OLD CS 473: Fundamental Algorithms, Spring 2015

Approximation Algorithms using Linear Programming

Lecture 26
April 30, 2015

26.1: Weighted vertex cover

26.1.1: Weighted vertex cover

Weighted vertex cover

Weighted Vertex Cover problem
 $G=(V, E)$.

Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.

2

3unweighted Vertex Cover problem.
4 ... write as an integer program (IP):
5 $\forall v \in V: x_{v}=1 \longleftrightarrow v$ in the vertex cover.
$6 \quad \forall$ vu $\in E:$ covered. $\Rightarrow x_{v} \vee x_{u}$ true. $\Rightarrow x_{v}+x_{u} \geq 1$
7 minimize total cost: min $\sum_{v \in V} x_{v} C_{V}$

Weighted vertex cover

Weighted Vertex Cover problem
 $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard

3 ... unweighted Vertex Cover problem.
$4 \quad$... write as an integer program (IP):
$5 \quad \forall v \in V: x_{v}=1 \longleftrightarrow v$ in the vertex cover.
$6 \quad \forall$ vu $\in E:$ covered. $\Rightarrow x_{v} V x_{u}$ true. $\Rightarrow x_{v}+x_{u} \geq 1$
7 minimize total cost: min $\sum_{v \in v} x_{v} C_{v}$

Weighted vertex cover

Weighted Vertex Cover problem

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard
(3) ...unweighted Vertex Cover problem.

4 ... write as an integer program (IP):
$5 \quad \forall v \in V: x_{v}=1 \Longleftrightarrow v$ in the vertex cover.
$6 \quad \forall$ vu $\in E:$ covered. $\Longrightarrow x_{v} \vee x_{u}$ true. $\Rightarrow x_{v}+x_{u} \geq 1$
7 minimize total cost: min $\sum_{v \in V} x_{v} C_{V}$

Weighted vertex cover

Weighted Vertex Cover problem

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard
(3) ...unweighted Vertex Cover problem.
(1) ... write as an integer program (IP):
$5 \quad \forall \mathrm{v} \in \mathrm{V}: \mathrm{x}_{\mathrm{v}}=1 \longleftrightarrow \mathrm{~V}$ in the vertex cover.
$6 \quad \forall$ vu $\in E:$ covered. $\Longrightarrow x_{v} V x_{u}$ true. $\Rightarrow x_{v}+x_{u} \geq 1$
7 minimize total cost: min $\sum_{v \in v} x_{v} C_{v}$

Weighted vertex cover

Weighted Vertex Cover problem

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard
(3) ...unweighted Vertex Cover problem.
(1) ... write as an integer program (IP):
(9) $\forall \mathrm{v} \in \mathrm{V}: x_{\mathrm{v}}=\mathbf{1} \Longleftrightarrow \mathrm{v}$ in the vertex cover.

6 \quad vul $\in E:$ covered.
(7 minimize total cost:
$\min \sum_{v \in V} x_{v} c_{v}$.

Weighted vertex cover

Weighted Vertex Cover problem

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard
(3) ...unweighted Vertex Cover problem.
(1) ... write as an integer program (IP):
(9) $\forall \mathrm{v} \in \mathrm{V}: x_{\mathrm{v}}=\mathbf{1} \Longleftrightarrow \mathrm{v}$ in the vertex cover.
(0) $\forall \mathbf{v u} \in \mathrm{E}$: covered.

7 minimize total cost: min $\sum_{v \in V} x_{v} C_{v}$.

Weighted vertex cover

Weighted Vertex Cover problem

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard
(3) ...unweighted Vertex Cover problem.
(1) ... write as an integer program (IP):
(9) $\forall \mathrm{v} \in \mathrm{V}: x_{\mathrm{v}}=\mathbf{1} \Longleftrightarrow \mathrm{v}$ in the vertex cover.
() $\forall \mathrm{vu} \in \mathrm{E}$: covered. $\Longrightarrow x_{\mathrm{v}} \vee x_{\mathrm{u}}$ true.
7 minimize total cost: min $\sum_{v \in v} x_{v} C_{v}$.

Weighted vertex cover

Weighted Vertex Cover problem

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard
(3) ...unweighted Vertex Cover problem.
(1) ... write as an integer program (IP):
(9) $\forall \mathrm{v} \in \mathrm{V}: x_{\mathrm{v}}=\mathbf{1} \Longleftrightarrow \mathrm{v}$ in the vertex cover.
© $\forall \mathrm{vu} \in \mathrm{E}$: covered. $\Longrightarrow x_{\mathrm{v}} \vee x_{\mathrm{u}}$ true. $\Longrightarrow x_{\mathrm{v}}+x_{\mathrm{u}} \geq 1$.
(7) minimize total cost: $\min \sum_{v \in v} x_{v} c_{v}$.

Weighted vertex cover

Weighted Vertex Cover problem

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard
(3) ...unweighted Vertex Cover problem.
(1) ... write as an integer program (IP):
(9) $\forall \mathrm{v} \in \mathrm{V}: x_{\mathrm{v}}=\mathbf{1} \Longleftrightarrow \mathrm{v}$ in the vertex cover.
($) \forall \mathrm{vu} \in \mathrm{E}$: covered. $\Longrightarrow x_{\mathrm{v}} \vee x_{\mathrm{u}}$ true. $\Rightarrow x_{\mathrm{v}}+x_{\mathrm{u}} \geq 1$.
(0) minimize total cost: $\boldsymbol{\operatorname { m i n }} \sum_{\mathbf{v} \in \mathrm{V}} x_{\mathbf{v}} \mathbf{c}_{\mathbf{v}}$.

Weighted vertex cover

State as IP \Longrightarrow Relax \Longrightarrow LP

(1) ... NP-Hard.

2 relax the integer program.
3 allow x_{v} get values
\square
$4 x_{v} \in\{0,1\}$ replaced by

resulting $L P$ is

Weighted vertex cover

State as IP \Longrightarrow Relax \Longrightarrow LP

(1) ... NP-Hard.

3 allow x_{v} get values
\square
$4 x_{v} \in\{0,1\}$ replaced by

resulting LP is

Weighted vertex cover

State as IP \Longrightarrow Relax \Longrightarrow LP

(1) ... NP-Hard.
(2) relax the integer program.

3 allow x_{v} get values
$\in[0,1]$
4. $x_{v} \in\{0,1\}$ replaced by

resulting LP is

Weighted vertex cover

State as IP \Longrightarrow Relax \Longrightarrow LP

(1) ... NP-Hard.
(3) relax the integer program.
(3) allow x_{v} get values $\in[0,1]$.

4

resulting LP is

Weighted vertex cover

State as IP \Longrightarrow Relax \Longrightarrow LP

$\min \quad \sum_{v \in V} c_{v} x_{v}$,
such that $\quad x_{v} \in\{\mathbf{0}, \mathbf{1}\}$

$$
\begin{align*}
& x_{v} \in\{0,1\} \\
& x_{v}+x_{u} \geq 1 \tag{1}
\end{align*}
$$

$$
\forall v \in V
$$

$$
\forall \mathbf{v u} \in \mathrm{E} .
$$

© ... NP-Hard.
(3) relax the integer program.
(3) allow x_{v} get values $\in[0,1]$.
(1) $x_{v} \in\{0,1\}$ replaced by $\mathbf{0} \leq x_{v} \leq \mathbf{1}$. The resulting LP is

Weighted vertex cover

State as IP \Longrightarrow Relax \Longrightarrow LP

$\min \quad \sum_{v \in V} c_{v} x_{v}$,
such that $\quad x_{v} \in\{\mathbf{0}, \mathbf{1}\}$

$$
\begin{align*}
& x_{v} \in\{0,1\} \\
& x_{v}+x_{u} \geq 1 \tag{1}
\end{align*}
$$

$$
\forall v \in V
$$

$$
\forall \mathbf{v u} \in \mathrm{E} .
$$

(1) ... NP-Hard.
(2) relax the integer program.
(3) allow x_{v} get values $\in[0,1]$.
(1) $x_{v} \in\{0,1\}$ replaced by $\mathbf{0} \leq x_{v} \leq \mathbf{1}$. The resulting LP is
$\min \quad \sum_{v \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{\mathrm{v}}$,
s.t.

$$
\begin{array}{ll}
\mathbf{0} \leq x_{\mathrm{v}} & \forall \mathrm{v} \in \mathrm{~V}, \\
x_{\mathrm{v}} \leq \mathbf{1} & \forall \mathrm{v} \in \mathrm{~V}, \\
x_{\mathrm{v}}+x_{\mathrm{u}} \geq \mathbf{1} & \forall \mathbf{v u} \in \mathrm{E}
\end{array}
$$

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{x_{\mathrm{v}}}$ value of $\operatorname{var} X_{\mathrm{v}}, \forall \mathbf{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{v \in v} c_{v} \widehat{x}_{v}$.
${ }^{3}$ optimal integer solution: $x_{l}^{\prime}, \forall v \in V$ and α^{\prime}
(4) Any valid solution to IP is valid solution for LP!

5
Integral solution not better than LP
6 Got fractional solution (i.e., values of $\widehat{x_{v}}$)
(7 Fractional solution is better than the optimal cost.
8 Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding.

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{\boldsymbol{X}_{\mathrm{v}}}$ value of $\operatorname{var} \boldsymbol{X}_{\mathrm{v}}, \forall \mathbf{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{c}_{\mathbf{v}} \widehat{x}_{\mathbf{v}}$.
${ }^{3}$ optimal integer solution: $x_{v}^{l}, \forall v \in V$ and α^{\prime}
4) Any valid solution to IP is valid solution for LP!

5
Integral solution not better than LP
6 Got fractional solution (i.e., values of \widehat{x}_{v})
(Fractional solution is better than the optimal cost.
8 Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding.

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{\boldsymbol{X}_{\mathrm{v}}}$ value of $\operatorname{var} \boldsymbol{X}_{\mathrm{v}}, \forall \mathbf{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\boldsymbol{\alpha}}=\sum_{v \in V} \mathbf{c}_{v} \widehat{x}_{v}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in \mathrm{~V}$ and $\boldsymbol{\alpha}^{\prime}$.

4 Any valid solution to IP is valid solution for LP!
5
Integral solution not better than LP
6 Got fractional solution (i.e., values of \widehat{x}_{v})
(7 Fractional solution is better than the optimal cost.
8 Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding.

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: \widehat{x}_{v} value of $\operatorname{var} X_{\mathrm{v}}, \forall \mathrm{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{c}_{\mathbf{v}} \widehat{\mathrm{v}}_{\mathbf{v}}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in V$ and α^{\prime}.
(1) Any valid solution to IP is valid solution for LP!

5
Integral solution not better than LP
6 Got fractional solution (i.e., values of \widehat{x}_{v})
7 Fractional solution is better than the optimal cost
8 Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{x_{\mathrm{v}}}$ value of $\operatorname{var} X_{\mathrm{v}}, \forall \mathbf{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{c}_{\mathbf{v}} \widehat{\mathrm{v}}_{\mathbf{v}}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in V$ and α^{\prime}.
(1) Any valid solution to IP is valid solution for LP!
(c) $\widehat{\alpha} \leq \alpha^{\prime}$.

Integral solution not better than LP
6 Got fractional solution (i.e., values of X_{v})
7 Fractional solution is better than the optimal cost
8 Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{x_{\mathrm{v}}}$ value of $\operatorname{var} X_{\mathrm{v}}, \forall \mathrm{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{\mathbf{v} \in \mathrm{V}} \mathbf{c}_{\mathbf{v}} \widehat{\mathrm{v}}_{\mathbf{v}}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in V$ and α^{\prime}.
(1) Any valid solution to IP is valid solution for LP!
(5) $\widehat{\alpha} \leq \alpha^{\prime}$. Integral solution not better than LP.
6 Got fractional solution (i.e., values of \widehat{X}_{v})
7 Fractional solution is better than the optimal cost
8 Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{x_{\mathrm{v}}}$ value of $\operatorname{var} X_{\mathrm{v}}, \forall \mathbf{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{v \in V} \mathbf{c}_{v} \widehat{x}_{v}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in V$ and α^{\prime}.
(1) Any valid solution to IP is valid solution for LP!
(c) $\widehat{\alpha} \leq \alpha^{\prime}$. Integral solution not better than LP.
© Got fractional solution (i.e., values of \widehat{x}_{v}).
7 Fractional solution is better than the optimal cost
8 Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{x_{\mathrm{v}}}$ value of $\mathrm{var} X_{\mathrm{v}}, \forall \mathrm{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{v \in V} \mathbf{c}_{\mathbf{v}} \widehat{x}_{v}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in V$ and α^{\prime}.
(1) Any valid solution to IP is valid solution for LP!
(9) $\widehat{\alpha} \leq \alpha^{\prime}$. Integral solution not better than LP.
© Got fractional solution (i.e., values of \widehat{x}_{v}).
(3) Fractional solution is better than the optimal cost.

8 Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding.

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{x_{\mathrm{v}}}$ value of $\operatorname{var} X_{\mathrm{v}}, \forall \mathbf{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{v \in V} \mathbf{c}_{\mathbf{v}} \widehat{x}_{v}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in V$ and α^{\prime}.
(1) Any valid solution to IP is valid solution for LP!
(9) $\widehat{\alpha} \leq \alpha^{\prime}$. Integral solution not better than LP.
© Got fractional solution (i.e., values of \widehat{x}_{v}).
(3) Fractional solution is better than the optimal cost.
(3) Q: How to turn fractional solution into a (valid!) integer solution?

9 Using rounding

Weighted vertex cover - rounding the LP

(1) Optimal solution to this LP: $\widehat{x_{\mathrm{v}}}$ value of $\operatorname{var} X_{\mathrm{v}}, \forall \mathbf{v} \in \mathrm{V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{v \in V} \mathbf{c}_{\mathbf{v}} \widehat{x}_{v}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in V$ and α^{\prime}.
(1) Any valid solution to IP is valid solution for LP!
(3) $\widehat{\alpha} \leq \alpha^{\prime}$. Integral solution not better than LP.
© Got fractional solution (i.e., values of \widehat{x}_{v}).
(3) Fractional solution is better than the optimal cost.
(3) Q: How to turn fractional solution into a (valid!) integer solution?
© Using rounding.

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{\mathbf{v}}}$.
2. If $\widehat{x}_{v}=1$ then include in solution!
(3) If $\widehat{x}_{v}=0$ then do include in solution.
4. if $\widehat{x}_{v}=0.9 \Longrightarrow$ LP considers v as being 0.9 useful.

5 The LP puts its money where its belief is...
6 ...a value is a function of this "belief" generated by the LP.
(7 Big idea: Trust LP values as guidance to usefulness of vertices.

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{v}}$.
(2) If $\widehat{x_{v}}=1$ then include in solution!
${ }^{3}$ If $\widehat{x}_{v}=0$ then do include in solution.
4) if $\widehat{x}_{v}=0.9 \Longrightarrow$ LP considers v as being 0.9 useful.

5 The LP puts its money where its belief is...
6 ...a value is a function of this "belief" generated by the LP
7 Big idea: Trust LP values as guidance to usefulness of vertices.

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{\mathrm{v}}}$.
(2) If $\widehat{x_{v}}=1$ then include in solution!
(3) If $\widehat{x_{v}}=\mathbf{0}$ then do $\underline{\mathrm{nOt}}$ include in solution.
(4) if $\widehat{x}_{v}=0.9 \Longrightarrow$ LP considers v as being 0.9 useful.

5 The LP puts its money where its belief is...
6 ... 人 value is a function of this "belief" generated by the LP
(7) Big idea: Trust LP values as guidance to usefulness of vertices.

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{\mathrm{v}}}$.
(2) If $\widehat{x_{v}}=1$ then include in solution!
(3) If $\widehat{x_{v}}=\mathbf{0}$ then do not include in solution.
4) if $\widehat{x}_{v}=0.9 \Longrightarrow$ LP considers v as being 0.9 useful.

5 The LP puts its money where its belief is...
6 ...a value is a function of this "belief" generated by the LP
(7) Big idea: Trust LP values as guidance to usefulness of vertices.

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{\mathrm{v}}}$.
(2) If $\widehat{x_{v}}=\mathbf{1}$ then include in solution!
(3) If $\widehat{x_{v}}=\mathbf{0}$ then do not include in solution.
(1) if $\widehat{x}_{v}=0.9 \Longrightarrow$ LP considers v as being 0.9 useful.
5. The LP puts its money where its belief is..

6
(7) Big idea: Trust LP values as guidance to usefulness of vertices.

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{\mathrm{v}}}$.
(2) If $\widehat{x_{v}}=1$ then include in solution!
(3) If $\widehat{x_{v}}=\mathbf{0}$ then do not include in solution.
(9) if $\widehat{x_{v}}=0.9 \Longrightarrow L P$ considers v as being 0.9 useful.
(0) The LP puts its money where its belief is...

7 Big idea: Trust I P values as guldance to usefulness of vertices.

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{\mathrm{v}}}$.
(2) If $\widehat{x_{v}}=1$ then include in solution!
(3) If $\widehat{x_{v}}=\mathbf{0}$ then do not include in solution.
(3) if $\widehat{x}_{v}=0.9 \Longrightarrow L P$ considers v as being 0.9 useful.
(0) The LP puts its money where its belief is...
© ... $\widehat{\boldsymbol{\alpha}}$ value is a function of this "belief" generated by the LP.
7 Big idea: Trust LP values as guidance to usefulness of vertices

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{\mathrm{v}}}$.
(2) If $\widehat{x_{v}}=1$ then include in solution!
(3) If $\widehat{x_{v}}=\mathbf{0}$ then do not include in solution.
(3) if $\widehat{x}_{v}=0.9 \Longrightarrow L P$ considers v as being 0.9 useful.
(9) The LP puts its money where its belief is...
© ... $\widehat{\boldsymbol{\alpha}}$ value is a function of this "belief" generated by the LP.
(0) Big idea: Trust LP values as guidance to usefulness of vertices.

II: How to round?

(1) Indeed, edge cover as: $\forall v u \in E$ have $\widehat{x_{v}}+\widehat{x_{u}} \geq 1$.
${ }^{2} \widehat{x}_{v}, \widehat{x}_{u} \in(0,1)$
$\Longrightarrow \widehat{x}_{\mathrm{v}} \geq 1 / 2$ or $\widehat{x_{\mathrm{u}}} \geq 1 / 2$.
$\Longrightarrow \mathbf{v} \in S$ or $\mathbf{u} \in S$ (or both).
$\Longrightarrow S$ covers all the edges of G.

II: How to round?

(1) Indeed, edge cover as: $\forall v u \in E$ have $\widehat{x_{v}}+\widehat{x_{u}} \geq 1$.
$2 \widehat{x}_{v}, \widehat{x_{u}} \in(0,1)$
$\Longrightarrow \widehat{x}_{\mathrm{v}} \geq 1 / 2$ or $\widehat{x_{\mathrm{u}}} \geq 1 / 2$.
$\Longrightarrow \mathbf{v} \in S$ or $\mathbf{u} \in S$ (or both).
$\Longrightarrow S$ covers all the edges of G.

II: How to round?

$$
\begin{array}{lll}
\min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathbf{c}_{\mathrm{v}} x_{\mathrm{v}}, & \\
\text { s.t. } & \mathbf{0} \leq x_{\mathbf{v}} & \forall \mathbf{v} \in \mathrm{V} \\
& x_{\mathrm{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathrm{V} \\
& x_{\mathrm{v}}+x_{\mathbf{u}} \geq \mathbf{1} & \forall \mathbf{v u} \in \mathrm{E}
\end{array}
$$

(1) Pick all vertices \geq threshold of usefulness according to LP.
(2) $S=\left\{\mathrm{v} \mid \widehat{x}_{\mathrm{v}} \geq 1 / 2\right\}$.
(3) Claim: S a valid vertex cover, and cost is low.
(1) Indeed, edge cover as: \forall vu $\in E$ have $\widehat{x_{v}}+\widehat{x_{u}} \geq 1$.

2

$\Longrightarrow S$ covers all the edges of G.

II: How to round?

$$
\begin{array}{lll}
\min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{\mathrm{v}}, & \\
\text { s.t. } & \mathbf{0} \leq x_{\mathrm{v}} & \forall \mathrm{v} \in \mathrm{~V} \\
& x_{\mathrm{v}} \leq \mathbf{1} & \forall \mathrm{v} \in \mathrm{~V} \\
& x_{\mathrm{v}}+x_{\mathrm{u}} \geq \mathbf{1} & \forall \mathrm{vu} \in \mathrm{E}
\end{array}
$$

(1) Pick all vertices \geq threshold of usefulness according to LP.
(2) $S=\left\{v \mid \widehat{x}_{v} \geq 1 / 2\right\}$.
(3) Claim: S a valid vertex cover, and cost is low.
(1) Indeed, edge cover as: $\forall \mathbf{v u} \in \mathrm{E}$ have $\widehat{\mathrm{x}_{\mathrm{v}}}+\widehat{x_{\mathrm{u}}} \geq \mathbf{1}$.

2

II: How to round?

$$
\begin{array}{lll}
\min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{\mathrm{v}}, & \\
\text { s.t. } & \mathbf{0} \leq x_{\mathrm{v}} & \forall \mathrm{v} \in \mathrm{~V} \\
& x_{\mathrm{v}} \leq \mathbf{1} & \forall \mathrm{v} \in \mathrm{~V} \\
& x_{\mathrm{v}}+x_{\mathrm{u}} \geq \mathbf{1} & \forall \mathrm{vu} \in \mathrm{E}
\end{array}
$$

(1) Pick all vertices \geq threshold of usefulness according to LP.
(2) $S=\left\{v \mid \widehat{x}_{v} \geq 1 / 2\right\}$.
(3) Claim: S a valid vertex cover, and cost is low.
(1) Indeed, edge cover as: $\forall \mathbf{v u} \in E$ have $\widehat{x_{v}}+\widehat{x_{u}} \geq \mathbf{1}$.
(2) $\widehat{x}_{v}, \widehat{x}_{u} \in(0,1)$

II: How to round?

$$
\begin{array}{|lll}
\min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathbf{c}_{\mathrm{v}} x_{\mathrm{v}}, & \\
\text { s.t. } & 0 \leq x_{\mathrm{v}} & \forall \mathbf{v} \in \mathrm{~V} \\
& x_{\mathrm{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathrm{V} \\
& x_{\mathbf{v}}+x_{\mathbf{u}} \geq \mathbf{1} & \forall \mathbf{v u} \in \mathrm{E}
\end{array}
$$

(1) Pick all vertices \geq threshold of usefulness according to LP.
(2) $S=\left\{\mathrm{v} \mid \widehat{x}_{\mathrm{v}} \geq 1 / 2\right\}$.
(3) Claim: S a valid vertex cover, and cost is low.
(1) Indeed, edge cover as: $\forall \mathbf{v u} \in \mathrm{E}$ have $\widehat{\mathrm{x}_{\mathbf{v}}}+\widehat{x_{\mathbf{u}}} \geq 1$.
(2) $\widehat{x_{v}}, \widehat{x_{u}} \in(0,1)$
$\Longrightarrow \widehat{x}_{\mathrm{v}} \geq 1 / 2$ or $\widehat{x_{\mathrm{u}}} \geq 1 / 2$.

II: How to round?

$$
\begin{array}{lll}
\min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{\mathrm{v}}, & \\
\text { s.t. } & \mathbf{0} \leq x_{\mathrm{v}} & \forall \mathbf{v} \in \mathrm{~V} \\
& x_{\mathrm{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathrm{V} \\
& x_{\mathrm{v}}+x_{\mathrm{u}} \geq \mathbf{1} & \forall \mathbf{v u} \in \mathrm{E}
\end{array}
$$

(1) Pick all vertices \geq threshold of usefulness according to LP.
(2) $S=\left\{v \mid \widehat{x}_{v} \geq 1 / 2\right\}$.
(3) Claim: S a valid vertex cover, and cost is low.
(1) Indeed, edge cover as: $\forall \mathbf{v u} \in E$ have $\widehat{x_{v}}+\widehat{x_{u}} \geq 1$.
(2) $\widehat{x_{v}}, \widehat{x_{u}} \in(0,1)$
$\Longrightarrow \widehat{x}_{v} \geq 1 / 2$ or $\widehat{x}_{u} \geq 1 / 2$.
$\Longrightarrow \mathbf{v} \in S$ or $\mathbf{u} \in S$ (or both).

II: How to round?

$$
\begin{array}{lll}
\min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{\mathrm{v}}, & \\
\text { s.t. } & \mathbf{0} \leq x_{\mathrm{v}} & \forall \mathbf{v} \in \mathrm{~V} \\
& x_{\mathrm{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathrm{V} \\
& x_{\mathrm{v}}+x_{\mathrm{u}} \geq \mathbf{1} & \forall \mathbf{v u} \in \mathrm{E}
\end{array}
$$

(1) Pick all vertices \geq threshold of usefulness according to LP.
(2) $S=\left\{v \mid \widehat{x}_{v} \geq 1 / 2\right\}$.
(3) Claim: S a valid vertex cover, and cost is low.
(1) Indeed, edge cover as: $\forall \mathbf{v u} \in E$ have $\widehat{x_{v}}+\widehat{x_{u}} \geq 1$.
(2) $\widehat{x_{v}}, \widehat{x}_{u} \in(0,1)$
$\Longrightarrow \widehat{x}_{v} \geq 1 / 2$ or $\widehat{x}_{u} \geq 1 / 2$.
$\Longrightarrow \mathbf{v} \in S$ or $\mathbf{u} \in S$ (or both).
$\Longrightarrow S$ covers all the edges of G.

Cost of solution

Cost of S :
$\mathrm{c}_{S}=\sum_{\mathrm{v} \in \mathrm{S}} \mathrm{c}_{\mathrm{v}}=\sum_{\mathrm{v} \in S} 1 \cdot \mathrm{c}_{\mathrm{v}} \leq \sum_{\mathrm{v} \in S} 2 \widehat{x}_{\mathrm{v}} \cdot \mathrm{c}_{\mathrm{v}} \leq 2 \sum_{\mathrm{v} \in \mathrm{V}} \widehat{x}_{\mathrm{v}} \mathrm{c}_{\mathrm{v}}=2 \widehat{\alpha} \leq 2 \alpha^{\prime}$, since $\widehat{x_{v}} \geq \mathbf{1 / 2}$ as $v \in S$.
α^{\prime} is cost of the optimal solution

Theorem

The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

Cost of solution

Cost of S :
$\mathrm{c}_{S}=\sum_{\mathrm{v} \in \mathrm{S}} \mathrm{c}_{\mathrm{v}}=\sum_{\mathrm{v} \in S} 1 \cdot \mathrm{c}_{\mathrm{v}} \leq \sum_{\mathrm{v} \in S} 2 \widehat{x}_{\mathrm{v}} \cdot \mathrm{c}_{\mathrm{v}} \leq 2 \sum_{\mathrm{v} \in \mathrm{V}} \widehat{x}_{\mathrm{v}} \mathrm{c}_{\mathrm{v}}=2 \widehat{\alpha} \leq 2 \alpha^{\prime}$, since $\widehat{x_{v}} \geq \mathbf{1 / 2}$ as $v \in S$.
α^{\prime} is cost of the optimal solution \Longrightarrow

Theorem

The Weighted Vertex Cover problem can be 2 -approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

Cost of solution

Cost of S :
$\mathrm{c}_{S}=\sum_{\mathrm{v} \in \mathrm{S}} \mathrm{c}_{\mathrm{v}}=\sum_{\mathrm{v} \in S} 1 \cdot \mathrm{c}_{\mathrm{v}} \leq \sum_{\mathrm{v} \in S} 2 \widehat{x}_{\mathrm{v}} \cdot \mathrm{c}_{\mathrm{v}} \leq 2 \sum_{\mathrm{v} \in \mathrm{V}} \widehat{x}_{\mathrm{v}} \mathrm{c}_{\mathrm{v}}=2 \widehat{\alpha} \leq 2 \alpha^{\prime}$, since $\widehat{x}_{v} \geq \mathbf{1 / 2}$ as $\mathbf{v} \in S$.
α^{\prime} is cost of the optimal solution \Longrightarrow
Theorem
The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

The lessons we can take away

Or not - boring, boring, boring.
(1) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
2 Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
(3) Solving a relaxation of an optimization problem into a LP provides us with insight.
(4) But... have to be creative in the rounding.

The lessons we can take away Or not - boring, boring, boring.

(1) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
(2) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)

3 Solving a relaxation of an optimization problem into a LP provides us with insight.

4 But... have to be creative in the rounding.

The lessons we can take away Or not - boring, boring, boring.

(1) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
(2) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
(3) Solving a relaxation of an optimization problem into a LP provides us with insight.
4 But... have to be creative in the rounding.

The lessons we can take away Or not - boring, boring, boring.

(1) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.

2 2 Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
(3) Solving a relaxation of an optimization problem into a LP provides us with insight.
(4) But... have to be creative in the rounding.

26.1.2: Revisiting Set Cover

Revisiting Set Cover

(1) Purpose: See new technique for an approximation algorithm.

2 Not better than greedy algorithm already seen $O(\log n)$ approximation.

Problem: Set Cover

```
Instance: (S,\mathcal{F})
    S - a set of }n\mathrm{ elements
    \mathcal{F}}\mathrm{ - a family of subsets of S, s.t. }\mp@subsup{\bigcup}{X\in\mathcal{F}}{}X=
Question: The set \mathcal{X}\subseteq\mathcal{F}\mathrm{ such that }\mathcal{X}\mathrm{ contains as}
few sets as possible, and \mathcal{X}}\mathrm{ covers S.
```


Revisiting Set Cover

(1) Purpose: See new technique for an approximation algorithm.
(2) Not better than greedy algorithm already seen $O(\log n)$ approximation.

Problem: Set Cover

Revisiting Set Cover

(1) Purpose: See new technique for an approximation algorithm.
(2) Not better than greedy algorithm already seen $O(\log n)$ approximation.

Problem: Set Cover

```
Instance: (S,\mathcal{F})
    S - a set of n elements
    \mathcal{F}}\mathrm{ - a family of subsets of S, s.t. }\mp@subsup{\bigcup}{\boldsymbol{X}\in\mathcal{F}}{}\boldsymbol{X}=S
Question: The set \mathcal{X}\subseteqF few sets as possible, and \(\mathcal{X}\) covers \(S\).
```


Set Cover - IP \& LP

$$
\begin{array}{lll}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, & \\
\text { s.t. } & x_{U} \in\{\mathbf{0}, \mathbf{1}\} & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall s \in S
\end{array}
$$

Next, we relax this IP into the following LP

Set Cover - IP \& LP

$$
\begin{array}{lll}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, \\
\text { s.t. } & x_{U} \in\{\mathbf{0}, \mathbf{1}\} & \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall \boldsymbol{\forall} \in \mathcal{F},
\end{array}
$$

Next, we relax this IP into the following LP.

Set Cover - IP \& LP

$$
\begin{array}{lll}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, \\
\text { s.t. } & x_{U} \in\{0,1\} & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall s \in S
\end{array}
$$

Next, we relax this IP into the following LP.

$$
\begin{array}{ll}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, \\
& 0 \leq x_{U} \leq 1 \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1
\end{array}
$$

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to 1 then pick U to cover.
5. If $\widehat{X U}$ close to 0 do not.

6 Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x_{U}}$.
7 Resulting family of sets \mathcal{G}.
8 Z_{S} : indicator variable. 1 if $S \in \mathcal{G}$.
9 Cost of G is $\sum_{S \in \mathcal{F}} Z_{S}$, and the expected cost is

10

11

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\alpha}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
${ }^{3}$ Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to 1 then pick U to cover.
${ }^{5}$ If x_{U} close to 0 do not.
6 Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability \widehat{x}.
(7) Resulting family of sets \mathcal{G}.
$8 Z_{S}$: indicator variable. 1 if $S \in \mathcal{G}$.
9 Cost of G is $\sum_{s \in \mathcal{F}} Z_{S}$, and the expected cost is

Set Cover - IP \& LP

(1) LP solution: $\forall \boldsymbol{U} \in \mathcal{F}, \widehat{\boldsymbol{x}_{\boldsymbol{U}}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, \boldsymbol{x}_{\boldsymbol{U}}^{\prime}$, and $\boldsymbol{\alpha}^{\boldsymbol{\prime}}$.
(3) Use LP solution to guide in rounding process.
${ }^{4}$ If \widehat{x}_{U} is close to 1 then pick U to cover.
5 If $\widehat{X} U$ close to 0 do not.
6 Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x_{U}}$
7 Resulting family of sets \mathcal{G}
$8 Z_{S}$: indicator variable. 1 if $S \in \mathcal{G}$.
9 Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_{S}$, and the expected cost is

Set Cover - IP \& LP

(1) LP solution: $\forall \boldsymbol{U} \in \mathcal{F}, \widehat{\boldsymbol{x}_{\boldsymbol{U}}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick U to cover.

5 If $\bar{x} U$ close to 0 do not.
6 Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x} U$
7 Resulting family of sets \mathcal{G}
$8 Z_{S}$: indicator variable. 1 if $S \in \mathcal{G}$
9 Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_{S}$, and the expected cost is

Set Cover - IP \& LP

(1) LP solution: $\forall \boldsymbol{U} \in \mathcal{F}, \widehat{\boldsymbol{x}_{\boldsymbol{U}}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and $\alpha^{\boldsymbol{\prime}}$.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick U to cover.
(5) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.

6 Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability \widehat{x}_{U}
7 Resulting family of sets \mathcal{G}
$8 Z_{S}$: indicator variable. 1 if $S \in \mathcal{G}$
9 Cost of \mathcal{G} is $\sum_{s \in \mathcal{F}} Z_{S}$, and the expected cost is

Set Cover - IP \& LP

(1) LP solution: $\forall \boldsymbol{U} \in \mathcal{F}, \widehat{\boldsymbol{x}_{\boldsymbol{U}}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and $\alpha^{\boldsymbol{\prime}}$.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick U to cover.
(5) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(6) Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x_{U}}$.

7 Resulting family of sets \mathcal{G}
(8) Z_{S} : indicator variable. 1 if $S \in \mathcal{G}$

9 Cost of \mathcal{G} is $\sum_{S \in \mathcal{F}} Z_{S}$, and the expected cost is

Set Cover - IP \& LP

(1) LP solution: $\forall \boldsymbol{U} \in \mathcal{F}, \widehat{\boldsymbol{x}_{\boldsymbol{U}}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and $\alpha^{\boldsymbol{\prime}}$.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick U to cover.
(5) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(6) Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x_{U}}$.
(7) Resulting family of sets \mathcal{G}.
$8 Z_{S}$: indicator variable. 1 if $S \in \mathcal{G}$
9 Cost of G is $\sum_{s \in \mathscr{F}} Z_{S}$, and the expected cost is

In expectation, \mathcal{G} is not too expensive.

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick \boldsymbol{U} to cover.
(5) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose \boldsymbol{U} with probability $\widehat{x_{U}}$.
(3) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(9) Cost of \mathcal{G} is $\sum_{S \in \mathscr{G}} Z_{S}$, and the expected cost is

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(9) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick U to cover.
(9) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose \boldsymbol{U} with probability $\widehat{x_{U}}$.
(0) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(2) Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} \boldsymbol{Z}_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[$ cost of $\mathcal{G}]=\mathrm{E}[$

11 Bigus problumos: G might fail to cover some element se S

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick U to cover.
(9) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose \boldsymbol{U} with probability $\widehat{x_{U}}$.
(0) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(0) Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[$ cost of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{s}}\right]$

11 Bigus problumos: G might fail to cover some element se S

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick U to cover.
(9) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose \boldsymbol{U} with probability $\widehat{x_{U}}$.
(0) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(0. Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[$ cost of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{s} \in \mathcal{F}} \boldsymbol{Z}_{\boldsymbol{S}}\right]=\sum_{\boldsymbol{s} \in \mathcal{F}} \mathbf{E}\left[Z_{\boldsymbol{S}}\right]$

11 Bigus problumos: G might fail to cover some element se S

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(9) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick U to cover.
(9) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x_{U}}$.
(0) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(2) Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[\operatorname{cost}$ of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{s} \in \mathcal{F}} \boldsymbol{Z}_{\boldsymbol{S}}\right]=\sum_{\boldsymbol{s} \in \mathcal{F}} \mathbf{E}\left[Z_{\boldsymbol{S}}\right]=$ $\sum_{s \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{G}]$

11 Bigus problumos: G might fail to cover some element se S

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick \boldsymbol{U} to cover.
(9) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x_{U}}$.
(0) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(2) Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[$ cost of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}\right]=\sum_{\boldsymbol{s} \in \mathcal{F}} \mathbf{E}\left[Z_{\boldsymbol{S}}\right]=$ $\sum_{s \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{G}]=\sum_{s \in \mathcal{F}} \widehat{x_{S}}$

11 Bigus problumos: G might fail to cover some element seS.

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick \boldsymbol{U} to cover.
(9) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose \boldsymbol{U} with probability $\widehat{x_{U}}$.
(0) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(0. Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} \boldsymbol{Z}_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[$ cost of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}\right]=\sum_{\boldsymbol{s} \in \mathcal{F}} \mathbf{E}\left[Z_{\boldsymbol{S}}\right]=$ $\sum_{s \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{G}]=\sum_{s \in \mathcal{F}} \widehat{x_{S}}=\widehat{\alpha}$

11 Bigus problumos: G might fail to cover some element seS.

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick \boldsymbol{U} to cover.
(5) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose U with probability $\widehat{x_{U}}$.
(0) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(2) Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[\operatorname{cost}$ of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{S}\right]=\sum_{\boldsymbol{s} \in \mathcal{F}} \mathbf{E}\left[Z_{S}\right]=$ $\sum_{s \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{G}]=\sum_{s \in \mathcal{F}} \widehat{x_{S}}=\widehat{\alpha} \leq \alpha^{\prime}$.

11 Bigus problumos: G might fail to cover some element seS.

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick \boldsymbol{U} to cover.
(3) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose \boldsymbol{U} with probability $\widehat{x_{U}}$.
(1) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(2) Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[\operatorname{cost}$ of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{S}\right]=\sum_{\boldsymbol{s} \in \mathcal{F}} \mathbf{E}\left[Z_{S}\right]=$ $\sum_{s \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{G}]=\sum_{s \in \mathcal{F}} \widehat{x_{S}}=\widehat{\alpha} \leq \alpha^{\prime}$.
(1) In expectation, \mathcal{G} is not too expensive.

Set Cover - IP \& LP

(1) LP solution: $\forall U \in \mathcal{F}, \widehat{x_{U}}$, and $\widehat{\boldsymbol{\alpha}}$.
(2) Opt IP solution: $\forall U \in \mathcal{F}, x_{U}^{\prime}$, and α^{\prime}.
(3) Use LP solution to guide in rounding process.
(4) If $\widehat{x_{U}}$ is close to $\mathbf{1}$ then pick \boldsymbol{U} to cover.
(3) If $\widehat{x_{U}}$ close to $\mathbf{0}$ do not.
(0) Idea: Pick $U \in \mathcal{F}$: randomly choose \boldsymbol{U} with probability $\widehat{x_{U}}$.
(0) Resulting family of sets \mathcal{G}.
(3) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(0) Cost of \mathcal{G} is $\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[$ cost of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{S} \in \mathcal{F}} Z_{S}\right]=\sum_{\boldsymbol{s} \in \mathcal{F}} \mathbf{E}\left[Z_{\boldsymbol{S}}\right]=$ $\sum_{s \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{G}]=\sum_{s \in \mathcal{F}} \widehat{x_{S}}=\widehat{\alpha} \leq \alpha^{\prime}$.
(1) In expectation, \mathcal{G} is not too expensive.
(1) Bigus problumos: \mathcal{G} might fail to cover some element $s \in S$.

Set Cover - Rounding continued

(1) Solution: Repeat rounding stage $m=10\lceil\lg n\rceil=O(\log n)$ times.
(2) $n=|S|$.
(3) Si: random cover computed in ith iteration.
(4) $\mathcal{H}=\cup_{i} \mathcal{G}_{i}$. Return \mathcal{H} as the required cover.

Set Cover - Rounding continued

(1) Solution: Repeat rounding stage $m=10\lceil\lg n\rceil=O(\log n)$ times.
(2) $n=|S|$.
(3) $\mathcal{G}_{i}:$ random cover computed in i th iteration.
(4) $\mathcal{H}=\cup_{i} \mathcal{G}_{\boldsymbol{i}}$. Return \mathcal{H} as the required cover.

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability s not covered by \mathcal{G}_{i} (ith iteration set). $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{\boldsymbol{i}}\right]$
$=\operatorname{Pr}\left[\right.$ no $U \in \mathcal{F}$, s.t. $s \in U$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, s \in \boldsymbol{U}} \operatorname{Pr}\left[\boldsymbol{U}\right.$ was not picked into $\left.\mathcal{G}_{i}\right]$

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability s not covered by \mathcal{G}_{i} (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{\boldsymbol{i}}\right]$
$=\operatorname{Pr}\left[\right.$ no $\boldsymbol{U} \in \mathcal{F}$, s.t. $s \in \boldsymbol{U}$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{U \in \mathcal{F}, s \in U} \operatorname{Pr}\left[U\right.$ was not picked into $\left.\mathcal{G}_{i}\right]$

$=\exp \left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}}\right) \leq \exp (-1) \leq \frac{1}{2}$,

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability s not covered by \mathcal{G}_{i} (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right]$
$=\operatorname{Pr}\left[\right.$ no $U \in \mathcal{F}$, s.t. $s \in U$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, s \in \boldsymbol{U}} \operatorname{Pr}\left[\boldsymbol{U}\right.$ was not picked into $\left.\mathcal{G}_{\boldsymbol{i}}\right]$

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability s not covered by \mathcal{G}_{i} (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right]$
$=\operatorname{Pr}\left[\right.$ no $U \in \mathcal{F}$, s.t. $s \in U$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, s \in \boldsymbol{U}} \operatorname{Pr}\left[\boldsymbol{U}\right.$ was not picked into $\left.\mathcal{G}_{\boldsymbol{i}}\right]$
$=\prod_{U \in \mathcal{F}, s \in U}\left(1-\widehat{x_{U}}\right)$

$=\exp \left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}}\right) \leq \exp (-1) \leq \frac{1}{2}$,

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability s not covered by \mathcal{G}_{i} (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right]$
$=\operatorname{Pr}\left[\right.$ no $U \in \mathcal{F}$, s.t. $s \in U$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, s \in \boldsymbol{U}} \operatorname{Pr}\left[\boldsymbol{U}\right.$ was not picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{U \in \mathcal{F}, s \in U}\left(1-\widehat{x_{U}}\right) \leq \prod_{U \in \mathcal{F}, s \in U} \exp \left(-\widehat{x_{U}}\right)$
$=\exp \left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{X_{U}}\right) \leq \exp (-1) \leq \frac{1}{2}$,

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability \boldsymbol{s} not covered by $\mathcal{G}_{\boldsymbol{i}}$ (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right]$
$=\operatorname{Pr}\left[\right.$ no $U \in \mathcal{F}$, s.t. $s \in U$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, s \in \boldsymbol{U}} \operatorname{Pr}\left[\boldsymbol{U}\right.$ was not picked into $\left.\boldsymbol{G}_{\boldsymbol{i}}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, \boldsymbol{s} \in \boldsymbol{U}}\left(1-\widehat{x_{\boldsymbol{U}}}\right) \leq \prod_{\boldsymbol{U} \in \mathcal{F}, \boldsymbol{s} \in \boldsymbol{U}} \exp \left(-\widehat{\boldsymbol{x}_{\boldsymbol{U}}}\right)$
$=\exp \left(-\sum_{\boldsymbol{U} \in \mathcal{F}, \boldsymbol{s} \in \boldsymbol{U}} \widehat{x_{\boldsymbol{U}}}\right) \leq \exp (-1) \leq \frac{1}{2}$,

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability \boldsymbol{s} not covered by $\mathcal{G}_{\boldsymbol{i}}$ (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right]$
$=\operatorname{Pr}\left[\right.$ no $U \in \mathcal{F}$, s.t. $s \in U$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, s \in \boldsymbol{U}} \operatorname{Pr}\left[\boldsymbol{U}\right.$ was not picked into $\left.\boldsymbol{G}_{\boldsymbol{i}}\right]$
$=\prod_{U \in \mathcal{F}, s \in U}\left(1-\widehat{x_{U}}\right) \leq \prod_{U \in \mathcal{F}, s \in U} \exp \left(-\widehat{x_{U}}\right)$
$=\exp \left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}}\right) \leq \exp (-1) \leq \frac{1}{2}$,

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability \boldsymbol{s} not covered by $\mathcal{G}_{\boldsymbol{i}}$ (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right]$
$=\operatorname{Pr}\left[\right.$ no $U \in \mathcal{F}$, s.t. $s \in U$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, s \in \boldsymbol{U}} \operatorname{Pr}\left[\boldsymbol{U}\right.$ was not picked into $\left.\boldsymbol{G}_{\boldsymbol{i}}\right]$
$=\prod_{U \in \mathcal{F}, s \in U}\left(1-\widehat{x_{U}}\right) \leq \prod_{U \in \mathcal{F}, s \in U} \exp \left(-\widehat{x_{U}}\right)$
$=\exp \left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}}\right) \leq \exp (-1) \leq \frac{1}{2}$,

The set \mathcal{H} covers S

(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability s not covered by \mathcal{G}_{i} (ith iteration set). $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{\boldsymbol{i}}\right] \leq \frac{1}{2}$

The set \mathcal{H} covers S

Probability of a single item to be covered
(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right] \leq 1 / 2$.
(2) Number of iterations of rounding $m=O(\log n)$
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{m}$
(4) probability s is not covered in all m iterations

$$
\begin{aligned}
P_{s} & =\operatorname{Pr}\left[s \text { not covered by } \mathcal{G}_{1}, \ldots, \mathcal{F}_{m}\right] \\
& \leq \operatorname{Pr}\left[\left(s \notin \mathcal{F}_{1}\right) \cap\left(s \notin \mathcal{F}_{2}\right) \cap \ldots \cap\left(s \notin \mathcal{F}_{m}\right)\right] \\
& \leq \operatorname{Pr}\left[s \notin \mathcal{F}_{1}\right] \operatorname{Pr}\left[s \notin \mathcal{F}_{2}\right] \cdots \operatorname{Pr}\left[s \notin \mathcal{F}_{m}\right] \\
& =\frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2}=\left(\frac{1}{2}\right)^{m}<\frac{1}{n^{10}}
\end{aligned}
$$

The set \mathcal{H} covers S

Probability of a single item to be covered

(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right] \leq \mathbf{1 / 2}$.
(2) Number of iterations of rounding $m=O(\log n)$.
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{m}$

4 probability s is not covered in all m iterations

The set \mathcal{H} covers S

Probability of a single item to be covered

(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right] \leq \mathbf{1} / \mathbf{2}$.
(2) Number of iterations of rounding $m=O(\log n)$.
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{\boldsymbol{m}}$.

4 probability s is not covered in all m iterations

The set \mathcal{H} covers S

Probability of a single item to be covered

(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right] \leq \mathbf{1} / \mathbf{2}$.
(2) Number of iterations of rounding $m=O(\log n)$.
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{\boldsymbol{m}}$.
(4) probability s is not covered in all \boldsymbol{m} iterations

$$
\begin{aligned}
\boldsymbol{P}_{\boldsymbol{s}} & =\operatorname{Pr}\left[\boldsymbol{s} \text { not covered by } \mathcal{G}_{\mathbf{1}}, \ldots, \mathcal{F}_{\boldsymbol{m}}\right] \\
& \leq \operatorname{Pr}\left[\left(\boldsymbol{s} \notin \mathcal{F}_{\mathbf{1}}\right) \cap\left(\boldsymbol{s} \notin \mathcal{F}_{2}\right) \cap \ldots \cap\left(\boldsymbol{s} \notin \mathcal{F}_{\boldsymbol{m}}\right)\right] \\
& \leq \operatorname{Pr}\left[s \notin \mathcal{F}_{1}\right] \operatorname{Pr}\left[s \notin \mathcal{F}_{2}\right] \ldots \operatorname{Pr}\left[s \notin \mathcal{F}_{m}\right] \\
& =\frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2}=\left(\frac{1}{2}\right)^{m}<\frac{1}{n^{10}},
\end{aligned}
$$

The set \mathcal{H} covers S

Probability of a single item to be covered

(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right] \leq \mathbf{1} / \mathbf{2}$.
(2) Number of iterations of rounding $m=O(\log n)$.
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{\boldsymbol{m}}$.
(1) probability s is not covered in all m iterations

$$
\begin{aligned}
\boldsymbol{P}_{\boldsymbol{s}} & =\operatorname{Pr}\left[s \text { not covered by } \mathcal{G}_{\mathbf{1}}, \ldots, \mathcal{F}_{\boldsymbol{m}}\right] \\
& \leq \operatorname{Pr}\left[\left(\boldsymbol{s} \notin \mathcal{F}_{\mathbf{1}}\right) \cap\left(\boldsymbol{s} \notin \mathcal{F}_{2}\right) \cap \ldots \cap\left(\boldsymbol{s} \notin \mathcal{F}_{\boldsymbol{m}}\right)\right] \\
& \leq \operatorname{Pr}\left[s \notin \mathcal{F}_{1}\right] \operatorname{Pr}\left[s \notin \mathcal{F}_{2}\right] \ldots \operatorname{Pr}\left[s \notin \mathcal{F}_{m}\right] \\
& =\frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2}=\left(\frac{1}{2}\right)^{m}<\frac{1}{n^{10}},
\end{aligned}
$$

The set \mathcal{H} covers S

Probability of a single item to be covered

(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right] \leq \mathbf{1 / 2}$.
(2) Number of iterations of rounding $m=O(\log n)$.
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{\boldsymbol{m}}$.
(1) probability s is not covered in all m iterations

$$
\begin{aligned}
P_{s} & =\operatorname{Pr}\left[s \text { not covered by } \mathcal{G}_{1}, \ldots, \mathcal{F}_{\boldsymbol{m}}\right] \\
& \leq \operatorname{Pr}\left[(s \notin \mathcal { F } _ { \mathbf { 1 } }) \cap (s \notin \mathcal { F } _ { 2 }) \cap \ldots \cap \left(\boldsymbol{s \notin \mathcal { F } _ { \boldsymbol { m } })]}\right.\right. \\
& \leq \operatorname{Pr}\left[s \notin \mathcal{F}_{1}\right] \operatorname{Pr}\left[s \notin \mathcal{F}_{2}\right] \cdots \operatorname{Pr}\left[s \notin \mathcal{F}_{\boldsymbol{m}}\right] \\
& =\frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2}=\left(\frac{1}{2}\right)^{m}<\frac{1}{n^{10}},
\end{aligned}
$$

The set \mathcal{H} covers S

Probability of a single item to be covered

(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right] \leq \mathbf{1 / 2}$.
(2) Number of iterations of rounding $m=O(\log n)$.
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{\boldsymbol{m}}$.
(4) probability s is not covered in all \boldsymbol{m} iterations

$$
\begin{aligned}
P_{s} & =\operatorname{Pr}\left[s \text { not covered by } \mathcal{G}_{1}, \ldots, \mathcal{F}_{\boldsymbol{m}}\right] \\
& \leq \operatorname{Pr}\left[\left(s \notin \mathcal{F}_{1}\right) \cap\left(s \notin \mathcal{F}_{2}\right) \cap \ldots \cap\left(s \notin \mathcal{F}_{\boldsymbol{m}}\right)\right] \\
& \leq \operatorname{Pr}\left[s \notin \mathcal{F}_{1}\right] \operatorname{Pr}\left[s \notin \mathcal{F}_{2}\right] \cdots \operatorname{Pr}\left[s \notin \mathcal{F}_{\boldsymbol{m}}\right] \\
& \left.=\frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{\mathbf{1}}{\mathbf{2}}=\left(\frac{1}{2}\right)^{2}\right) \frac{1}{n^{10}}
\end{aligned}
$$

The set \mathcal{H} covers S

Probability of a single item to be covered

(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right] \leq \mathbf{1 / 2}$.
(2) Number of iterations of rounding $m=O(\log n)$.
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{\boldsymbol{m}}$.
(4) probability s is not covered in all \boldsymbol{m} iterations

$$
\begin{aligned}
P_{s} & =\operatorname{Pr}\left[s \text { not covered by } \mathcal{G}_{1}, \ldots, \mathcal{F}_{\boldsymbol{m}}\right] \\
& \leq \operatorname{Pr}\left[\left(s \notin \mathcal{F}_{1}\right) \cap\left(s \notin \mathcal{F}_{2}\right) \cap \ldots \cap\left(s \notin \mathcal{F}_{\boldsymbol{m}}\right)\right] \\
& \leq \operatorname{Pr}\left[s \notin \mathcal{F}_{1}\right] \operatorname{Pr}\left[s \notin \mathcal{F}_{2}\right] \cdots \operatorname{Pr}\left[s \notin \mathcal{F}_{\boldsymbol{m}}\right] \\
& =\frac{\mathbf{1}}{\mathbf{2}} \times \frac{\mathbf{1}}{\mathbf{2}} \times \cdots \times \frac{\mathbf{1}}{\mathbf{2}}=\left(\frac{\mathbf{1}}{\mathbf{2}}\right)^{\boldsymbol{m}}
\end{aligned}
$$

The set \mathcal{H} covers S

Probability of a single item to be covered

(1) $\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G i}_{i}\right] \leq \mathbf{1 / 2}$.
(2) Number of iterations of rounding $m=O(\log n)$.
(3) Covering with sets in $\mathcal{G}_{1}, \ldots, \mathcal{G}_{\boldsymbol{m}}$.
(1) probability s is not covered in all m iterations

$$
\begin{aligned}
P_{s} & =\operatorname{Pr}\left[s \text { not covered by } \mathcal{G}_{1}, \ldots, \mathcal{F}_{m}\right] \\
& \leq \operatorname{Pr}\left[\left(s \notin \mathcal{F}_{1}\right) \cap\left(s \notin \mathcal{F}_{2}\right) \cap \ldots \cap\left(s \notin \mathcal{F}_{m}\right)\right] \\
& \leq \operatorname{Pr}\left[s \notin \mathcal{F}_{1}\right] \operatorname{Pr}\left[s \notin \mathcal{F}_{2}\right] \cdots \operatorname{Pr}\left[s \notin \mathcal{F}_{m}\right] \\
& =\frac{1}{2} \times \frac{1}{2} \times \cdots \times \frac{1}{2}=\left(\frac{1}{2}\right)^{m}<\frac{1}{n^{10}},
\end{aligned}
$$

The set \mathcal{H} covers S

Probability of all items to be covered

(1) $n=|S|$,
(2) Probability of $s \in S$, not to be in $\mathcal{G}_{1} \cup \ldots \cup \mathcal{F}_{\boldsymbol{m}}$ is

$$
P_{s}<\frac{1}{n^{10}}
$$

(3) probability one of n elements of S is not covered by \mathcal{H} is

The set \mathcal{H} covers S

Probability of all items to be covered

(1) $n=|S|$,
(2) Probability of $s \in S$, not to be in $\mathcal{G}_{\boldsymbol{1}} \cup \ldots \cup \mathcal{F}_{\boldsymbol{m}}$ is

$$
P_{s}<\frac{1}{n^{10}} .
$$

(3) probability one of \boldsymbol{n} elements of \boldsymbol{S} is not covered by \mathcal{H} is

$$
\sum_{\boldsymbol{s} \in \boldsymbol{S}} \operatorname{Pr}\left[\boldsymbol{s} \notin \mathcal{G}_{\boldsymbol{1}} \cup \ldots \cup \mathcal{F}_{\boldsymbol{m}}\right]=\sum_{s \in S} P_{s}<n\left(1 / n^{10}\right)=1 / n^{9} .
$$

The set \mathcal{H} covers S

Probability of all items to be covered

(1) $n=|S|$,
(2) Probability of $s \in S$, not to be in $\mathcal{G}_{1} \cup \ldots \cup \mathcal{F}_{\boldsymbol{m}}$ is

$$
P_{s}<\frac{1}{n^{10}}
$$

(3) probability one of \boldsymbol{n} elements of \boldsymbol{S} is not covered by \mathscr{H} is

$$
\sum_{\boldsymbol{s} \in \boldsymbol{S}} \operatorname{Pr}\left[\boldsymbol{s} \notin \mathcal{G}_{\boldsymbol{1}} \cup \ldots \cup \mathcal{F}_{\boldsymbol{m}}\right]=\sum_{\boldsymbol{s} \in \boldsymbol{S}} \boldsymbol{P}_{\boldsymbol{s}}<n\left(1 / n^{10}\right)=1 / n^{9} .
$$

The set $\mathcal{H C}$ covers S

Probability of all items to be covered

(1) $n=|S|$,
(2) Probability of $s \in S$, not to be in $\mathcal{G}_{1} \cup \ldots \cup \mathcal{F}_{\boldsymbol{m}}$ is

$$
P_{s}<\frac{1}{n^{10}} .
$$

(3) probability one of \boldsymbol{n} elements of \boldsymbol{S} is not covered by \mathcal{H} is

$$
\sum_{s \in S} \operatorname{Pr}\left[s \notin \mathcal{G}_{1} \cup \ldots \cup \mathcal{F}_{\boldsymbol{m}}\right]=\sum_{s \in S} \boldsymbol{P}_{s}<\boldsymbol{n}\left(\mathbf{1} / \boldsymbol{n}^{\mathbf{1 0}}\right)=1 / n^{9} .
$$

The set $\mathcal{H C}$ covers S

Probability of all items to be covered

(1) $n=|S|$,
(2) Probability of $s \in S$, not to be in $\mathcal{G}_{\boldsymbol{1}} \cup \ldots \cup \mathcal{F}_{\boldsymbol{m}}$ is

$$
P_{s}<\frac{1}{n^{10}} .
$$

(3) probability one of \boldsymbol{n} elements of \boldsymbol{S} is not covered by \mathcal{H} is

$$
\sum_{s \in S} \operatorname{Pr}\left[s \notin \mathcal{G}_{1} \cup \ldots \cup \mathcal{F}_{m}\right]=\sum_{s \in S} P_{s}<n\left(1 / n^{10}\right)=1 / n^{9}
$$

XXX

Reminder: LP for Set Cover

$$
\begin{array}{rlr}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, & \\
& 0 \leq x_{U} \leq 1 & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall s \in S
\end{array}
$$

(1) Solve the LP.
${ }^{2} \widehat{x_{U}}$: Value of x_{u} in the optimal LP solution.
${ }^{3}$ Fractional solution: $\widehat{a}=\sum_{U \in \mathcal{F}} \times \mathbb{U}$.
4. Integral solution (what we want): $\alpha^{\prime} \geq \widehat{\alpha}$

Reminder: LP for Set Cover

$$
\begin{array}{rlr}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, & \\
& 0 \leq x_{U} \leq 1 & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall s \in S
\end{array}
$$

(1) Solve the LP.
(2) $\widehat{x_{u}}$: Value of x_{u} in the optimal LP solution.
${ }^{3}$ Fractional solution: $\hat{a}=\sum_{U \in \mathcal{F}} X_{U}$
4. Integral solution (what we want): $\alpha^{\prime} \geq \widehat{\alpha}$.

Reminder: LP for Set Cover

$$
\begin{array}{rlr}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, & \\
& 0 \leq x_{U} \leq 1 & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall s \in S
\end{array}
$$

(1) Solve the LP.
(2) $\widehat{x_{\boldsymbol{u}}}$: Value of $x_{\boldsymbol{u}}$ in the optimal LP solution.
(3) Fractional solution: $\widehat{\boldsymbol{\alpha}}=\sum_{\boldsymbol{U} \in \mathcal{F}} \widehat{\boldsymbol{x}_{\boldsymbol{U}}}$.
4. Integral solution (what we want): $\alpha^{\prime} \geq \alpha$.

Reminder: LP for Set Cover

$$
\begin{array}{ll}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, \\
& 0 \leq x_{U} \leq 1 \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1
\end{array} \quad \forall U \in \mathcal{F},
$$

(1) Solve the LP.
(2) $\widehat{x_{u}}$: Value of x_{u} in the optimal LP solution.
(3) Fractional solution: $\widehat{\boldsymbol{\alpha}}=\sum_{\boldsymbol{U} \in \mathcal{F}} \widehat{x_{\boldsymbol{U}}}$.
(4) Integral solution (what we want): $\boldsymbol{\alpha}^{\prime} \geq \widehat{\boldsymbol{\alpha}}$.

Cost of solution

(1) $(S, \mathcal{F}):$ Given instance of Set Cover.

2 For $U \in \mathcal{F}, \widehat{x_{U}}: L P$ value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{U}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
4. Expected number of sets in the i th sample:

$$
\begin{aligned}
& \mathrm{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{u \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{u \in \mathcal{F}} \widehat{x_{U}} \\
& =\widehat{\alpha} \leq \alpha^{\prime}
\end{aligned}
$$

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{l}). XXX
(6) Expected size of the solution is

$$
\mathrm{E}[|\mathcal{H}|]=\mathrm{E}\left[\left|\cup_{i} \mathcal{G}_{i}\right|\right] \leq \mathrm{E}\left[\sum_{i}\left|\mathcal{G}_{i}\right|\right] \leq m \alpha^{\prime}=O\left(\alpha^{\prime} \log n\right)
$$

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}: \mathrm{LP}$ value for set \boldsymbol{U} in optimal solution.

3 For $\mathcal{G}_{i}:$ Indicator variable $Z_{u}=1 \longleftrightarrow U \in \mathcal{S}_{i}$.
4. Expected number of sets in the i th sample:

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{\prime})
6 Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set \boldsymbol{U} in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $\boldsymbol{Z}_{\boldsymbol{u}}=\mathbf{1} \Longleftrightarrow U \in \mathcal{G}_{i}$.
(4) Expected number of sets in the i th sample:

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{\prime})
(6) Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=\mathbf{1} \Longleftrightarrow U \in \mathcal{G}_{i}$.
(4) Expected number of sets in the i th sample:

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{\prime})

6 Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(4) Expected number of sets in the i th sample:

$$
\mathbf{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathbf{E}\left[\sum_{\boldsymbol{u} \in \mathcal{F}} z_{\boldsymbol{u}}\right]=\sum_{U \in \mathscr{F}} \mathrm{E}\left[\bar{Z}_{U}\right]=\sum_{u \in \mathscr{F}} \widehat{x_{U}}
$$

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{\prime})

6 Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(4) Expected number of sets in the i th sample:

$$
\mathbf{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathbf{E}\left[\sum_{u \in \mathcal{F}} z_{u}\right]=\sum_{\boldsymbol{U} \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{u \in \mathcal{F}} \widehat{X_{U}}
$$

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{\prime}). XXX

6 Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(1) Expected number of sets in the i th sample:

$$
\mathrm{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{u}\right]=\sum_{\boldsymbol{U} \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \widehat{x_{U}}
$$

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{\prime}). XXX

6 Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(1) Expected number of sets in the i th sample:

$$
\mathrm{E}\left[\left|\mathcal{G}_{\hat{i}}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{\boldsymbol{U} \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{\boldsymbol{U} \in \mathcal{F}} \widehat{x_{U}}
$$

$$
=\widehat{\alpha}
$$

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{\prime})
(6) Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(4) Expected number of sets in the i th sample:

$$
\begin{aligned}
& \mathrm{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \widehat{x_{U}} \\
& =\widehat{\alpha} \leq \alpha^{\prime} .
\end{aligned}
$$

$5 \Longrightarrow$ Each iteration expected cost of cover \leq cost of optimal solution (i.e., α^{\prime}). XXX
(6) Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(1) Expected number of sets in the i th sample:

$$
\begin{aligned}
& \mathrm{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \widehat{x_{U}} \\
& =\widehat{\alpha} \leq \alpha^{\prime} .
\end{aligned}
$$

(3) \Longrightarrow Each iteration expected cost of cover \leq cost of optimal solution (i.e., $\boldsymbol{\alpha}^{\prime}$). XXX
(2 Expected size of the solution is

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(1) Expected number of sets in the i th sample:

$$
\begin{aligned}
& \mathrm{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \widehat{x_{U}} \\
& =\widehat{\alpha^{\prime}} .
\end{aligned}
$$

(3) \Longrightarrow Each iteration expected cost of cover \leq cost of optimal solution (i.e., $\boldsymbol{\alpha}^{\prime}$). XXX
(0) Expected size of the solution is

$$
\mathrm{E}[|\mathcal{H}|]=\mathrm{E}\left[\left|\cup_{i} \mathcal{G}_{i}\right|\right]
$$

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(1) Expected number of sets in the i th sample:

$$
\begin{aligned}
& \mathrm{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{u \in \mathcal{F}} \widehat{x_{U}} \\
& =\widehat{\alpha} \leq \alpha^{\prime} .
\end{aligned}
$$

(3) \Longrightarrow Each iteration expected cost of cover \leq cost of optimal solution (i.e., $\boldsymbol{\alpha}^{\prime}$). XXX
(2 Expected size of the solution is

$$
\mathrm{E}[|\mathcal{H}|]=\mathrm{E}\left[\left|\cup_{i} \mathcal{G}_{i}\right|\right] \leq \mathrm{E}\left[\sum_{i}\left|\mathcal{G}_{i}\right|\right]
$$

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(1) Expected number of sets in the i th sample:

$$
\begin{aligned}
& \mathrm{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{\boldsymbol{u} \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{u \in \mathcal{F}} \widehat{x_{U}} \\
& =\widehat{\alpha} \leq \alpha^{\prime} .
\end{aligned}
$$

(3) \Longrightarrow Each iteration expected cost of cover \leq cost of optimal solution (i.e., $\boldsymbol{\alpha}^{\prime}$). XXX
(2 Expected size of the solution is

$$
\mathrm{E}[|\mathcal{H}|]=\mathrm{E}\left[\left|\cup_{i} \mathcal{G}_{\boldsymbol{i}}\right|\right] \leq \mathrm{E}\left[\sum_{\boldsymbol{i}}\left|\mathcal{G}_{\boldsymbol{i}}\right|\right] \leq \boldsymbol{m} \boldsymbol{\alpha}^{\boldsymbol{\prime}}=O\left(\alpha^{\prime} \log n\right)
$$

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $U \in \mathcal{F}, \widehat{x_{U}}$: LP value for set U in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(1) Expected number of sets in the i th sample:

$$
\begin{aligned}
& \mathrm{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathrm{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{u \in \mathcal{F}} \mathrm{E}\left[Z_{U}\right]=\sum_{u \in \mathcal{F}} \widehat{x_{U}} \\
& =\widehat{\alpha} \leq \alpha^{\prime} .
\end{aligned}
$$

(3) \Longrightarrow Each iteration expected cost of cover \leq cost of optimal solution (i.e., $\boldsymbol{\alpha}^{\prime}$). XXX
(2 Expected size of the solution is

$$
\mathrm{E}[|\mathcal{H}|]=\mathrm{E}\left[\left|\cup_{i} \mathcal{G}_{i}\right|\right] \leq \mathrm{E}\left[\sum_{i}\left|\mathcal{G}_{i}\right|\right] \leq m \alpha^{\prime}=O\left(\alpha^{\prime} \log n\right)
$$

The result

Theorem

By solving an LP one can get an $O(\log n)$-approximation to Set Cover by a randomized algorithm. The algorithm succeeds with high probability.

26.1.3: Minimizing congestion

Minimizing congestion by example

Minimizing congestion

(1) G: graph. n vertices.
(2) $\boldsymbol{\pi}_{\boldsymbol{i}}, \sigma_{i}$ paths with the same endpoints $\mathbf{v}_{\boldsymbol{i}}, \mathbf{u}_{\boldsymbol{i}} \in \mathrm{V}(\mathrm{G})$, for $i=1, \ldots, t$.
(3) Rule I: Send one unit of flow from $\mathbf{v}_{\boldsymbol{i}}$ to $\mathbf{u}_{\boldsymbol{i}}$.
(4) Rule II: Choose whether to use $\boldsymbol{\pi}_{\boldsymbol{i}}$ or σ_{i}.
(5) Target: No edge in G is being used too much.

Definition

Given a set \boldsymbol{X} of paths in a graph G, the congestion of \boldsymbol{X} is the maximum number of paths in \boldsymbol{X} that use the same edge.

Minimizing congestion

(1) $\mathrm{IP} \Longrightarrow \mathrm{LP}$:
$\min w$

$$
\begin{array}{ll}
\text { s.t. } & \begin{array}{l}
x_{i} \geq 0 \\
\\
x_{i} \leq 1
\end{array} \\
& \begin{array}{r}
i=1, \ldots, t \\
\\
\\
\sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w
\end{array} \\
\forall \mathrm{e} \in E
\end{array}
$$

(2) $\hat{x}_{i}:$ value of x_{i} in the optimal LP solution.
(3) \widehat{W} : value of w in LP solution.

4 Optimal congestion must be bigger than \widehat{w}.
5 $X_{i}:$ random variable one with probability \widehat{x}_{i}, and zero otherwise.
6 If $X_{i}=1$ then use π to route from v_{i} to u_{i}
7 Otherwise use σ_{i}.

Minimizing congestion

(1) $\mathrm{IP} \Longrightarrow \mathrm{LP}$:

$$
\min \quad w
$$

$$
\begin{array}{ll}
\text { s.t. } & x_{i} \geq 0 \\
& \begin{array}{rl}
i & =1, \ldots, t \\
x_{i} \leq 1 & i=1, \ldots, t \\
& \sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w
\end{array} \\
\forall \mathrm{e} \in E
\end{array}
$$

(2) \widehat{x}_{i} : value of x_{i} in the optimal LP solution.
$3 \widehat{W}$: value of w in LP solution.
4 Optimal congestion must be bigger than \widehat{w}
(5) $X_{i}:$ random variable one with probability \widehat{x}_{i}, and zero otherwise.
(6) If $X_{i}=1$ then use π to route from v_{i} to u_{i}
(7) Otherwise use σ_{i}.

Minimizing congestion

(1) $\mathrm{IP} \Longrightarrow \mathrm{LP}$:

$$
\min \quad w
$$

$$
\begin{array}{ll}
\text { s.t. } & x_{i} \geq 0 \\
& \begin{array}{rl}
i & =1, \ldots, t \\
x_{i} \leq 1 & i=1, \ldots, t \\
& \sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w
\end{array} \\
\forall \mathrm{e} \in E
\end{array}
$$

(2) \widehat{x}_{i} : value of x_{i} in the optimal LP solution.
(3) \widehat{w} : value of w in LP solution.
4. Optimal congestion must be bigger than W
(5) $X_{i}:$ random variable one with probability \widehat{x}_{i}, and zero otherwise.
(6) If $X_{i}=1$ then use π to route from v_{i} to u_{i}
(7) Otherwise use σ_{i}

Minimizing congestion

(1) $\mathrm{IP} \Longrightarrow \mathrm{LP}$:

$$
\min \quad w
$$

$$
\begin{array}{llr}
\text { s.t. } & \begin{array}{l}
x_{i} \geq 0 \\
\\
x_{i} \leq 1
\end{array} & \begin{array}{r}
i=1, \ldots, t \\
\\
\\
\sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w
\end{array} \\
\forall \mathrm{e} \in E
\end{array}
$$

(2) \widehat{x}_{i} : value of x_{i} in the optimal LP solution.
(3) \widehat{w} : value of w in LP solution.
(4) Optimal congestion must be bigger than \widehat{w}.
$5 X_{i}$: random variable one with probability \widehat{x}_{i}, and zero otherwise.
(6) If $X_{i}=1$ then use π to route from v_{i} to u_{i}
(7) Otherwise use σ_{i}

Minimizing congestion

(1) $\mathrm{IP} \Longrightarrow \mathrm{LP}$:

$$
\min \quad w
$$

$$
\begin{array}{llr}
\text { s.t. } & x_{i} \geq 0 & i=1, \ldots, t \\
& x_{i} \leq 1 & i=1, \ldots, t \\
& \sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w & \forall \mathrm{e} \in E
\end{array}
$$

(2) \widehat{x}_{i} : value of x_{i} in the optimal LP solution.
(3) \widehat{w} : value of w in LP solution.
(4) Optimal congestion must be bigger than \widehat{w}.
(5) X_{i} : random variable one with probability \widehat{x}_{i}, and zero otherwise.

Minimizing congestion

(1) $\mathrm{IP} \Longrightarrow \mathrm{LP}$:

$$
\min \quad w
$$

$$
\begin{array}{llr}
\text { s.t. } & x_{i} \geq 0 & i=1, \ldots, t \\
& x_{i} \leq 1 & i=1, \ldots, t \\
& \sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w & \forall \mathrm{e} \in E
\end{array}
$$

(2) \widehat{x}_{i} : value of x_{i} in the optimal LP solution.
(3) \widehat{w} : value of w in LP solution.
(4) Optimal congestion must be bigger than \widehat{w}.
(5) X_{i} : random variable one with probability \widehat{x}_{i}, and zero otherwise.
(6) If $X_{\boldsymbol{i}}=\mathbf{1}$ then use $\boldsymbol{\pi}$ to route from $\mathbf{v}_{\boldsymbol{i}}$ to $\mathbf{u}_{\boldsymbol{i}}$.
(7) Otherwise use σ_{i}

Minimizing congestion

(1) $\mathrm{IP} \Longrightarrow \mathrm{LP}$:

$$
\min \quad w
$$

$$
\begin{array}{llr}
\text { s.t. } & x_{i} \geq 0 & i=1, \ldots, t \\
& x_{i} \leq 1 & i=1, \ldots, t \\
& \sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w & \forall \mathrm{e} \in E
\end{array}
$$

(2) \widehat{x}_{i} : value of x_{i} in the optimal LP solution.
(3) \widehat{w} : value of w in LP solution.
(4) Optimal congestion must be bigger than \widehat{w}.
(5) X_{i} : random variable one with probability $\widehat{x_{i}}$, and zero otherwise.
(6) If $X_{i}=1$ then use $\boldsymbol{\pi}$ to route from $\mathbf{v}_{\boldsymbol{i}}$ to $\mathbf{u}_{\boldsymbol{i}}$.
(7) Otherwise use σ_{i}.

Minimizing congestion

(1) Congestion of e is $\boldsymbol{Y}_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(\mathbf{1}-\boldsymbol{X}_{\boldsymbol{i}}\right)$.
(2) And in expectation

3 W: Fractional congestion (from LP solution).

Minimizing congestion

(1) Congestion of e is $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(\mathbf{1}-X_{i}\right)$.
(2) And in expectation

$$
\begin{aligned}
\alpha_{\mathrm{e}} & =\mathrm{E}\left[Y_{\mathrm{e}}\right]=\mathrm{E}\left[\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)\right] \\
& =\sum_{\mathrm{e} \in \pi_{i}} \mathrm{E}\left[X_{i}\right]+\sum_{\mathrm{e} \in \sigma_{i}} \mathrm{E}\left[\left(1-X_{i}\right)\right] \\
& =\sum_{\mathrm{e} \in \pi_{i}} \widehat{x}_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-\widehat{x}_{i}\right) \leq \widehat{w} .
\end{aligned}
$$

3 W: Fractional congestion (from LP solution)

Minimizing congestion

(1) Congestion of e is $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)$.
(2) And in expectation

$$
\begin{aligned}
\alpha_{\mathrm{e}} & =\mathrm{E}\left[Y_{\mathrm{e}}\right]=\mathrm{E}\left[\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)\right] \\
& =\sum_{\mathrm{e} \in \pi_{i}} \mathrm{E}\left[X_{i}\right]+\sum_{\mathrm{e} \in \sigma_{i}} \mathrm{E}\left[\left(1-X_{i}\right)\right] \\
& =\sum_{\mathrm{e} \in \pi_{i}} \widehat{x}_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-\widehat{x}_{i}\right) \leq \widehat{w}
\end{aligned}
$$

(3) \widehat{w} : Fractional congestion (from LP solution).

Minimizing congestion - continued

(1) $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)$.
${ }_{2} Y_{\mathrm{e}}$ is just a sum of independent $0 / 1$ random variables!
(3) Chernoff inequality tells us sum can not be too far from expectation!

Minimizing congestion - continued

(-) $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)$.
(2) Y_{e} is just a sum of independent $\mathbf{0} / \mathbf{1}$ random variables!

3 Chernoff inequality tells us sum can not be too far from expectation!

Minimizing congestion - continued

(1) $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)$.
(2) Y_{e} is just a sum of independent $\mathbf{0} / \mathbf{1}$ random variables!
(3) Chernoff inequality tells us sum can not be too far from expectation!

Minimizing congestion - continued

(1) By Chernoff inequality:

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\alpha_{\mathrm{e}} \delta^{2}}{4}\right) \leq \exp \left(-\frac{\widehat{w} \delta^{2}}{4}\right)
$$

(2) Let $\delta=\sqrt{\frac{400}{W}} \ln t$. We have that

(3) If $t \geq n^{1 / 50} \Longrightarrow \forall$ edges in graph congestion $\leq(1+\delta) w$.

4 : Number of pairs, n : Number of vertices in G.

Minimizing congestion - continued

(1) By Chernoff inequality:

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\alpha_{\mathrm{e}} \delta^{2}}{4}\right) \leq \exp \left(-\frac{\widehat{w} \delta^{2}}{4}\right)
$$

(2) Let $\delta=\sqrt{\frac{400}{\widehat{w}} \ln t}$. We have that

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\delta^{2} \widehat{w}}{4}\right) \leq \frac{1}{t^{100}}
$$

(3) If $t \geq n^{1 / 50} \Longrightarrow \forall$ edges in graph congestion $\leq(1+\delta) W$.

Minimizing congestion - continued

(1) By Chernoff inequality:

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\alpha_{\mathrm{e}} \delta^{2}}{4}\right) \leq \exp \left(-\frac{\widehat{w} \delta^{2}}{4}\right)
$$

(2) Let $\delta=\sqrt{\frac{400}{\widehat{w}} \ln t}$. We have that

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\delta^{2} \widehat{w}}{4}\right) \leq \frac{1}{t^{100}}
$$

(3) If $t \geq n^{1 / 50} \Longrightarrow \forall$ edges in graph congestion $\leq(1+\delta) \widehat{w}$.
(44 \boldsymbol{t} : Number of pairs, \boldsymbol{n} : Number of vertices in G.

Minimizing congestion - continued

(1) Got: For $\delta=\sqrt{\frac{400}{\widehat{w}} \ln t}$. We have

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\delta^{2} \widehat{w}}{4}\right) \leq \frac{1}{t^{100}}
$$

2 Play with the numbers. If $t=n$, and $\widehat{w} \geq \sqrt{n}$. Then, the solution has congestion larger than the optimal solution by a factor of

which is of course extremely close to $\mathbf{1}$, if \boldsymbol{n} is sufficiently large.

Minimizing congestion - continued

(1) Got: For $\delta=\sqrt{\frac{400}{\widehat{w}} \ln t}$. We have

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\delta^{2} \widehat{w}}{4}\right) \leq \frac{1}{t^{100}}
$$

(2) Play with the numbers. If $t=n$, and $\widehat{w} \geq \sqrt{n}$. Then, the solution has congestion larger than the optimal solution by a factor of

$$
1+\delta=1+\sqrt{\frac{20}{\widehat{w}} \ln t} \leq 1+\frac{\sqrt{20 \ln n}}{n^{1 / 4}}
$$

which is of course extremely close to $\mathbf{1}$, if \boldsymbol{n} is sufficiently large.

Minimizing congestion: result

Theorem

(1) G: Graph n vertices.
${ }^{2}\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
$3 \pi_{i}, \sigma_{i}$: two different paths connecting s_{i} to t_{i}
(4) W: Fractional congestion at least $n^{1 / 2}$

5 opt: Congestion of optimal solution.
$6 \Longrightarrow$ In polynomial time (LP solving time) choose paths
1 congestion \forall edges: $\leq(1+\delta)$ opt
$2 \delta=\sqrt{\frac{20}{w}} \ln t$

Minimizing congestion: result

Theorem

(1) $G:$ Graph n vertices.
(2) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
$3 \pi_{i}, \sigma_{i}$: two different paths connecting s_{i} to t_{i}
4. W: Fractional congestion at least $n^{1 / 2}$

5 opt: Congestion of optimal solution.
$6 \Longrightarrow$ In polynomial time (LP solving time) choose paths
1 congestion \forall edges: $\leq(1+\delta)$ opt
$2 \delta=\sqrt{\frac{20}{w}} \ln t$

Minimizing congestion: result

Theorem

(1) $G:$ Graph n vertices.
(2) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
(3) π_{i}, σ_{i} : two different paths connecting s_{i} to $\boldsymbol{t}_{\boldsymbol{i}}$
(4) W : Fractional congestion at least $n^{1 / 2}$

5 opt: Congestion of optimal solution.
$6 \Longrightarrow$ In polynomial time (LP solving time) choose paths
(congestion \forall edges: $\leq(1+\delta)$ opt
2 $\delta=\sqrt{\frac{20}{w}} \ln t$

Minimizing congestion: result

Theorem

(1) G: Graph n vertices.
(2) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
(3) π_{i}, σ_{i} : two different paths connecting s_{i} to t_{i}
(4) $\widehat{w}:$ Fractional congestion at least $\boldsymbol{n}^{\mathbf{1 / 2}}$.

5
opt: Congestion of optimal solution.
$6 \Longrightarrow$ In polynomial time (LP solving time) choose paths
(congestion \forall edges: $\leq(1+\delta)$ opt
2 $\delta=\sqrt{\frac{20}{w}} \ln t$

Minimizing congestion: result

Theorem

(1) G: Graph n vertices.
(2) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
(3) π_{i}, σ_{i} : two different paths connecting s_{i} to $\boldsymbol{t}_{\boldsymbol{i}}$
(4) $\widehat{w}:$ Fractional congestion at least $\boldsymbol{n}^{\mathbf{1 / 2}}$.
(5) opt: Congestion of optimal solution.

6

Minimizing congestion: result

Theorem

(1) $G:$ Graph n vertices.
(2) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
(3) π_{i}, σ_{i} : two different paths connecting s_{i} to t_{i}
(4) $\widehat{w}:$ Fractional congestion at least $\boldsymbol{n}^{\mathbf{1 / 2}}$.
(5) opt: Congestion of optimal solution.
(0) \Longrightarrow In polynomial time (LP solving time) choose paths

1

2

Minimizing congestion: result

Theorem

(1) $G:$ Graph n vertices.
(2) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
(3) π_{i}, σ_{i} : two different paths connecting s_{i} to t_{i}
(4) $\widehat{w}:$ Fractional congestion at least $\boldsymbol{n}^{\mathbf{1 / 2}}$.
(5) opt: Congestion of optimal solution.
(6) \Longrightarrow In polynomial time (LP solving time) choose paths
(1) congestion \forall edges: $\leq(1+\delta)$ opt

2 $\delta=$

Minimizing congestion: result

Theorem

(1) G: Graph n vertices.
(2) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
(3) π_{i}, σ_{i} : two different paths connecting s_{i} to t_{i}
(4) \widehat{w} : Fractional congestion at least $\boldsymbol{n}^{\mathbf{1 / 2}}$.
(5) opt: Congestion of optimal solution.
(0) \Longrightarrow In polynomial time (LP solving time) choose paths
(1) congestion \forall edges: $\leq(1+\delta)$ opt
(2) $\delta=\sqrt{\frac{20}{\widehat{w}} \ln t}$.

When the congestion is low

(1) Assume \widehat{w} is a constant.

2 Can get a better bound by using the Chernoff inequality in its more general form.
(3) $\operatorname{set} \delta=c \ln t / \ln \ln t$, where c is a constant. For $\mu=\alpha_{e}$, we have that

where c^{\prime} is a constant that depends on c and grows if c grows.

When the congestion is low

(1) Assume \widehat{w} is a constant.
(2) Can get a better bound by using the Chernoff inequality in its more general form.
(3) set $\delta=c \ln t / \ln \ln t$, where c is a constant. For $\mu=\alpha_{\mathrm{e}}$, we have that

$$
\begin{aligned}
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \mu\right] & \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\
& =\exp (\mu(\delta-(1+\delta) \ln (1+\delta))) \\
& =\exp \left(-\mu c^{\prime} \ln t\right) \leq \frac{1}{t^{O(1)}}
\end{aligned}
$$

where \boldsymbol{c}^{\prime} is a constant that depends on \boldsymbol{c} and grows if \boldsymbol{c} grows.

When the congestion is low

(1) Just proved that...

2 if the optimal congestion is $O(1)$, then...
3 algorithm outputs a solution with congestion $O(\log t / \log \log t)$, and this holds with high probability.

When the congestion is low

(1) Just proved that...
(2) if the optimal congestion is $O(1)$, then...

3 algorithm outputs a solution with congestion $O(\log t / \log \log t)$, and this holds with high probability.

When the congestion is low

(1) Just proved that...
(2) if the optimal congestion is $O(1)$, then...
(3) algorithm outputs a solution with congestion
$O(\log t / \log \log t)$, and this holds with high probability.

26.1.4: Reminder about Chernoff inequality

26.1.4.1:The Chernoff Bound - General Case

Chernoff inequality

Problem

Let $X_{1}, \ldots X_{n}$ be \boldsymbol{n} independent Bernoulli trials, where

$$
\left.\begin{array}{rlrl}
\operatorname{Pr}\left[X_{i}=1\right] & =p_{i}, & \operatorname{Pr}\left[X_{i}=0\right] & =1-p_{i} \\
Y & =\sum_{i} X_{i}, & \text { and } & \mu
\end{array}\right)=\mathrm{E}[Y] .
$$

We are interested in bounding the probability that $Y \geq(1+\delta) \mu$.

Chernoff inequality

Theorem (Chernoff inequality)

For any $\boldsymbol{\delta}>\mathbf{0}$,

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

Or in a more simplified form, for any $\delta \leq 2 e-1$,

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<\exp \left(-\mu \delta^{2} / 4\right)
$$

and

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<2^{-\mu(1+\delta)}
$$

for $\delta \geq 2 e-1$.

More Chernoff...

Theorem

Under the same assumptions as the theorem above, we have

$$
\operatorname{Pr}[Y<(1-\delta) \mu] \leq \exp \left(-\mu \frac{\delta^{2}}{2}\right)
$$

Notes

Notes

Notes

Notes

