CS473 Spring 2015 21 / 31



26.1.3: Minimizing congestion
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Minimizing congestion by example
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Minimizing congestion by example
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Minimizing congestion by example
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Minimizing congestion by example
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Minimizing congestion by example
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Minimizing congestion by example
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Minimizing congestion

@ G: graph. n vertices.

@ 7, o; paths with the same endpoints v;, u; € V(G), for
i=1,...,t

@ Rule I: Send one unit of flow from v; to u;.

@ Rule Il: Choose whether to use 7; or o;.

@ Target: No edge in G is being used too much.

Definition

Given a set X of paths in a graph G, the congestion of X is the
maximum number of paths in X that use the same edge.
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Minimizing congestion

@ IP = LP:

min w

s.t. x; >0 i=1,...,t,
x; <1 i=1,...,t,
Zx,-+2(1—x,-)§w Ve € E.
ecT; eco;
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Minimizing congestion

@ IP = LP:

min w

s.t. x; >0 i=1,...,t,
x <1 i=1,...,t,
Zx,-+2(1—x,-)§w Ve € E.
ecT; eco;

@ X;: value of x; in the optimal LP solution.
3

4
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Minimizing congestion

@ IP = LP:

min w

s.t. x; >0 i=1,...,t,
x <1 i=1,...,t,
Zx,-+2(1—x,-)§w Ve € E.
ecT; eco;

@ X;: value of x; in the optimal LP solution.
@ w: value of w in LLP solution.

4
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Minimizing congestion

@ [P = LP:
min w
s.t. x; >0 i=1,...,t,
x <1 i=1,...,t,
Zx,-+2(1—x,-)§w Ve € E.
ecT; eco;

@ X;: value of x; in the optimal LP solution.
@ w: value of w in LP solution.
@ Optimal congestion must be bigger than w.

Spring 2015 25/
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Minimizing congestion

@ IP = LP:

min w

s.t. x; >0 i=1,...,t,
x <1 i=1,...,t,
Zx,-+2(1—x,-)§w Ve € E.
ecT; eco;

@ X;: value of x; in the optimal LP solution.

@ w: value of w in LP solution.

@ Optimal congestion must be bigger than w.

@ X;: random variable one with probability X;, and zero otherwise.
6
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Minimizing congestion

@ IP = LP:

min w

s.t. x; >0 i=1,...,t,
x <1 i=1,...,t,
Zx,-+2(1—x,-)§w Ve € E.
ecT; eco;

@ X;: value of x; in the optimal LP solution.

@ w: value of w in LP solution.

@ Optimal congestion must be bigger than w.

@ X;: random variable one with probability X;, and zero otherwise.
@ If X; = 1 then use 7 to route from v; to u;.

7
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Minimizing congestion

@ IP = LP:

min w

s.t. x; >0 i=1,...,t,
x <1 i=1,...,t,
Zx,-+2(1—x,-)§w Ve € E.
ecT; eco;

@ X;: value of x; in the optimal LP solution.

@ w: value of w in LP solution.

@ Optimal congestion must be bigger than w.

@ X;: random variable one with probability X;, and zero otherwise.
@ If X; = 1 then use 7 to route from v; to u;.

@ Otherwise use o;.
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Minimizing congestion

@ Congestionof eis Ye = > . Xi + > .c,.(1 — Xi).

2
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Minimizing congestion

@ Congestionof eis Ye = > . Xi + > .c,.(1 — Xi).
@ And in expectation

e =E|Ye| = E[Z Xi+y (1- x,-)]

ecT; eco;
=) E[X,} +> E[(1 — X,-)]
ec; e€o;
=) x+) (1-x)<w
ecm; eco;
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Minimizing congestion

@ Congestionof eis Ye = > . Xi + > .c,.(1 — Xi).
@ And in expectation

e =E|Ye| = E[Z Xi+y (1- x,-)]

ecT; eco;
=) E[X,} +> E[(1 — X,-)]
ec; e€o;
=) x+) (1-x)<w
ecm; eco;

@ w: Fractional congestion (from LP solution).
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Minimizing congestion - continued

° Ye == ZeEﬂ'; Xi + Zeeo-’.(l - Xi)'

2

3
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Minimizing congestion - continued

° Ye == ZeEﬂ'; Xi + Zeeo-’.(l - Xi)'
@ Y. is just a sum of independent 0/1 random variables!

3
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Minimizing congestion - continued

° Ye == ZeEﬂ'; Xi + Zeeo-’.(l - Xi)'
@ Y. is just a sum of independent 0/1 random variables!

@ Chernoff inequality tells us sum can not be too far from
expectation!

Spring 2015 27 / 31
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Minimizing congestion - continued

@ By Chernoff inequality:

Q62 wé?
PriYe > (14 6)ae] < exp(— 2 < exp - )
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Minimizing congestion - continued

@ By Chernoff inequality:

Q62 wé?
PriYe > (14 6)ae] < exp(— 2 < exp - )

400
@ Let 6 = /—— Int. We have that
w

*w 1
Pr[Ye Z (1 + é)ae} S exp(—TW) S m,
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Minimizing congestion - continued

@ By Chernoff inequality:

Q62 wé?
PriYe > (14 d)a.] < exp(— 2 ) < exp<—T>.
400
@ Let 6 = /—— Int. We have that
w
8w 1
Pr[Ye Z (1 + é)ae} S exp —T S m,

@ If t > n'/5%" — V edges in graph congestion < (1 + &6)w.

@ t: Number of pairs, n: Number of vertices in G.
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Minimizing congestion - continued
400
@ Got: For 6 = \/ — Int. We have
w

&w 1
PrlY. > (14 8] <exp( -~ ) < .
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Minimizing congestion - continued
400
@ Got: For 6 = \/ — Int. We have
w
8w

1
Pr [Y > (1+5)ae} < exp(—T) S W’

@ Play with the numbers. If t = n, and w > /n. Then, the
solution has congestion larger than the optimal solution by a

factor of
v201
1+5—1+,/—|nt<1 1/:'",
n

which is of course extremely close to 1, if n is sufficiently large.
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Minimizing congestion: result

@ G: Graph n vertices.
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Minimizing congestion: result

@ G: Graph n vertices.

@ (s1,t1),-..,(st, tr): pairs o vertices

@ m;,0;: two different paths connecting s; to t;
@ w: Fractional congestion at least n'/2.

@ opt: Congestion of optimal solution.

@ = In polynomial time (LP solving time) choose paths

@ congestion ¥V edges: < (1 4 d)opt
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Minimizing congestion: result

@ G: Graph n vertices.

@ (s1,t1),-..,(st, tr): pairs o vertices
@ m;,0;: two different paths connecting s; to t;
@ w: Fractional congestion at least n'/2.
@ opt: Congestion of optimal solution.
@ = In polynomial time (LP solving time) choose paths
@ congestion ¥V edges: < (1 4 d)opt
Q@ 6= 2 Int.

w
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When the congestion is low

@ Assume W is a constant.

2
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When the congestion is low

@ Assume W is a constant.

@ Can get a better bound by using the Chernoff inequality in its
more general form.

@ set d =clInt/Inint, where c is a constant. For u = a, we
have that

Pr|Ye > (1+8)u| < (#)“

_ exp(u(a — (1+8)In(1+ 6)))

1
— _ /
= exp( puc’In t) < Ok

where ¢’ is a constant that depends on ¢ and grows if ¢ grows.
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When the congestion is low

@ Just proved that...
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When the congestion is low

@ Just proved that...
@ if the optimal congestion is O(1), then...
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When the congestion is low

@ Just proved that...
@ if the optimal congestion is O(1), then...

@ algorithm outputs a solution with congestion
O(log t/ loglog t), and this holds with high probability.
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26 1 4 Reminder about Chernoff inequality
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26 ]. .4.].:The Chernoff Bound — General Case
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Chernoff inequality

Let Xi,...X, be n independent Bernoulli trials, where

Pr[X,- = 1] = pi, Pr[ -—0} =1-p;,

Yy=>X, and p,=EM.

We are interested in bounding the probability that Y > (1 4 6)p.
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Chernoff inequality

Theorem (Chernoff inequality)
For any 6 > 0,

Pr[Y > (14 5)u] < (ﬁ)“.

Or in a more simplified form, for any 6 < 2e — 1,
Pr[Y > (1+ 6);1,] < exp(—pé?/4),
and
Pr[Y > (1+ 5)4 < 2-H+D),

ford > 2e — 1.
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More Chernoff...

Under the same assumptions as the theorem above, we have

Pr[v <(@1- 5)4 < exp(—u(s;).
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