OLD CS 473: Fundamental Algorithms, Spring

 2015
Approximation Algorithms using Linear Programming

Lecture 26
April 30, 2015

Weighted vertex cover
IP
$\min \quad \sum_{v \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{\mathrm{v}}$,

$$
\begin{array}{llr}
\text { such that } & x_{\mathrm{v}} \in\{\mathbf{0}, \mathbf{1}\} & \forall \mathbf{v} \in \mathrm{V} \tag{1}\\
& x_{\mathrm{v}}+x_{\mathrm{u}} \geq \mathbf{1} & \forall \mathrm{vu} \in \mathrm{E} .
\end{array}
$$

(1) ... NP-Hard.
(2) relax the integer program.
(3) allow x_{v} get values $\in[0,1]$.
(4) $x_{v} \in\{0,1\}$ replaced by $0 \leq x_{\mathrm{v}} \leq 1$. The resulting LP is

$$
\begin{array}{|lll|}
\hline \min & \sum_{\mathrm{v} \in \mathrm{~V}} \mathbf{c}_{\mathbf{v}} x_{\mathrm{v}}, & \\
\text { s.t. } & \mathbf{0} \leq x_{\mathbf{v}} & \forall \mathbf{v} \in \mathrm{V} \\
& x_{\mathbf{v}} \leq \mathbf{1} & \forall \mathbf{v} \in \mathrm{V} \\
& x_{\mathbf{v}}+x_{\mathbf{u}} \geq \mathbf{1} & \forall \mathbf{v u} \in \mathrm{E}
\end{array}
$$

Weighted vertex cover

problem

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$.
Each vertex $\mathbf{v} \in \mathrm{V}$: cost $\mathbf{c}_{\mathbf{v}}$.
Compute a vertex cover of minimum cost.
(1) vertex cover: subset of vertices V so each edge is covered.
(2) NP-Hard
(3) ...unweighted Vertex Cover problem.
(4) ... write as an integer program (IP):
(5) $\forall \mathrm{v} \in \mathrm{V}: x_{v}=\mathbf{1} \Longleftrightarrow \mathbf{v}$ in the vertex cover.
(0) $\forall \mathbf{v u} \in \mathrm{E}$: covered. $\Longrightarrow x_{\mathrm{v}} \vee x_{\mathbf{u}}$ true. $\Longrightarrow x_{\mathrm{v}}+x_{\mathbf{u}} \geq 1$.
(1) minimize total cost: $\boldsymbol{\operatorname { m i n }} \sum_{v \in \mathrm{~V}} x_{\mathrm{v}} \mathbf{c}_{\mathrm{v}}$.

Weighted vertex cover - rounding the LP
(1) Optimal solution to this LP: $\widehat{x_{v}}$ value of $\operatorname{var} X_{v}, \forall v \in \mathrm{~V}$.
(2) optimal value of LP solution is $\widehat{\alpha}=\sum_{v \in V} \mathbf{c}_{v} \widehat{x}_{v}$.
(3) optimal integer solution: $x_{v}^{\prime}, \forall v \in \mathrm{~V}$ and $\boldsymbol{\alpha}^{\prime}$.
(4) Any valid solution to IP is valid solution for LP!
(5) $\widehat{\alpha} \leq \alpha^{\prime}$.

Integral solution not better than LP.

- Got fractional solution (i.e., values of \widehat{x}_{v}).
(3) Fractional solution is better than the optimal cost.
(3) Q: How to turn fractional solution into a (valid!) integer solution?
- Using rounding.

How to round?

(1) consider vertex \mathbf{v} and fractional value $\widehat{x_{v}}$.
(2) If $\widehat{x_{v}}=1$ then include in solution!
(3) If $\widehat{x}_{\mathrm{v}}=\mathbf{0}$ then do $\underline{\mathrm{nOt}}_{\text {not }}$ include in solution.
(9) if $\widehat{x_{v}}=0.9 \Longrightarrow L P$ considers v as being 0.9 useful.
(0 The LP puts its money where its belief is...
(0... $\widehat{\boldsymbol{\alpha}}$ value is a function of this "belief" generated by the LP.
(O) Big idea: Trust LP values as guidance to usefulness of vertices.
(1) Pick all vertices \geq threshold of usefulness according to LP.
(2) $S=\left\{v \mid \widehat{x_{v}} \geq 1 / 2\right\}$.
(3) Claim: S a valid vertex cover, and cost is low.
(1) Indeed, edge cover as: $\forall \mathbf{v u} \in \mathrm{E}$ have $\widehat{x_{v}}+\widehat{x}_{\mathrm{u}} \geq \mathbf{1}$.
(2) $\widehat{x}_{v}, \widehat{x}_{u} \in(0,1)$
$\Longrightarrow \widehat{x}_{v} \geq 1 / 2$ or $\widehat{x}_{u} \geq 1 / 2$.
$\Longrightarrow \mathbf{v} \in S$ or $\mathbf{u} \in S$ (or both).
$\Longrightarrow S$ covers all the edges of G.

II: How to round?

$\forall \mathbf{v} \in \mathrm{V}$
$\forall \mathbf{v} \in \mathrm{V}$
$x_{\mathrm{v}}+x_{\mathrm{u}} \geq 1 \quad \forall \mathrm{vu} \in \mathrm{E}$

```
\(\min \sum_{v \in \mathrm{~V}} \mathrm{c}_{\mathrm{v}} x_{v}\),
s.t. \(0 \leq x_{v} \quad \forall v \in V\)
    \(x_{v} \leq 1 \quad \forall v \in V\)
```


Cost of solution

Cost of S :
$\mathrm{c}_{S}=\sum_{\mathrm{v} \in S} \mathrm{c}_{\mathrm{v}}=\sum_{\mathrm{v} \in S} 1 \cdot \mathrm{c}_{\mathrm{v}} \leq \sum_{\mathrm{v} \in S} 2 \widehat{x}_{\mathrm{v}} \cdot \mathrm{c}_{\mathrm{v}} \leq 2 \sum_{\mathrm{v} \in \mathrm{V}} \widehat{x}_{\mathrm{v}} \mathrm{c}_{\mathrm{v}}=2 \widehat{\alpha} \leq 2 \alpha^{\prime}$,
since $\widehat{x_{v}} \geq 1 / 2$ as $v \in S$.
$\boldsymbol{\alpha}^{\prime}$ is cost of the optimal solution \Longrightarrow

Theorem

The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

The lessons we can take away

(1) Weighted vertex cover is simple, but resulting approximation algorithm is non-trivial.
(2) Not aware of any other 2-approximation algorithm does not use LP. (For the weighted case!)
(3) Solving a relaxation of an optimization problem into a LP provides us with insight.

- But... have to be creative in the rounding.

Revisiting Set Cover

(1) Purpose: See new technique for an approximation algorithm.
(2) Not better than greedy algorithm already seen $O(\log n)$ approximation.

Problem: Set Cover

Instance: (S, \mathcal{F})

\boldsymbol{S} - a set of \boldsymbol{n} elements
\mathcal{F} - a family of subsets of S, s.t. $\bigcup_{\boldsymbol{x} \in \mathcal{F}} X=S$.
Question: The set $\mathcal{X} \subseteq \mathcal{F}$ such that \mathcal{X} contains as few sets as possible, and \mathcal{X} covers S.

Set Cover - IP \& LP

$$
\begin{array}{lll}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, & \\
\text { s.t. } & x_{U} \in\{\mathbf{0}, \mathbf{1}\} & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq \mathbf{1} & \forall s \in S .
\end{array}
$$

Next, we relax this IP into the following LP.

$$
\begin{array}{rlr}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, & \\
& \mathbf{0} \leq x_{U} \leq \mathbf{1} & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq 1 & \forall s \in S .
\end{array}
$$

Set Cover - Rounding continued

(1) Solution: Repeat rounding stage $m=10\lceil\lg n\rceil=O(\log n)$ times.
(2) $n=|S|$.
(3) \mathcal{G}_{i} : random cover computed in ith iteration.
(1) $\mathcal{H}=\cup_{i} \mathcal{G}_{i}$. Return \mathcal{H} as the required cover.
(0) Idea: Pick $\boldsymbol{U} \in \mathcal{F}$: randomly choose \boldsymbol{U} with probability $\widehat{x_{U}}$.
© Resulting family of sets \mathcal{G}.
(0) Z_{S} : indicator variable. $\mathbf{1}$ if $S \in \mathcal{G}$.
(0. Cost of \mathcal{G} is $\sum_{\boldsymbol{S} \in \mathcal{F}} Z_{\boldsymbol{S}}$, and the expected cost is $\mathbf{E}[$ cost of $\mathcal{G}]=\mathbf{E}\left[\sum_{\boldsymbol{s} \in \mathcal{F}} Z_{\boldsymbol{S}}\right]=\sum_{\boldsymbol{s} \in \mathcal{F}} \mathbf{E}\left[Z_{\boldsymbol{s}}\right]=$ $\sum_{s \in \mathcal{F}} \operatorname{Pr}[S \in \mathcal{G}]=\sum_{s \in \mathcal{F}} \widehat{x_{S}}=\widehat{\alpha} \leq \alpha^{\prime}$.
(1) In expectation, \mathcal{G} is not too expensive.
(1) Bigus problumos: \mathcal{G} might fail to cover some element $s \in S$

The set \mathcal{H} covers S
(1) For an element $s \in S$, we have that

$$
\begin{equation*}
\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}} \geq 1 \tag{2}
\end{equation*}
$$

(2) probability s not covered by $\mathcal{G}_{\boldsymbol{i}}$ (ith iteration set).
$\operatorname{Pr}\left[s\right.$ not covered by $\left.\mathcal{G}_{i}\right]$
$=\operatorname{Pr}\left[\right.$ no $\boldsymbol{U} \in \mathcal{F}$, s.t. $s \in \boldsymbol{U}$ picked into $\left.\mathcal{G}_{i}\right]$
$=\prod_{\boldsymbol{U} \in \mathcal{F}, s \in \boldsymbol{U}} \operatorname{Pr}\left[\boldsymbol{U}\right.$ was not picked into $\left.\mathcal{G}_{\boldsymbol{i}}\right]$
$=\prod_{U \in \mathcal{F}, s \in U}\left(1-\widehat{x_{U}}\right) \leq \prod_{U \in \mathcal{F}, s \in U} \exp \left(-\widehat{x_{U}}\right)$
$=\exp \left(-\sum_{U \in \mathcal{F}, s \in U} \widehat{x_{U}}\right) \leq \exp (-1) \leq \frac{1}{2}, \leq \frac{1}{2}$

The set \mathcal{H} covers S

- $n=|S|$,
(-) Probability of $s \in S$, not to be in $\mathcal{G}_{1} \cup \ldots \cup \mathcal{F}_{m}$ is

$$
P_{s}<\frac{1}{n^{10}}
$$

(0) probability one of \boldsymbol{n} elements of \boldsymbol{S} is not covered by \mathcal{H} is

$$
\sum_{s \in S} \operatorname{Pr}\left[s \notin \mathcal{G}_{1} \cup \ldots \cup \mathcal{F}_{m}\right]=\sum_{s \in S} P_{s}<n\left(1 / n^{10}\right)=1 / n^{9}
$$

Reminder: LP for Set Cover

$$
\begin{array}{rlr}
\min & \alpha=\sum_{U \in \mathcal{F}} x_{U}, & \\
& \mathbf{0} \leq x_{U} \leq \mathbf{1} & \forall U \in \mathcal{F}, \\
& \sum_{U \in \mathcal{F}, s \in U} x_{U} \geq \mathbf{1} & \forall s \in S .
\end{array}
$$

(1) Solve the LP.
(2) $\widehat{x_{u}}$: Value of x_{u} in the optimal LP solution.

Cost of solution

(1) (S, \mathcal{F}) : Given instance of Set Cover.
(2) For $\boldsymbol{U} \in \mathcal{F}, \widehat{\boldsymbol{x}_{\boldsymbol{U}}}$: LP value for set \boldsymbol{U} in optimal solution.
(3) For \mathcal{G}_{i} : Indicator variable $Z_{u}=1 \Longleftrightarrow U \in \mathcal{G}_{i}$.
(1) Expected number of sets in the i th sample:
$\mathbf{E}\left[\left|\mathcal{G}_{i}\right|\right]=\mathbf{E}\left[\sum_{u \in \mathcal{F}} Z_{U}\right]=\sum_{u \in \mathcal{F}} \mathbf{E}\left[Z_{U}\right]=\sum_{u \in \mathcal{F}} \widehat{x_{U}}$ $=\widehat{\alpha} \leq \alpha^{\prime}$.

- \Longrightarrow Each iteration expected cost of cover \leq cost of optimal solution (i.e., $\boldsymbol{\alpha}^{\prime}$). XXX
- Expected size of the solution is
(3) Fractional solution: $\widehat{\alpha}=\sum_{\boldsymbol{U} \in \mathcal{F}} \widehat{x_{\boldsymbol{U}}}$.
(-) Integral solution (what we want): $\alpha^{\prime} \geq \widehat{\alpha}$.

$$
\mathrm{E}[|\mathcal{H}|]=\mathrm{E}\left[\left|\cup_{i} \mathcal{G}_{i}\right|\right] \leq \mathrm{E}\left[\sum_{i}\left|\mathcal{G}_{i}\right|\right] \leq m \alpha^{\prime}=O\left(\alpha^{\prime} \log n\right) .
$$

Minimizing congestion

(1) G: graph. n vertices.
(2) π_{i}, σ_{i} paths with the same endpoints $\mathbf{v}_{i}, \mathbf{u}_{i} \in \mathrm{~V}(\mathrm{G})$, for $i=1, \ldots, t$.
(3) Rule I: Send one unit of flow from $\mathbf{v}_{\boldsymbol{i}}$ to \mathbf{u}_{i}.
(1) Rule II: Choose whether to use $\boldsymbol{\pi}_{\boldsymbol{i}}$ or $\boldsymbol{\sigma}_{\boldsymbol{i}}$.
(Target: No edge in G is being used too much.

Definition

Given a set \boldsymbol{X} of paths in a graph G , the congestion of \boldsymbol{X} is the maximum number of paths in \boldsymbol{X} that use the same edge.

Minimizing congestion

(1) Congestion of e is $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)$.
(2) And in expectation

$$
\begin{aligned}
\alpha_{\mathrm{e}} & =\mathrm{E}\left[Y_{\mathrm{e}}\right]=\mathrm{E}\left[\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)\right] \\
& =\sum_{\mathrm{e} \in \pi_{i}} \mathrm{E}\left[X_{i}\right]+\sum_{\mathrm{e} \in \sigma_{i}} \mathrm{E}\left[\left(1-X_{i}\right)\right] \\
& =\sum_{\mathrm{e} \in \pi_{i}} \widehat{x}_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-\widehat{x}_{i}\right) \leq \widehat{w} .
\end{aligned}
$$

© \widehat{w} : Fractional congestion (from LP solution).

Minimizing congestion

(1) IP $\Longrightarrow \mathrm{LP}$:

$$
\begin{array}{clr}
\min & w & \\
\mathrm{s.t.} & x_{i} \geq \mathbf{0} & i=1, \ldots, t, \\
& x_{i} \leq \mathbf{1} & i=1, \ldots, t, \\
& \sum_{\mathrm{e} \in \pi_{i}} x_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-x_{i}\right) \leq w & \forall \mathrm{e} \in E .
\end{array}
$$

(2) \widehat{x}_{i} : value of x_{i} in the optimal LP solution.
(0) \widehat{w} : value of w in LP solution.
(9) Optimal congestion must be bigger than \widehat{w}.
(0) X_{i} : random variable one with probability \widehat{x}_{i}, and zero otherwise.
(c) If $X_{i}=\mathbf{1}$ then use $\boldsymbol{\pi}$ to route from $\mathbf{v}_{\boldsymbol{i}}$ to $\mathbf{u}_{\boldsymbol{i}}$.
(0) Otherwise use σ_{i}.

Minimizing congestion - continued

(-) $Y_{\mathrm{e}}=\sum_{\mathrm{e} \in \pi_{i}} X_{i}+\sum_{\mathrm{e} \in \sigma_{i}}\left(1-X_{i}\right)$.

- Y_{e} is just a sum of independent $\mathbf{0} / \mathbf{1}$ random variables!
- Chernoff inequality tells us sum can not be too far from expectation!

Minimizing congestion - continued

(1) By Chernoff inequality:
$\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\alpha_{\mathrm{e}} \delta^{2}}{4}\right) \leq \exp \left(-\frac{\widehat{w} \delta^{2}}{4}\right)$.
(2) Let $\delta=\sqrt{\frac{400}{\widehat{w}} \ln t}$. We have that

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\delta^{2} \widehat{w}}{4}\right) \leq \frac{1}{t^{100}}
$$

(3) If $t \geq n^{1 / 50} \Longrightarrow \forall$ edges in graph congestion $\leq(1+\delta) \widehat{w}$.
(1) \boldsymbol{t} : Number of pairs, \boldsymbol{n} : Number of vertices in G.

Minimizing congestion: result

Theorem

(1) G: Graph n vertices.
(2) $\left(s_{1}, t_{1}\right), \ldots,\left(s_{t}, t_{t}\right)$: pairs o vertices
(3) $\boldsymbol{\pi}_{i}, \sigma_{i}$: two different paths connecting s_{i} to $\boldsymbol{t}_{\boldsymbol{i}}$
(4) \widehat{w} : Fractional congestion at least $\boldsymbol{n}^{\mathbf{1 / 2}}$.
(5) opt: Congestion of optimal solution.
(0) \Longrightarrow In polynomial time (LP solving time) choose paths
(1) congestion \forall edges: $\leq(1+\delta)$ opt
(2) $\delta=\sqrt{\frac{20}{\widehat{w}} \ln t}$.

Minimizing congestion - continued

(1) Got: For $\delta=\sqrt{\frac{400}{\widehat{w}} \ln t}$. We have

$$
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \alpha_{\mathrm{e}}\right] \leq \exp \left(-\frac{\delta^{2} \widehat{w}}{4}\right) \leq \frac{1}{t^{100}}
$$

(2) Play with the numbers. If $t=n$, and $\widehat{w} \geq \sqrt{n}$. Then, the solution has congestion larger than the optimal solution by a factor of

$$
1+\delta=1+\sqrt{\frac{20}{\widehat{w}} \ln t} \leq 1+\frac{\sqrt{20 \ln n}}{n^{1 / 4}}
$$

which is of course extremely close to $\mathbf{1}$, if \boldsymbol{n} is sufficiently large.

When the congestion is low

(1) Assume \widehat{w} is a constant.
(2) Can get a better bound by using the Chernoff inequality in its more general form.
(3) set $\delta=c \ln t / \ln \ln t$, where c is a constant. For $\mu=\alpha_{\mathrm{e}}$, we have that

$$
\begin{aligned}
\operatorname{Pr}\left[Y_{\mathrm{e}} \geq(1+\delta) \mu\right] & \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\
& =\exp (\mu(\delta-(1+\delta) \ln (1+\delta))) \\
& =\exp \left(-\mu c^{\prime} \ln t\right) \leq \frac{1}{t^{O(1)}}
\end{aligned}
$$

where \boldsymbol{c}^{\prime} is a constant that depends on \boldsymbol{c} and grows if \boldsymbol{c} grows.

When the congestion is low

(1) Just proved that..
(2) if the optimal congestion is $O(1)$, then...
(3) algorithm outputs a solution with congestion $O(\log t / \log \log t)$, and this holds with high probability.

Chernoff inequality

Problem

Let $X_{1}, \ldots X_{n}$ be n independent Bernoulli trials, where

$$
\left.\begin{array}{rlrl}
\operatorname{Pr}\left[X_{i}=1\right] & =p_{i}, & \operatorname{Pr}\left[X_{i}=0\right] & =1-p_{i} \\
Y & =\sum_{i} X_{i}, & \text { and } & \mu
\end{array}\right)=\mathrm{E}[Y] .
$$

We are interested in bounding the probability that $\boldsymbol{Y} \geq(\mathbf{1}+\boldsymbol{\delta}) \boldsymbol{\mu}$.

More Chernoff...

Theorem

Under the same assumptions as the theorem above, we have

$$
\operatorname{Pr}[Y<(1-\delta) \mu] \leq \exp \left(-\mu \frac{\delta^{2}}{2}\right)
$$

Or in a more simplified form, for any $\delta \leq \mathbf{2 e - 1}$,

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<\exp \left(-\mu \delta^{2} / 4\right)
$$

and

$$
\operatorname{Pr}[Y>(1+\delta) \mu]<2^{-\mu(1+\delta)}
$$

for $\delta \geq 2 e-1$.

