OLD CS 473: Fundamental Algorithms, Spring
2015

Approximation Algorithms
using Linear Programming

Lecture 26
April 30, 2015
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Weighted vertex cover

(1)

1P
min chxv,
vev
such that  x, € {0,1} Vv eV
X+ x, > 1 Yvu € E.
© ... NP-Hard.
@ relax the integer program. |™" Z CuvXvs
vev
° ae"‘i‘(’)” ’{] get values st 0<x W eV,
,1].
Q x, € {0,1} replaced by x <1 Wev,
0<x, <1 The Xy +x, >1 Vvu € E.

resulting LP is
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Weighted vertex cover

problem
G = (V,E).
Each vertex v € V: cost c,.
Compute a vertex cover of minimum cost.

© vertex cover: subset of vertices V so each edge is covered.

© NP-Hard

© ...unweighted Vertex Cover problem.

© ... write as an integer program (IP):

@ Vv eV: x,=1 <= vin the vertex cover.

Q VYvu € E: covered. — x, V x, true. — x, + x, > 1.

@ minimize total cost: min ) _, X,C,.

vev
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Weighted vertex cover — rounding the LP

@ Optimal solution to this LP: x, value of var X,, Vv € V.

@ optimal value of LP solutionis & = Y . CuXy-

vev
© optimal integer solution: x!, Vv € V and a'.
@ Any valid solution to IP is valid solution for LP!
Q0 a<cdal

Integral solution not better than LP.
@ Got fractional solution (i.e., values of X,).
@ Fractional solution is better than the optimal cost.

@ Q: How to turn fractional solution into a (valid!) integer
solution?

©Q Using rounding.
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How to round?

@ consider vertex v and fractional value X,.

@ If x, = 1 then include in solution!

@ If x, = 0 then do n_Otnot include in solution.

Q if x, =0.9 —> LP considers v as being 0.9 useful.

© The LP puts its money where its belief is...

Q ...« value is a function of this “belief” generated by the LP.
@ Big idea: Trust LP values as guidance to usefulness of vertices.
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Cost of solution

Cost of S:
c5=ch=ZI-cv < Z2£,-cv §22)?vcv=2a < 2a,
veES veES veES veV

since X, > 1/2asv € S.

o' is cost of the optimal solution =

Theorem

The Weighted Vertex Cover problem can be 2-approximated by
solving a single LP. Assuming computing the LLP takes polynomial
time, the resulting approximation algorithm takes polynomial time.
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II: How to round?

© Pick all vertices > threshold
min Z Cu Xy, of usefulness according to
vev LP
st. 0 < x, Y eV 95={v’)?\,21/2}.
x <1 Vv eV © Claim: S a valid vertex
X, +x.>1 Ywu€eE cover, and cost is low.

© Indeed, edge cover as: VYvu € E have x, + x, > 1.
Q@ x,x, €(0,1)

= x, >1/2o0rx, >1/2.

= v € Soru € S (or both).

== S covers all the edges of G.
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The lessons we can take away

@ Weighted vertex cover is simple, but resulting approximation
algorithm is non-trivial.

© Not aware of any other 2-approximation algorithm does not use
LP. (For the weighted case!)

© Solving a relaxation of an optimization problem into a LLP
provides us with insight.

@ But... have to be creative in the rounding.
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Revisiting

© Purpose: See new technique for an approximation algorithm.

@ Not better than greedy algorithm already seen O(log n)
approximation.

Problem: Set Cover

Instance: (S, F)

S - a set of n elements

F - a family of subsets of S, s.t. UXE}.X =3S.
Question: The set X C F such that X contains as
few sets as possible, and X covers S.
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~IP&LP

LP solution: YU € F, xy, and &.

Opt IP solution: VU € ¥, x/,, and .

Use LLP solution to guide in rounding process.

If xy is close to 1 then pick U to cover.

If xy close to 0 do not.

Idea: Pick U € JF: randomly choose U with probability xy.
Resulting family of sets G.

Zs: indicator variable. 1if S € G.

Cost of G is Zses—* Zs, and the expected cost is
E[cost of 9] = E[ZSE&r Zs} =) s E[Zs} =
ZSe’f Pr[S € 9] = ZSE?)/G =a<da.

@ In expectation, G is not too expensive.

000000CO0OO0CO

@ Bigus problumos: G might fail to cover some element s € S.
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- IP & LP

min o= E XU,

uesr

s.t. xy € {0,1} YU € 7,

Z xy >1 Vs € S.
UeF,secU

Next, we relax this IP into the following LP.
min o= Z XU,

UeF

0< xy<1 YU € 7,

Y oxy>1 Vs € S.
UeF,secU
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— Rounding continued

@ Solution: Repeat rounding stage m = 10[lg n] = O(log n)
times.

@ n=|S|
© G;: random cover computed in ith iteration.
Q H = U;G;. Return H as the required cover.
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The set

covers

© For an element s € S, we have that

Y x>, (2)

UeF,scU

@ probability s not covered by G; (ith iteration set).
Pr [s not covered by 9,-}

= Pr[ nolU € F, s.t. s € U picked into 9,-}
= [Tyes.scu Pr{U was not picked into G;]

= J] a-)< [] ew(-%0)

ueF,scU

ueF,scU

= exp(— Cuesoeu ) < exp(-1) < 3, <}
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The set covers
Q@ n=|S|,
@ Probability of s € S, nottobein G U...UF, is
b1
s < ﬁ-

© probability one of n elements of S is not covered by JH is

> Prs¢ S U...UF] =) P.<n(1/n) =1/n’.
sES s€S
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The set

covers

Q Pr [s not covered by G;| < 1/2.

@ Number of iterations of rounding m = O(log n).
© Covering with sets in Gy,...,G.
@ probability s is not covered in all m iterations

P, = Pr [s not covered by Gy, .. 3—',,,]
SPr[( ¢F)N(sg F)N.. n(sesrm)}
< Pr sgz?l] Pr|s ¢ 5| - Pr|s ¢ 5
1 9 1 o 1 _ (1)”’ < 1
272 2 \2 nto’
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Reminder: LP for Set Cover

min o= E XU,

ves
0<xy<1 VU € 7,
Y oxw>1 Vs € S.

UeF,scU

© Solve the LP.
@ xy: Value of x, in the optimal LP solution.
@ Fractional solution: & = 7,4 Xu.

@ Integral solution (what we want): ! > a.

Cost of solution

Q (S,F): Given instance of Set Cover.
@ For U € F, xy: LP value for set U in optimal solution.
© For G;: Indicator variable Z, =1 <— U € G;.

@ Expected number of sets in the ith sample:

E_[|9A’|]<= IE[ZUGSF ZU] = Zueg-' E[ZU] = ZUE?)/(D

© — Each iteration expected cost of cover < cost of optimal
solution (i.e., a!). XXX

© Expected size of the solution is

E[19C] = E[uiS] <E < ma! = O(a' log ).

Z |Gil
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The result Minimizing congestion by example
Theorem 2

Cover by a randomize

01

probability.

01

02

FIVLY N
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Minimizing congestion

© G: graph. n vertices.
@ m;, o; paths with the same endpoints v;, u; € V(G), for
i=1,...,t.

© Rule I: Send one unit of flow from v; to u;.

@ Rule Il: Choose whether to use 7; or o;.

© Target: No edge in G is being used too much.
Definition
Given a set X of paths in a graph G, the congestion of X is the
maximum number of paths in X that use the same edge.

Minimizing congestion

Q IP = LP:
min w
s.t. x; >0 i=1,...,t,
x; <1 i=1,...,t,
Zx;-l—Z(l—x,-)Sw Ve € E.
ecT; eco;

@ X;: value of x; in the optimal LP solution.

© w: value of w in LP solution.

© Optimal congestion must be bigger than w.

© X;: random variable one with probability x;, and zero otherwise.
@ If X; = 1 then use 7 to route from v; to u;.

@ Otherwise use o;.
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Minimizing congestion
© Congestionof eis Ye = > Xi + > .. (1 — X;).
© And in expectation
Qe = E|:Ye:| =E Z Xi + Z(l - Xi)]
ecT; eco;
=) E[X,-] +> E[(l - X;)}
ecT; eco;
=) %ty (1-x)<w
ecT; eco;
© w: Fractional congestion (from LP solution).
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Minimizing congestion - continued

QY.= zeem Xi + ZeEo-,-(l - Xi)'
@ Y. is just a sum of independent 0/1 random variables!

© Chernoff inequality tells us sum can not be too far from
expectation!
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Minimizing congestion - continued

@ By Chernoff inequality:

02 wo?
PriYe > (14 0)ae] <exp|— 2 < exp - )

400
Q Let 6 = {/ —— Int. We have that
w
6w

2 1
PI’|:Ye Z (1 + 5)044 S exp(—T) S W’

Q If t > n'/% — V edges in graph congestion < (1 + §)w.

© t: Number of pairs, n: Number of vertices in G.
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Minimizing congestion - continued

400
@ Got: For 6 = \/ — Int. We have
w

8w 1
Pr [Y > (1+5)ae} < exp(—T> < i

@ Play with the numbers. If t = n, and w > /n. Then, the
solution has congestion larger than the optimal solution by a
factor of

v20Inn

1+5_1+\/—In <1+

which is of course extremely close to 1, if n is sufficiently large.
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Minimizing congestion: result

Theorem
© G: Graph n vertices.
Q (51, tl),. 0o

©Q m;, 0;: two different paths connecting s; to t;
1/2

(st, tr): pairs o vertices

@ w: Fractional congestion at least n

© opt: Congestion of optimal solution.

@ = In polynomial time (LP solving time) choose paths
@ congestion V edges: < (1 + §)opt

20

w
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When the congestion is low

© Assume W is a constant.

@ Can get a better bound by using the Chernoff inequality in its
more general form.

@ set d =clInt/Inint, where c is a constant. For pp = e, we
have that

Pr|Y, > (1+5)M] < (ﬁ)“

— exp (,,,(5 — (1 +0)In(1 + 5)))
= exp( — pc’In t) < tol(l),

where ¢’ is a constant that depends on ¢ and grows if ¢ grows.
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When the congestion is low

© Just proved that...
@ if the optimal congestion is O(1), then...

© algorithm outputs a solution with congestion
O(log t/ loglog t), and this holds with high probability.
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Chernoff inequality
Theorem (Chernoff inequality)
For any 6 > 0,
eb I
el > ar o] < ()
Or in a more simplified form, for any § < 2e — 1,
Pr[Y > (1+ 6)u] < exp(—pd?/4),
and
Pr[Y > (1+ 5),4 < 2-H1+d),
ford > 2e — 1.
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Chernoff inequality

Problem
Let Xy, ... X, be n independent Bernoulli trials, where

PriX; = 1| = p;

Y =) X, and

i

Pr[X,- = 0] =1-—p;,

u=E[Y].

We are interested in bounding the probability that Y > (1 + d)p.
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More Chernoff...

Theorem
Under the same assumptions as the theorem above, we have

Pr[Y <(@1- 5)#] < exp(—u‘;).
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