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Weighted vertex cover

Weighted Vertex Cover problem

G = (V, E).
Each vertex v ∈ V: cost cv.
Compute a vertex cover of minimum cost.

1 vertex cover: subset of vertices V so each edge is covered.

2 NP-Hard

3 ...unweighted Vertex Cover problem.

4 ... write as an integer program (IP):

5 ∀v ∈ V: xv = 1 ⇐⇒ v in the vertex cover.

6 ∀vu ∈ E: covered. =⇒ xv ∨ xu true. =⇒ xv + xu ≥ 1.

7 minimize total cost: min
∑

v∈V xvcv.
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Weighted vertex cover
State as IP =⇒ Relax =⇒ LP

min
∑
v∈V

cvxv,

such that xv ∈ {0, 1} ∀v ∈ V (1)

xv + xu ≥ 1 ∀vu ∈ E.

1 ... NP-Hard.

2 relax the integer program.

3 allow xv get values
∈ [0, 1].

4 xv ∈ {0, 1} replaced by
0 ≤ xv ≤ 1. The
resulting LP is

min
∑
v∈V

cvxv,

s.t. 0 ≤ xv ∀v ∈ V,

xv ≤ 1 ∀v ∈ V,

xv + xu ≥ 1 ∀vu ∈ E.
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Weighted vertex cover – rounding the LP

1 Optimal solution to this LP: x̂v value of var Xv, ∀v ∈ V.

2 optimal value of LP solution is α̂ =
∑

v∈V cvx̂v.

3 optimal integer solution: x I
v , ∀v ∈ V and αI .

4 Any valid solution to IP is valid solution for LP!

5 α̂ ≤ αI .
Integral solution not better than LP.

6 Got fractional solution (i.e., values of x̂v).

7 Fractional solution is better than the optimal cost.

8 Q: How to turn fractional solution into a (valid!) integer
solution?

9 Using rounding.
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How to round?

1 consider vertex v and fractional value x̂v.

2 If x̂v = 1 then include in solution!

3 If x̂v = 0 then do notnot include in solution.

4 if x̂v = 0.9 =⇒ LP considers v as being 0.9 useful.

5 The LP puts its money where its belief is...

6 ...α̂ value is a function of this “belief” generated by the LP.

7 Big idea: Trust LP values as guidance to usefulness of vertices.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 48

II: How to round?

min
∑
v∈V

cvxv,

s.t. 0 ≤ xv ∀v ∈ V

xv ≤ 1 ∀v ∈ V

xv + xu ≥ 1 ∀vu ∈ E

1 Pick all vertices ≥ threshold
of usefulness according to
LP.

2 S =
{
v
∣∣∣ x̂v ≥ 1/2

}
.

3 Claim: S a valid vertex
cover, and cost is low.

1 Indeed, edge cover as: ∀vu ∈ E have x̂v + x̂u ≥ 1.

2 x̂v, x̂u ∈ (0, 1)
=⇒ x̂v ≥ 1/2 or x̂u ≥ 1/2.
=⇒ v ∈ S or u ∈ S (or both).
=⇒ S covers all the edges of G.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 48

Cost of solution

Cost of S :

cS =
∑
v∈S

cv =
∑
v∈S

1 · cv ≤
∑
v∈S

2x̂v · cv ≤ 2
∑
v∈V

x̂vcv = 2α̂ ≤ 2αI ,

since x̂v ≥ 1/2 as v ∈ S .
αI is cost of the optimal solution =⇒

Theorem
The Weighted Vertex Cover problem can be 2-approximated by
solving a single LP. Assuming computing the LP takes polynomial
time, the resulting approximation algorithm takes polynomial time.
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The lessons we can take away
Or not - boring, boring, boring.

1 Weighted vertex cover is simple, but resulting approximation
algorithm is non-trivial.

2 Not aware of any other 2-approximation algorithm does not use
LP. (For the weighted case!)

3 Solving a relaxation of an optimization problem into a LP
provides us with insight.

4 But... have to be creative in the rounding.
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Revisiting Set Cover

1 Purpose: See new technique for an approximation algorithm.

2 Not better than greedy algorithm already seen O(log n)
approximation.

Problem: Set Cover

Instance: (S,F)
S - a set of n elements
F - a family of subsets of S , s.t.

⋃
X∈F X = S .

Question: The set X ⊆ F such that X contains as
few sets as possible, and X covers S.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 48

Set Cover – IP & LP

min α =
∑
U∈F

xU ,

s.t. xU ∈ {0, 1} ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

Next, we relax this IP into the following LP.

min α =
∑
U∈F

xU ,

0 ≤ xU ≤ 1 ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.
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Set Cover – IP & LP

1 LP solution: ∀U ∈ F, x̂U , and α̂.
2 Opt IP solution: ∀U ∈ F, x I

U , and αI .
3 Use LP solution to guide in rounding process.
4 If x̂U is close to 1 then pick U to cover.
5 If x̂U close to 0 do not.
6 Idea: Pick U ∈ F: randomly choose U with probability x̂U .
7 Resulting family of sets G.
8 ZS : indicator variable. 1 if S ∈ G.
9 Cost of G is

∑
S∈F ZS , and the expected cost is

E
[
cost of G

]
= E

[∑
S∈F ZS

]
=
∑

S∈F E
[
ZS
]
=∑

S∈F Pr
[
S ∈ G

]
=
∑

S∈F x̂S = α̂ ≤ αI .

10 In expectation, G is not too expensive.
11 Bigus problumos: G might fail to cover some element s ∈ S .
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Set Cover – Rounding continued

1 Solution: Repeat rounding stage m = 10dlg ne = O(log n)
times.

2 n = |S|.
3 Gi : random cover computed in i th iteration.

4 H = ∪iGi . Return H as the required cover.
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The set H covers S

1 For an element s ∈ S , we have that∑
U∈F,s∈U

x̂U ≥ 1, (2)

2 probability s not covered by Gi (i th iteration set).

Pr
[
s not covered by Gi

]
= Pr

[
no U ∈ F, s.t. s ∈ U picked into Gi

]
=
∏

U∈F,s∈U Pr
[
U was not picked into Gi

]
=

∏
U∈F,s∈U

(1− x̂U) ≤
∏

U∈F,s∈U

exp(−x̂U)

= exp
(
−
∑

U∈F,s∈U x̂U

)
≤ exp(−1) ≤ 1

2
, ≤ 1

2
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The set H covers S
Probability of a single item to be covered

1 Pr
[
s not covered by Gi

]
≤ 1/2.

2 Number of iterations of rounding m = O(log n).

3 Covering with sets in G1, . . . ,Gm.

4 probability s is not covered in all m iterations

Ps = Pr
[
s not covered by G1, . . . ,Fm

]
≤ Pr

[
(s /∈ F1) ∩ (s /∈ F2) ∩ . . . ∩ (s /∈ Fm)

]
≤ Pr

[
s /∈ F1

]
Pr
[
s /∈ F2

]
· · ·Pr

[
s /∈ Fm

]
=

1

2
×

1

2
× · · · ×

1

2
=

(
1

2

)m

<
1

n10
,
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The set H covers S
Probability of all items to be covered

1 n = |S|,
2 Probability of s ∈ S , not to be in G1 ∪ . . . ∪ Fm is

Ps <
1

n10
.

3 probability one of n elements of S is not covered by H is∑
s∈S

Pr[s /∈ G1 ∪ . . . ∪ Fm] =
∑
s∈S

Ps < n(1/n10) = 1/n9.
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XXX
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Reminder: LP for Set Cover

min α =
∑
U∈F

xU ,

0 ≤ xU ≤ 1 ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

1 Solve the LP.

2 x̂U : Value of xu in the optimal LP solution.

3 Fractional solution: α̂ =
∑

U∈F x̂U .

4 Integral solution (what we want): αI ≥ α̂.
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Cost of solution

1 (S,F): Given instance of Set Cover.

2 For U ∈ F, x̂U : LP value for set U in optimal solution.

3 For Gi : Indicator variable Zu = 1 ⇐⇒ U ∈ Gi .

4 Expected number of sets in the i th sample:

E[|Gi |] = E
[∑

U∈F ZU
]
=
∑

U∈F E[ZU] =
∑

U∈F x̂U
= α̂ ≤ αI .

5 =⇒ Each iteration expected cost of cover ≤ cost of optimal
solution (i.e., αI ). XXX

6 Expected size of the solution is

E[|H|] = E[|∪iGi |] ≤ E

[∑
i

|Gi |
]
≤ mαI = O

(
αI log n

)
.
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The result

Theorem
By solving an LP one can get an O(log n)-approximation to Set
Cover by a randomized algorithm. The algorithm succeeds with high
probability.
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Minimizing congestion by example
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Minimizing congestion

1 G: graph. n vertices.

2 πi , σi paths with the same endpoints vi , ui ∈ V(G), for
i = 1, . . . , t.

3 Rule I: Send one unit of flow from vi to ui .

4 Rule II: Choose whether to use πi or σi .

5 Target: No edge in G is being used too much.

Definition
Given a set X of paths in a graph G, the congestion of X is the
maximum number of paths in X that use the same edge.
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Minimizing congestion

1 IP =⇒ LP:

min w
s.t. xi ≥ 0 i = 1, . . . , t,

xi ≤ 1 i = 1, . . . , t,∑
e∈πi

xi +
∑
e∈σi

(1− xi) ≤ w ∀e ∈ E .

2 x̂i : value of xi in the optimal LP solution.
3 ŵ : value of w in LP solution.
4 Optimal congestion must be bigger than ŵ .
5 Xi : random variable one with probability x̂i , and zero otherwise.
6 If Xi = 1 then use π to route from vi to ui .
7 Otherwise use σi .

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 48

Minimizing congestion

1 Congestion of e is Ye =
∑

e∈πi
Xi +

∑
e∈σi

(1− Xi).

2 And in expectation

αe = E
[
Ye

]
= E

[∑
e∈πi

Xi +
∑
e∈σi

(1− Xi)

]
=
∑
e∈πi

E
[
Xi

]
+
∑
e∈σi

E
[
(1− Xi)

]
=
∑
e∈πi

x̂i +
∑
e∈σi

(1− x̂i) ≤ ŵ .

3 ŵ : Fractional congestion (from LP solution).
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Minimizing congestion - continued

1 Ye =
∑

e∈πi
Xi +

∑
e∈σi

(1− Xi).

2 Ye is just a sum of independent 0/1 random variables!

3 Chernoff inequality tells us sum can not be too far from
expectation!
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Minimizing congestion - continued

1 By Chernoff inequality:

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−
αeδ

2

4

)
≤ exp

(
−

ŵδ2

4

)
.

2 Let δ =

√
400

ŵ
ln t. We have that

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−
δ2ŵ
4

)
≤

1

t100
,

3 If t ≥ n1/50 =⇒ ∀ edges in graph congestion ≤ (1 + δ)ŵ .

4 t: Number of pairs, n: Number of vertices in G.
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Minimizing congestion - continued

1 Got: For δ =

√
400

ŵ
ln t. We have

Pr
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−
δ2ŵ
4

)
≤

1

t100
,

2 Play with the numbers. If t = n, and ŵ ≥
√

n. Then, the
solution has congestion larger than the optimal solution by a
factor of

1 + δ = 1 +

√
20

ŵ
ln t ≤ 1 +

√
20 ln n
n1/4

,

which is of course extremely close to 1, if n is sufficiently large.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 48

Minimizing congestion: result

Theorem
1 G: Graph n vertices.

2 (s1, t1), . . . , (st, tt): pairs o vertices

3 πi , σi : two different paths connecting si to ti
4 ŵ : Fractional congestion at least n1/2.

5 opt: Congestion of optimal solution.
6 =⇒ In polynomial time (LP solving time) choose paths

1 congestion ∀ edges: ≤ (1 + δ)opt

2 δ =

√
20

ŵ
ln t.
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When the congestion is low

1 Assume ŵ is a constant.

2 Can get a better bound by using the Chernoff inequality in its
more general form.

3 set δ = c ln t/ ln ln t, where c is a constant. For µ = αe, we
have that

Pr
[
Ye ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ
= exp

(
µ
(
δ − (1 + δ) ln(1 + δ)

))
= exp

(
− µc ′ ln t

)
≤

1

tO(1)
,

where c ′ is a constant that depends on c and grows if c grows.
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When the congestion is low

1 Just proved that...

2 if the optimal congestion is O(1), then...

3 algorithm outputs a solution with congestion
O(log t/ log log t), and this holds with high probability.
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Chernoff inequality

Problem
Let X1, . . .Xn be n independent Bernoulli trials, where

Pr
[
Xi = 1

]
= pi , Pr

[
Xi = 0

]
= 1− pi ,

Y =
∑

i

Xi , and µ = E
[
Y
]
.

We are interested in bounding the probability that Y ≥ (1 + δ)µ.
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Chernoff inequality

Theorem (Chernoff inequality)

For any δ > 0,

Pr
[
Y > (1 + δ)µ

]
<

(
eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, for any δ ≤ 2e − 1,

Pr
[
Y > (1 + δ)µ

]
< exp

(
−µδ2/4

)
,

and

Pr
[
Y > (1 + δ)µ

]
< 2−µ(1+δ),

for δ ≥ 2e − 1.
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More Chernoff...

Theorem
Under the same assumptions as the theorem above, we have

Pr
[
Y < (1− δ)µ

]
≤ exp

(
−µ

δ2

2

)
.
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