Chapter 25

Introduction to Linear Programming

OLD CS 473: Fundamental Algorithms, Spring 2015
April 28, 2015

25.1 Introduction to Linear Programming

25.1.1 Introduction

25.1.2 Examples

25.1.2.1 Maximum Flow in Network

Need to compute values $f_{s 1}, f_{s 2}, \ldots f_{25}, \ldots f_{5 t}, f_{6 t}$ such that

$$
\begin{array}{lll}
f_{s 1} \leq 15 & f_{s 2} \leq 5 & f_{s 3} \leq 10 \\
f_{14} \leq 30 & f_{21} \leq 4 & f_{25} \leq 8 \\
f_{32} \leq 4 & f_{35} \leq 15 f_{35} \leq 15 & f_{36} \leq 9 \\
f_{42} \leq 6 & f_{4 t} \leq 10 & f_{54} \leq 15 \\
f_{5 t} \leq 10 & f_{65} \leq 15 & f_{6 t} \leq 10
\end{array}
$$

and

$$
\begin{aligned}
& f_{s 1}+f_{21}=f_{14} \\
& f_{14}+f_{54}=f_{42}+f_{4 t} \lcm{f_{14}+f_{54}=f_{42}+f_{4 t}} \\
& f_{s 1} \geq 0 \quad f_{s 2} \geq 0
\end{aligned}
$$

$$
f_{s 2}+f_{32}=f_{21}+f_{25} \quad f_{s 3}=f_{32}+f_{35}+f_{36}
$$

$$
f_{25}+f_{35}+f_{65}=f_{54}+f_{5 t} \quad f_{36}=f_{65}+f_{6 t}
$$

$$
f_{s 3} \geq 0 \quad \cdots \quad f_{4 t} \geq 0 \quad f_{5 t} \geq 0 \quad f_{6 t} \geq 0
$$

and $f_{s 1}+f_{s 2}+f_{s 3}$ is maximized.

25.1.2.2 Maximum Flow as a Linear Program

For a general flow network $G=(V, E)$ with capacities c_{e} on edge $e \in E$, we have variables f_{e} indicating flow on edge e

$$
\begin{array}{rlr}
\text { Maximize } & \sum^{e \text { out of } s} f_{e} & \\
\text { subject to } & f_{e} \leq c_{e} & \text { for each } e \in E \\
& \sum_{e \text { out of } v} f_{e}-\sum_{e \text { into } v} f_{e}=0 & \forall v \in V \backslash\{s, t\} \\
& f_{e} \geq 0 & \text { for each } e \in E .
\end{array}
$$

Number of variables: m, one for each edge.
Number of constraints: $m+n-2+m$.

25.1.3 Minimum Cost Flow with Lower Bounds

25.1.3.1 ... as a Linear Program

For a general flow network $G=(V, E)$ with capacities c_{e}, lower bounds ℓ_{e}, and costs w_{e}, we have variables f_{e} indicating flow on edge e. Suppose we want a min-cost flow of value at least v.

$$
\begin{array}{lr}
\text { Minimize } & \sum_{e \in E} w_{e} f_{e} \\
\text { subject to } & \sum_{e \text { out of } s} f_{e} \geq v \\
& f_{e} \leq c_{e} \quad f_{e} \geq \ell_{e} \\
& \sum_{e \text { out of } v} f_{e}-\sum_{e \text { into } v} f_{e}=0
\end{array} \text { for each } e \in E\left\{\begin{array}{rr}
\\
f_{e} \geq 0 & \text { for each } v \in V-\{s, t\} \\
& \text { for each } e \in E .
\end{array}\right.
$$

Number of variables: m, one for each edge
Number of constraints: $1+m+m+n-2+m=3 m+n-1$.

25.1.4 General Form

25.1.4.1 Linear Programs

Problem Find a vector $x \in \mathbb{R}^{d}$ that

$$
\begin{array}{ll}
\operatorname{maximize} / \text { minimize } & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \text { for } i=1 \ldots p \\
& \sum_{j=1}^{d} a_{i j} x_{j}=b_{i} \text { for } i=p+1 \ldots q \\
& \sum_{j=1}^{d=1} a_{i j} x_{j} \geq b_{i} \text { for } i=q+1 \ldots n
\end{array}
$$

Input is matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times d}$, column vector $b=\left(b_{i}\right) \in \mathbb{R}^{n}$, and row vector $c=\left(c_{j}\right) \in \mathbb{R}^{d}$

25.1.5 Canonical Forms

25.1.5.1 Canonical Form of Linear Programs

Canonical Form A linear program is in canonical form if it has the following structure

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} & \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} & \text { for } i=1 \ldots n \\
& x_{j} \geq 0 & \text { for } j=1 \ldots d
\end{array}
$$

¡2-¿Conversion to Canonical Form
(A) Replace each variable x_{j} by $x_{j}^{+}-x_{j}^{-}$and inequalities $x_{j}^{+} \geq 0$ and $x_{j}^{-} \geq 0$
(B) Replace $\sum_{j} a_{i j} x_{j}=b_{i}$ by $\sum_{j} a_{i j} x_{j} \leq b_{i}$ and $-\sum_{j} a_{i j} x_{j} \leq-b_{i}$
(C) Replace $\sum_{j} a_{i j} x_{j} \geq b_{i}$ by $-\sum_{j} a_{i j} x_{j} \leq-b_{i}$

25.1.5.2 Matrix Representation of Linear Programs

A linear program in canonical form can be written as

$$
\begin{array}{ll}
\operatorname{maximize} & c \cdot x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{array}
$$

where $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times d}$, column vector $b=\left(b_{i}\right) \in \mathbb{R}^{n}$, row vector $c=\left(c_{j}\right) \in \mathbb{R}^{d}$, and column vector $x=\left(x_{j}\right) \in \mathbb{R}^{d}$
(A) Number of variable is d
(B) Number of constraints is $n+d$

25.1.5.3 Other Standard Forms for Linear Programs

$$
\begin{array}{ll}
\operatorname{maximize} & c \cdot x \\
\text { subject to } & A x=b \\
& x \geq 0 \\
\text { minimize } & c \cdot x \\
\text { subject to } & A x \geq b \\
& x \geq 0
\end{array}
$$

25.1.6 History
 25.1.6.1 Linear Programming: A History

(A) First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
(A) However, work was ignored behind the Iron Curtain and unknown in the West
(B) Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
(C) First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
(D) Kantorovich and Koopmans receive Nobel Prize for economics in 1975 ; Dantzig, however, was ignored
(A) Koopmans contemplated refusing the Nobel Prize to protest Dantzig's exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as "a means for apologists of capitalism"

25.1.7 Shortest path as a linear program

25.1.8 Solving Linear Programs

25.1.9 Algorithm for 2 Dimensions

25.1.9.1 A Factory Example

Problem Suppose a factory produces two products I and $I I$. Each requires three resources A, B, C.
(A) Producing one unit of Product I requires 1 unit each of resources A and C.
(B) One unit of Product II requires 1 unit of resource B and 1 units of resource C.
(C) We have 200 units of $A, 300$ units of B, and 400 units of C.
(D) Product I can be sold for $\$ 1$ and product II for $\$ 6$.

How many units of product I and product II should the factory manufacture to maximize profit? Solution: Formulate as a linear program.

25.1.9.2 A Factory Example

Problem Suppose a factory produces two products I and $I I$. Each requires three resources A, B, C.
(A) Producing unit I: Req. 1 unit of A, C.
(B) Producing unit II: Requ. 1 unit of B, C.
(C) Have $A: 200, B: 300$, and $C: 400$.
(D) Price I: $\$ 1$, and II: $\$ 6$.

How many units of I and II to manufacture to max profit?

25.1.9.3 A Factory Example

Problem Suppose a factory produces two products I and $I I$. Each requires three resources A, B, C.
(A) Producing unit I: Req. 1 unit of A, C.
(B) Producing unit II: Requ. 1 unit of B, C.
(C) Have $A: 200, B: 300$, and $C: 400$.
(D) Price I: $\$ 1$, and II: $\$ 6$.

How many units of I and II to manufacture to max profit?

$$
\begin{array}{ll}
\max & x_{I}+6 x_{I I} \\
\text { s.t. } & x_{I} \leq 200 \\
& x_{I I} \leq 300 \\
& x_{I}+x_{I I} \leq 400 \\
& x_{I} \geq 0 \\
& x_{I I} \geq 0
\end{array}
$$

25.1.9.4 Linear Programming Formulation

Let us produce x_{1} units of product I and x_{2} units of product II. Our profit can be computed by solving

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}+6 x_{2} \\
\text { subject to } & x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

What is the solution?

25.1.9.5 Graphical interpretation of LP

25.1.9.6 Solving the Factory Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}+6 x_{2} \\
\text { subject to } & x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

25.1.9.7 Solving the Factory Example

(A) Feasible values of x_{1} and x_{2} are shaded region.
(B) Objective function is a direction - the line represents all points with same value of the function; moving the line until it just leaves the feasible region, gives optimal values.

25.1.9.8 Linear Programming in 2-d

(A) Each constraint a half plane
(B) Feasible region is intersection of finitely many half planes - it forms a polygon
(C) For a fixed value of objective function, we get a line. Parallel lines correspond to different values for objective function.
(D) Optimum achieved when objective function line just leaves the feasible region

25.1.9.9 An Example in 3-d

$$
\begin{aligned}
\max x_{1}+6 x_{2} & +13 x_{3} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2}+x_{3} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0 \\
x_{3} & \geq 0
\end{aligned}
$$

Figure from Dasgupta etal book.

25.1.10 Simplex in 2 Dimensions

25.1.10.1 Factory Example: Alternate View

Original Problem Recall we have,

$$
\begin{array}{lcc}
\operatorname{maximize} & x_{1}+6 x_{2} \\
\text { subject to } & x_{1} \leq 200 & x_{2} \leq 300 \quad x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

$¡ 2-i$ Transformation Consider new variable x_{1}^{\prime} and x_{2}^{\prime}, such that $x_{1}=-6 x_{1}^{\prime}+x_{2}^{\prime}$ and $x_{2}=$ $x_{1}^{\prime}+6 x_{2}^{\prime}$. Then in terms of the new variables we have

$$
\begin{aligned}
& \text { maximize } \\
& \begin{aligned}
\text { subject to } & 37 x_{2}^{\prime} \\
-6 x_{1}^{\prime}+x_{2}^{\prime} & \leq 200 \quad x_{1}^{\prime}+6 x_{2}^{\prime} \leq 300 \quad-5 x_{1}^{\prime}+7 x_{2} \leq 400 \\
& -6 x_{1}^{\prime}+x_{2}^{\prime} \geq 0 \quad x_{1}^{\prime}+6 x_{2}^{\prime} \geq 0
\end{aligned}
\end{aligned}
$$

25.1.10.2 Transformed Picture

Feasible region rotated, and optimal value at the highest point on polygon

25.1.10.3 Observations about the Transformation

Observations
(A) Linear program can always be transformed to get a linear program where the optimal value is achieved at the point in the feasible region with highest y-coordinate
(B) Optimum value attained at a vertex of the polygon
(C) Since feasible region is convex, every local optimum is a global optimum

25.1.10.4 A Simple Algorithm in 2-d

(A) optimum solution is at a vertex of the feasible region
(B) a vertex is defined by the intersection of two lines (constraints)

Algorithm:

(A) find all intersections between the n lines $-n^{2}$ points
(B) for each intersection point $p=\left(p_{1}, p_{2}\right)$
(A) check if p is in feasible region (how?)
(B) if p is feasible evaluate objective function at $p: \operatorname{val}(p)=c_{1} p_{1}+c_{2} p_{2}$
(C) Output the feasible point with the largest value Running time: $O\left(n^{3}\right)$.

25.1.10.5 Simple Algorithm in General Case

Real problem: d-dimensions
(A) optimum solution is at a vertex of the feasible region
(B) a vertex is defined by the intersection of d hyperplanes
(C) number of vertices can be $\Omega\left(n^{d}\right)$

Running time: $O\left(n^{d+1}\right)$ which is not polynomial since problem size is at least $n d$. Also not practical.

How do we find the intersection point of d hyperplanes in \mathbb{R}^{d} ? Using Gaussian elimination to solve $A x=b$ where A is a $d \times d$ matrix and b is a $d \times 1$ matrix.

25.1.10.6 Simplex in 2-d

Simplex Algorithm

1. Start from some vertex of the feasible polygon
2. Compare value of objective function at current vertex with the value at "neighboring" vertices of polygon
3. If neighboring vertex improves objective function, move to this vertex, and repeat step 2
4. If current vertex is local optimum, then stop.

25.1.11 Simplex in Higher Dimensions

25.1.11.1 Linear Programming in d-dimensions
(A) Each linear constraint defines a halfspace.
(B) Feasible region, which is an intersection of halfspaces, is a convex polyhedron.
(C) Optimal value attained at a vertex of the polyhedron.
(D) Every local optimum is a global optimum.

25.1.11.2 Simplex in Higher Dimensions

1. Start at a vertex of the polytope.
2. Compare value of objective function at each of the d "neighbors".
3. Move to neighbor that improves objective function, and repeat step 2.
4. If local optimum, then stop

Simplex is a greedy local-improvement algorithm! Works because a local optimum is also a global optimum - convexity of polyhedra.

25.1.11.3 Solving Linear Programming in Practice

(A) Naïve implementation of Simplex algorithm can be very inefficient
(A) Choosing which neighbor to move to can significantly affect running time
(B) Very efficient Simplex-based algorithms exist
(C) Simplex algorithm takes exponential time in the worst case but works extremely well in practice with many improvements over the years
(B) Non Simplex based methods like interior point methods work well for large problems.

25.1.11.4 Polynomial time Algorithm for Linear Programming

Major open problem for many years: is there a polynomial time algorithm for linear programming?

Leonid Khachiyan in 1979 gave the first polynomial time algorithm using the Ellipsoid method.
(A) major theoretical advance
(B) highly impractical algorithm, not used at all in practice
(C) routinely used in theoretical proofs.

Narendra Karmarkar in 1984 developed another polynomial time algorithm, the interior point method.
(A) very practical for some large problems and beats simplex
(B) also revolutionized theory of interior point methods

Following interior point method success, Simplex has been improved enormously and is the method of choice.

25.1.11.5 Degeneracy

(A) The linear program could be infeasible: No points satisfy the constraints.
(B) The linear program could be unbounded: Polygon unbounded in the direction of the objective function.

25.1.11.6 Infeasibility: Example

$$
\begin{array}{lcc}
\operatorname{maximize} & & x_{1}+6 x_{2} \\
\text { subject to } & x_{1} \leq 2 & x_{2} \leq 1 \quad x_{1}+x_{2} \geq 4 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Infeasibility has to do only with constraints.

25.1.11.7 Unboundedness: Example

$$
\begin{aligned}
\operatorname{maximize} & x_{2} \\
x_{1}+x_{2} & \geq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Unboundedness depends on both constraints and the objective function.

25.1.12 Duality

25.1.13 Lower Bounds and Upper Bounds

25.1.13.1 Feasible Solutions and Lower Bounds

Consider the program

\[

\]

(A) $(1,0,0)$ satisfies all the constraints and gives value 4 for the objective function.
(B) Thus, optimal value σ^{*} is at least 4.
(C) $(0,0,3)$ also feasible, and gives a better bound of 9 .
(D) How good is 9 when compared with σ^{*} ?

25.1.13.2 Obtaining Upper Bounds

(A) Let us multiply the first constraint by 2 and the second by 3 and add the result
(B) Since x_{i} s are positive, compared to objective function $4 x_{1}+x_{2}+3 x_{3}$, we have

$$
4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11
$$

(C) Thus, 11 is an upper bound on the optimum value!

25.1.13.3 Generalizing ...

(A) Multiply first equation by y_{1} and second by y_{2} (both y_{1}, y_{2} being positive) and add

$$
\begin{array}{rrrrl}
y_{1}(& x_{1}+ & 4 x_{2} &) \leq y_{1}(1) \\
+y_{2}(& 3 x_{1}- & x_{2}+ & x_{3} &) \leq y_{2}(3) \\
\hline & \left(y_{1}+3 y_{2}\right) x_{1}+ & \left(4 y_{1}-y_{2}\right) x_{2}+ & \left(y_{2}\right) x_{3} & \leq y_{1}+3 y_{2}
\end{array}
$$

(B) $y_{1}+3 y_{2}$ is an upper bound, provided coefficients of x_{i} are as large as in the objective function, i.e.,

$$
y_{1}+3 y_{2} \geq 4 \quad 4 y_{1}-y_{2} \geq 1 \quad y_{2} \geq 3
$$

(C) The best upper bound is when $y_{1}+3 y_{2}$ is minimized!

25.1.14 Dual Linear Programs
 25.1.14.1 Dual LP: Example

Thus, the optimum value of program

$$
\begin{array}{lr}
\operatorname{maximize} & 4 x_{1}+x_{2}+3 x_{3} \\
\text { subject to } & x_{1}+4 x_{2} \leq 1 \\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

is upper bounded by the optimal value of the program

$$
\begin{array}{lr}
\operatorname{minimize} & y_{1}+3 y_{2} \\
\text { subject to } & y_{1}+3 y_{2} \geq 4 \\
& 4 y_{1}-y_{2} \geq 1 \\
& y_{2} \geq 3 \\
& y_{1}, y_{2} \geq 0
\end{array}
$$

25.1.14.2 Dual Linear Program

Given a linear program Π in canonical form

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} & \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} & i=1,2, \ldots n \\
& x_{j} \geq 0 & j=1,2, \ldots d
\end{array}
$$

the dual Dual (Π) is given by

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{i=1}^{n} b_{i} y_{i} & \\
\text { subject to } & \sum_{i=1}^{n} y_{i} a_{i j} \geq c_{j} & j=1,2, \ldots d \\
& y_{i} \geq 0 & i=1,2, \ldots n
\end{array}
$$

25.1.15 Duality Theorems

25.1.15.1 Duality Theorem

Theorem 25.1.2 (Weak Duality). If x is a feasible solution to Π and y is a feasible solution to Dual(П) then $c \cdot x \leq y \cdot b$.

Theorem 25.1.3 (Strong Duality). If x^{*} is an optimal solution to Π and y^{*} is an optimal solution to $\operatorname{Dual}(\Pi)$ then $c \cdot x^{*}=y^{*} \cdot b$.

Many applications! Maxflow-Mincut theorem can be deduced from duality.

25.1.15.2 Maximum Flow Revisited

For a general flow network $G=(V, E)$ with capacities c_{e} on edge $e \in E$, we have variables f_{e} indicating flow on edge e

$$
\begin{array}{ll}
\text { Maximize } \sum_{e} \text { out of } s f_{e} & \text { subject to } \\
f_{e} \leq c_{e} & \text { for each } e \in E \\
\sum_{e} \text { out of } v f_{e}-\sum_{e \text { into } v} f_{e}=0 & \text { for each } v \in V-\{s, t\} \\
f_{e} \geq 0 & \text { for each } e \in E
\end{array}
$$

Number of variables: m, one for each edge
Number of constraints: $m+n-2+m$

Maximum flow can be reduced to Linear Programming.

25.1.16 Integer Linear Programming 25.1.16.1 Integer Linear Programming

Problem Find a vector $x \in Z^{d}$ (integer values) that

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{d} c_{j} x_{j} \\
\text { subject to } & \sum_{j=1}^{d} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1 \ldots n
\end{array}
$$

Input is matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times d}$, column vector $b=\left(b_{i}\right) \in \mathbb{R}^{n}$, and row vector $c=\left(c_{j}\right) \in \mathbb{R}^{d}$

25.1.16.2 Factory Example

$$
\begin{array}{lcc}
\operatorname{maximize} & x_{1}+6 x_{2} \\
\text { subject to } & x_{1} \leq 200 & x_{2} \leq 300 \quad x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Suppose we want x_{1}, x_{2} to be integer valued.

25.1.16.3 Factory Example Figure

(A) Feasible values of x_{1} and x_{2} are integer points in shaded region
(B) Optimization function is a line; moving the line until it just leaves the final integer point in feasible region, gives optimal values

25.1.16.4 Integer Programming

Can model many difficult discrete optimization problems as integer programs!
Therefore integer programming is a hard problem. NP-hard.

Can relax integer program to linear program and approximate.

Practice: integer programs are solved by a variety of methods
(A) branch and bound
(B) branch and cut
(C) adding cutting planes
(D) linear programming plays a fundamental role

25.1.16.5 Linear Programs with Integer Vertices

Suppose we know that for a linear program all vertices have integer coordinates.
Then solving linear program is same as solving integer program. We know how to solve linear programs efficiently (polynomial time) and hence we get an integer solution for free!

Luck or Structure:

(A) Linear program for flows with integer capacities have integer vertices
(B) Linear program for matchings in bipartite graphs have integer vertices
(C) A complicated linear program for matchings in general graphs have integer vertices.

All of above problems can hence be solved efficiently.

25.1.16.6 Linear Programs with Integer Vertices

Meta Theorem: A combinatorial optimization problem can be solved efficiently if and only if there is a linear program for problem with integer vertices.

Consequence of the Ellipsoid method for solving linear programming.

In a sense linear programming and other geometric generalizations such as convex programming are the most general problems that we can solve efficiently.

25.1.16.7 Summary

(A) Linear Programming is a useful and powerful (modeling) problem.
(B) Can be solved in polynomial time. Practical solvers available commercially as well as in open source. Whether there is a strongly polynomial time algorithm is a major open problem.
(C) Geometry and linear algebra are important to understand the structure of LP and in algorithm design. Vertex solutions imply that LPs have poly-sized optimum solutions. This implies that LP is in NP.
(D) Duality is a critical tool in the theory of linear programming. Duality implies the Linear Programming is in co-NP. Do you see why?
(E) Integer Programming in NP-Complete. LP-based techniques critical in heuristically solving integer programs.

