OLD CS 473: Fundamental Algorithms, Spring 2015

More NP-Complete Problems

Lecture 24 April 23, 2015

Sarial (IIIIIC)		1	Spring 2015	1 / 62
Sariel (UIUC)	OLD CS473	1	Spring 2015	1/6

Recap contd

Theorem (Cook-Levin)

Circuit-SAT and **SAT** are NP-Complete.

- **9** Establish NP-Completeness via reductions:
- **SAT** \leq_P **3SAT** and hence **3SAT** is NP-complete
- **3SAT** \leq_P Independent Set (which is in NP) and hence...
- **Independent Set** is NP-Complete.
- **Overtex Cover** is NP-Complete
- **O Clique** is NP-Complete.
- **Set Cover** is NP-Complete.

Recap

- **O** NP: languages that have polynomial time certifiers/verifiers
- A language L is NP-Complete iff
 - ► L is in NP
 - ▶ for every L' in NP, $L' \leq_P L$
- **3** *L* is NP-Hard if for every *L'* in NP, $L' \leq_P L$.
- Oook-Levin theorem...

Theorem (Cook-Levin) Circuit-SAT and SAT are NP-Complete.

Today

Sariel (UIUC)

Prove

• Hamiltonian Cycle Problem is NP-Complete

OLD CS473

• 3-Coloring is NP-Complete

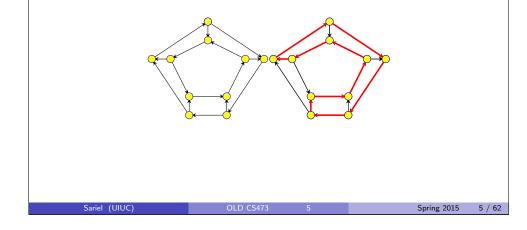
OLD

Spring 2015

Directed Hamiltonian Cycle

Input Given a directed graph G = (V, E) with *n* vertices

- Goal Does G have a Hamiltonian cycle?
 - A Hamiltonian cycle is a cycle in the graph that visits every vertex in *G* exactly once



Reduction

- **(**) Given **3SAT** formula φ create a graph G_{φ} such that
 - G_{φ} has a Hamiltonian cycle if and only if φ is satisfiable
 - G_φ should be constructible from φ by a polynomial time algorithm A
- **2** Notation: φ has *n* variables x_1, x_2, \ldots, x_n and *m* clauses C_1, C_2, \ldots, C_m .

Directed Hamiltonian Cycle is NP-Complete

- Directed Hamiltonian Cycle is in **NP**
 - Certificate: Sequence of vertices
 - Certifier: Check if every vertex (except the first) appears exactly once, and that consecutive vertices are connected by a directed edge
- Hardness: We will show 3-SAT < p Directed Hamiltonian Cycle

$3-3AT \leq p$ Direc			e	
Sariel (UIUC)	OLD CS473	6	Spring 2015	6 / 62

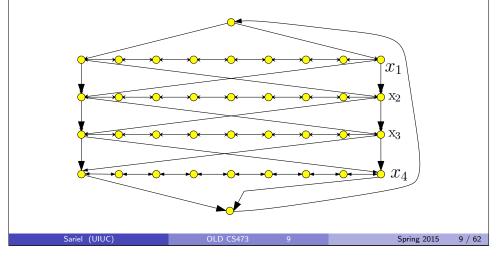
Reduction: First Ideas

- Viewing SAT: Assign values to *n* variables, and each clauses has 3 ways in which it can be satisfied.
- Construct graph with 2ⁿ Hamiltonian cycles, where each cycle corresponds to some boolean assignment.
- Then add more graph structure to encode constraints on assignments imposed by the clauses.

OLD CS47

The Reduction: Phase I

- Traverse path *i* from left to right iff *x_i* is set to true
- Each path has 3(m + 1) nodes where *m* is number of clauses in φ ; nodes numbered from left to right (1 to 3m + 3)



Correctness Proof

Proposition

arphi has a satisfying assignment iff $m{G}_{arphi}$ has a Hamiltonian cycle.

Proof.

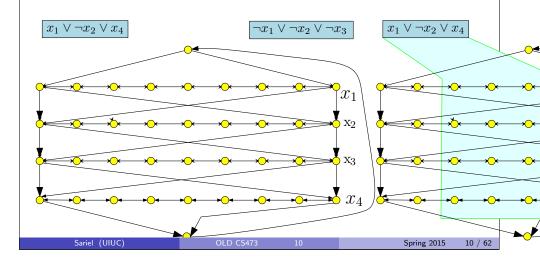
- \Rightarrow Let a be the satisfying assignment for $\varphi.$ Define Hamiltonian cycle as follows
 - If $a(x_i) = 1$ then traverse path *i* from left to right
 - If $a(x_i) = 0$ then traverse path *i* from right to left

OLD CS473

For each clause, path of at least one variable is in the "right" direction to splice in the node corresponding to clause

The Reduction: Phase II

Add vertex c_j for clause C_j. c_j has edge from vertex 3j and to vertex 3j + 1 on path i if x_i appears in clause C_j, and has edge from vertex 3j + 1 and to vertex 3j if ¬x_i appears in C_j.

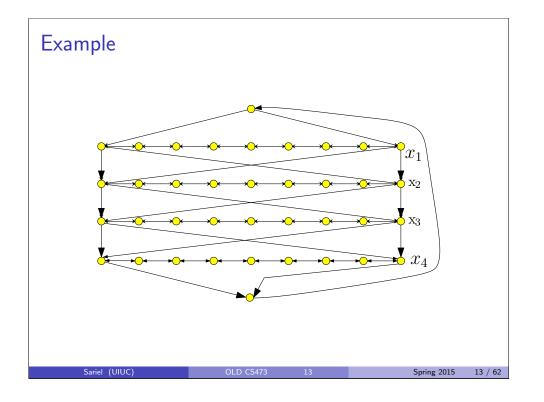


Hamiltonian Cycle \Rightarrow Satisfying assignment

Suppose Π is a Hamiltonian cycle in G_{φ}

- If Π enters c_j (vertex for clause C_j) from vertex 3j on path i then it must leave the clause vertex on edge to 3j + 1 on the same path i
 - If not, then only unvisited neighbor of 3j + 1 on path *i* is 3j + 2
 - Thus, we don't have two unvisited neighbors (one to enter from, and the other to leave) to have a Hamiltonian Cycle
- Similarly, if Π enters c_j from vertex 3j + 1 on path i then it must leave the clause vertex c_j on edge to 3j on path i

OLD CS47



Hamiltonian Cycle

Problem

- Input Given undirected graph G = (V, E)
- Goal Does *G* have a Hamiltonian cycle? That is, is there a cycle that visits every vertex exactly one (except start and end vertex)?

Hamiltonian Cycle \implies Satisfying assignment (contd)

- Thus, vertices visited immediately before and after *C_i* are connected by an edge
- We can remove c_j from cycle, and get Hamiltonian cycle in $\mathbf{G} \mathbf{c}_j$
- Consider Hamiltonian cycle in $G \{c_1, \ldots c_m\}$; it traverses each path in only one direction, which determines the truth assignment

NP-Completeness

Sariel (UIUC

Theorem

Hamiltonian cycle problem for undirected graphs is NP-Complete.

OLD CS47

Proof.

- The problem is in NP; proof left as exercise.
- Hardness proved by reducing Directed Hamiltonian Cycle to this problem

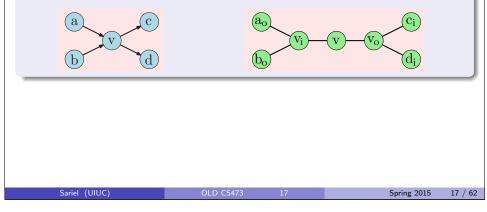
Spring 2015

Reduction Sketch

Goal: Given directed graph G, need to construct undirected graph G' such that G has Hamiltonian Path iff G' has Hamiltonian path

Reduction

- Replace each vertex v by 3 vertices: v_{in}, v, and v_{out}
- A directed edge (a, b) is replaced by edge (a_{out}, b_{in})



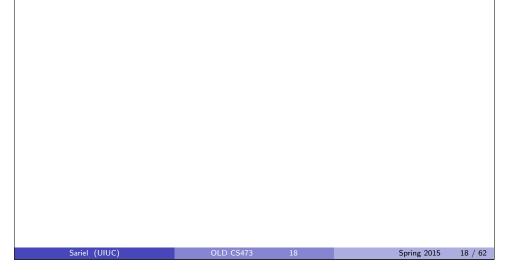
Graph Coloring

Problem: Graph Coloring

Instance: G = (V, E): Undirected graph, integer k. **Question:** Can the vertices of the graph be colored using k colors so that vertices connected by an edge do not get the same color?

Reduction: Wrapup

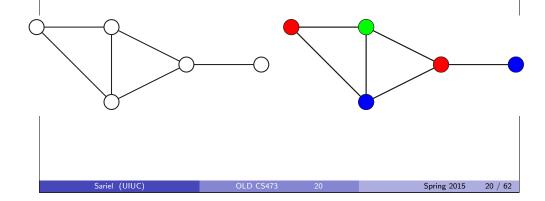
- The reduction is polynomial time (exercise)
- The reduction is correct (exercise)



Graph 3-Coloring

Problem: 3 Coloring

Instance: G = (V, E): Undirected graph. **Question:** Can the vertices of the graph be colored using **3** colors so that vertices connected by an edge do not get the same color?



Graph Coloring

- Observation: If G is colored with k colors then each color class (nodes of same color) form an independent set in G.
- G can be partitioned into k independent sets iff G is k-colorable.
- **③** Graph **2**-Coloring can be decided in polynomial time.
- G is 2-colorable iff G is bipartite!
- There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Class Room Scheduling

- Given n classes and their meeting times, are k rooms sufficient?
- **2** Reduce to Graph k-Coloring problem
- Create graph G
 - ► a node **v**_i for each class **i**
 - \blacktriangleright an edge between v_i and v_j if classes i and j conflict
- Second Se

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) \boldsymbol{k} registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

Sariel (11111C

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with *k* colors
- Moreover, 3-COLOR \leq_P k-Register Allocation, for any $k \geq 3$

Frequency Assignments in Cellular Networks

- Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT&T in USA)
 - Breakup a frequency range [a, b] into disjoint bands of frequencies [a₀, b₀], [a₁, b₁], ..., [a_k, b_k]
 - Each cell phone tower (simplifying) gets one band
 - Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
- Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?
- Solution Can reduce to k-coloring by creating intereference/conflict graph on towers.

Sariel (UIUC)

Spring 2015

21/6

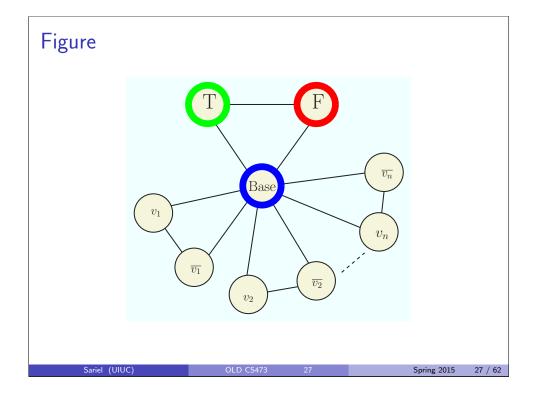
OLD CS47

Spring 2015

3-Coloring is **NP-Complete**

- 3-Coloring is in NP.
 - Certificate: for each node a color from $\{1, 2, 3\}$.
 - Certifier: Check if for each edge (u, v), the color of u is different from that of v.
- Hardness: We will show 3-SAT \leq_P 3-Coloring.

Sariel (UIUC)	OLD CS473	25	Spring 2015	25 / 62
	020 (3413	23	Spring 2013	23 / 02



Reduction Idea

- φ : Given **3SAT** formula (i.e., **3**CNF formula).
- - encode assignment x_1, \ldots, x_n in colors assigned nodes of G_{φ} .
 - create triangle with node True, False, Base

 - If graph is 3-colored, either v_i or v

 i gets the same color as True. Interpret this as a truth assignment to v_i

Spring 2015

26 / 62

 Need to add constraints to ensure clauses are satisfied (next phase)

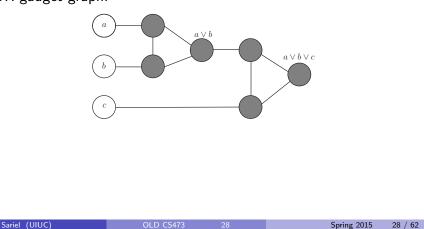
Clause Satisfiability Gadget

• For each clause $C_j = (a \lor b \lor c)$, create a small gadget graph

OLD CS47

- ▶ gadget graph connects to nodes corresponding to *a*, *b*, *c*
- needs to implement OR
- OR-gadget-graph:

Sariel (UIUC

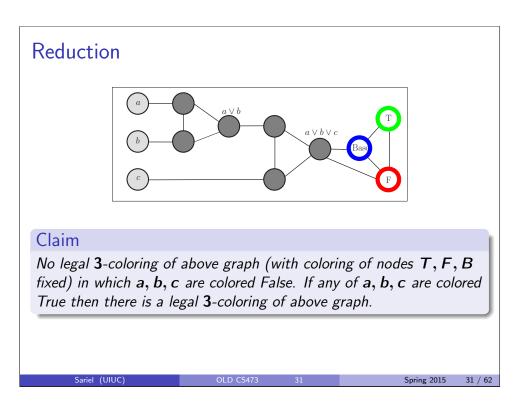


OR-Gadget Graph

Property: if a, b, c are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

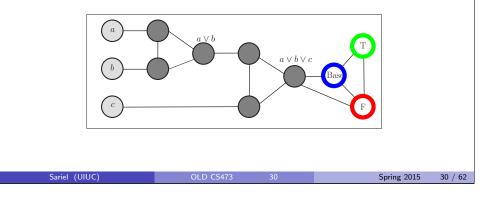
Property: if one of a, b, c is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

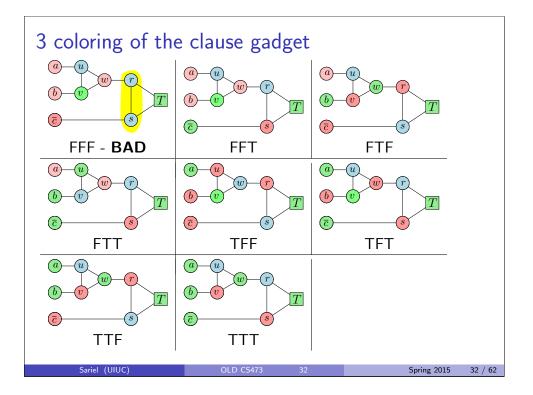
Sariel (UIUC)	OLD CS473	29	Spring 2015	29 / 62

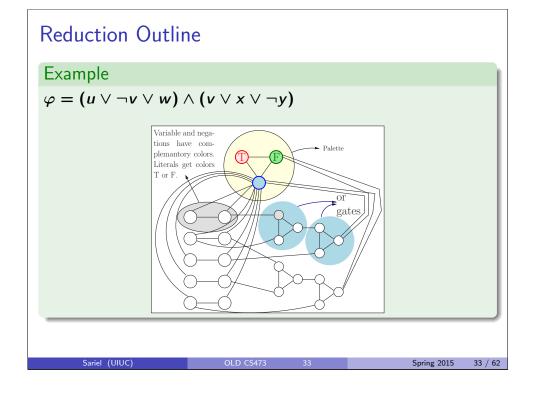


Reduction

- create triangle with nodes True, False, Base
- for each variable x_i two nodes v_i and \bar{v}_i connected in a triangle with common Base
- for each clause $C_j = (a \lor b \lor c)$, add OR-gadget graph with input nodes a, b, c and connect output node of gadget to both False and Base







<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Correctness of Reduction

- arphi is satisfiable implies ${\it G}_{arphi}$ is 3-colorable
 - if x_i is assigned True, color v_i True and \bar{v}_i False
 - for each clause $C_j = (a \lor b \lor c)$ at least one of a, b, c is colored True. OR-gadget for C_j can be 3-colored such that output is True.

 ${\it G}_{arphi}$ is 3-colorable implies arphi is satisfiable

- if v_i is colored True then set x_i to be True, this is a legal truth assignment
- consider any clause $C_j = (a \lor b \lor c)$. it cannot be that all a, b, c are False. If so, output of OR-gadget for C_j has to be colored False but output is connected to Base and False!

OLD CS473

Subset Sum

Sariel (UIUC

Problem: Subset Sum

Instance: S - set of positive integers, t: - an integer number (Target) Question: Is there a subset $X \subseteq S$ such that $\sum_{x \in X} x = t$?

Claim Subset Sum is NP-Complete.

Spring 2015

Vec Subset Sum

We will prove following problem is NP-Complete...

Problem: Vec Subset Sum

Instance: S - set of *n* vectors of dimension *k*, each vector has non-negative numbers for its coordinates, and a target vector \vec{t} . **Question:** Is there a subset $X \subseteq S$ such that $\sum_{\vec{x} \in X} \vec{x} = \vec{t}$?

Reduction from **3SAT**.

 Sariel (UIUC)
 OLD CS473
 37
 Spring 2015
 37 / 62

Handling a clause...

We will have a column for every clause...

numbers		$C \equiv a \lor b \lor \overline{c}$	
а		01	
ā		00	
b		01	
\overline{b}		00	
С		00	
ī		01	
C fix-up 1	000	07	000
C fix-up 2	000	08	000
C fix-up 3	000	09	000
TARGET		10	

Vec Subset Sum	Vec	Su	bset	Sum
----------------	-----	----	------	-----

Handling a single clause

Think about vectors as being lines in a table.

First gadget

Selecting between two lines.

Target	??	??	01	???
<i>a</i> ₁	??	??	01	??
a ₂	??	??	01	??

Sariel (UIUC)

Two rows for every variable x: selecting either x = 0 or x = 1.

3SAT to Vec Subset Sum

numbers	$a \lor \overline{a}$	$b \vee \overline{b}$	$c \vee \overline{c}$	$d \vee \overline{d}$	$D \equiv \overline{b} \lor c \lor \overline{d}$	$C \equiv a \lor b \lor \overline{c}$	
а	1	0	0	0	00	01	
a	1	0	0	0	00	00	1
Ь	0	1	0	0	00	01	
Б	0	1	0	0	01	00	
с	0	0	1	0	01	00	1
ī	0	0	1	0	00	01	1
d	0	0	0	1	00	00	
d	0	0	0	1	01	01	
C fix-up 1	0	0	0	0	00	07	1
C fix-up 2	0	0	0	0	00	08	1
C fix-up 3	0	0	0	0	00	09	
D fix-up 1	0	0	0	0	07	00	
D fix-up 2	0	0	0	0	08	00	
D fix-up 3	0	0	0	0	09	00	
TARGET	1	1	1	1	10	10	1

Spring 2015

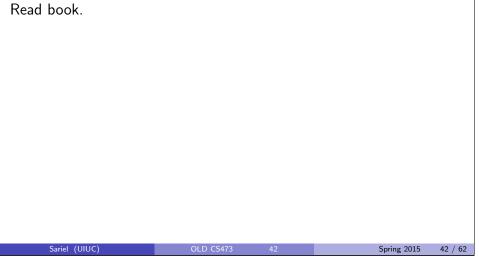
Vec Subset	Sum to Su	ıbset Su	m	
numbers				
01000000001				
01000000000				
000100000001				
000100000100				
000001000100				
000001000001				
00000010000				
00000010101				
00000000007				
00000000008				
00000000009				
00000000700				
00000000800				
00000000900				
010101011010				
Sariel (UIUC)	OLD CS473	41	Spring 2015	41 / 62

Need to Know NP-Complete Problems

- 3SAT.
- Circuit-SAT.
- Independent Set.
- Vertex Cover.
- Clique.
- Set Cover.
- Hamiltonian Cycle (in Directed/Undirected Graphs).
- 3Coloring.
- 3-D Matching.
- Subset Sum.

Other **NP-Complete** Problems

- 3-Dimensional Matching
- Subset Sum



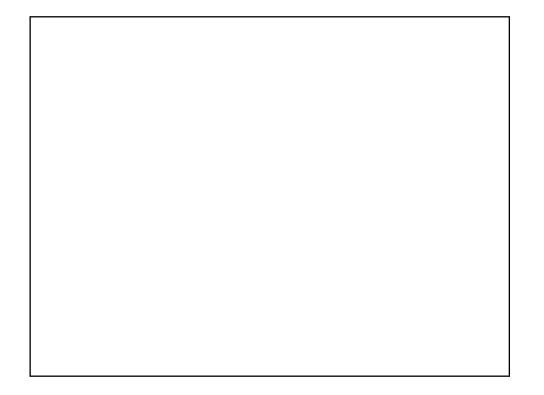
Subset Sum and Knapsack

- **1** Subset Sum Problem: Given n integers a_1, a_2, \ldots, a_n and a target B, is there a subset of S of $\{a_1, \ldots, a_n\}$ such that the numbers in **S** add up *precisely* to **B**?
- 2 Subset Sum is NP-Complete— see book.
- Similar Knapsack: Given n items with item i having size s_i and profit p_i , a knapsack of capacity B, and a target profit P, is there a subset S of items that can be packed in the knapsack and the profit of **S** is at least **P**?
- Show Knapsack problem is NP-Complete via reduction from Subset Sum (exercise).

Subset Sum and Knapsack

- Subset Sum can be solved in O(nB) time using dynamic programming (exercise).
- 2 Implies that problem is hard only when numbers a_1, a_2, \ldots, a_n are exponentially large compared to n. That is, each a_i requires polynomial in n bits.
- Number problems of the above type are said to be weakly NPComplete.

Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 62					
Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 62					
Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 62					
Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 62					
Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 62					
Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 62					
	Sariel (UIUC)	OLD CS473	45	Spring 2015	45 / 62



S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. *SIAM J. Comput.*, 5(4):691–703, 1976.

