
OLD CS 473: Fundamental Algorithms, Spring

2015

NP Completeness and
Cook-Levin Theorem
Lecture 23
April 21, 2015

Sariel (UIUC) OLD CS473 1 Spring 2015 1 / 44

23.1: NP

Sariel (UIUC) OLD CS473 2 Spring 2015 2 / 44

P and NP and Turing Machines

1 Polynomial vs. polynomial time verifiable...
1 P: set of decision problems that have polynomial time

algorithms.
2 NP: set of decision problems that have polynomial time

non-deterministic algorithms.

2 Question: What is an algorithm? Depends on the model of
computation!

3 What is our model of computation?

4 Formally speaking our model of computation is Turing Machines.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 44

P and NP and Turing Machines

1 Polynomial vs. polynomial time verifiable...
1 P: set of decision problems that have polynomial time

algorithms.
2 NP: set of decision problems that have polynomial time

non-deterministic algorithms.

2 Question: What is an algorithm? Depends on the model of
computation!

3 What is our model of computation?

4 Formally speaking our model of computation is Turing Machines.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 44

P and NP and Turing Machines

1 Polynomial vs. polynomial time verifiable...
1 P: set of decision problems that have polynomial time

algorithms.
2 NP: set of decision problems that have polynomial time

non-deterministic algorithms.

2 Question: What is an algorithm? Depends on the model of
computation!

3 What is our model of computation?

4 Formally speaking our model of computation is Turing Machines.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 44

P and NP and Turing Machines

1 Polynomial vs. polynomial time verifiable...
1 P: set of decision problems that have polynomial time

algorithms.
2 NP: set of decision problems that have polynomial time

non-deterministic algorithms.

2 Question: What is an algorithm? Depends on the model of
computation!

3 What is our model of computation?

4 Formally speaking our model of computation is Turing Machines.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 44

P and NP and Turing Machines

1 Polynomial vs. polynomial time verifiable...
1 P: set of decision problems that have polynomial time

algorithms.
2 NP: set of decision problems that have polynomial time

non-deterministic algorithms.

2 Question: What is an algorithm? Depends on the model of
computation!

3 What is our model of computation?

4 Formally speaking our model of computation is Turing Machines.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 44

P and NP and Turing Machines

1 Polynomial vs. polynomial time verifiable...
1 P: set of decision problems that have polynomial time

algorithms.
2 NP: set of decision problems that have polynomial time

non-deterministic algorithms.

2 Question: What is an algorithm? Depends on the model of
computation!

3 What is our model of computation?

4 Formally speaking our model of computation is Turing Machines.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 44

P and NP and Turing Machines

1 Polynomial vs. polynomial time verifiable...
1 P: set of decision problems that have polynomial time

algorithms.
2 NP: set of decision problems that have polynomial time

non-deterministic algorithms.

2 Question: What is an algorithm? Depends on the model of
computation!

3 What is our model of computation?

4 Formally speaking our model of computation is Turing Machines.

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 44

23.1.1: Turing machines

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 44

Turing Machines: Recap
Turing Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

1 Infinite tape.

2 Finite state control.

3 Input at beginning of tape.

4 Special tape letter “blank” ⊔.

5 Head can move only one cell to left or right.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 44

Turing Machines: Recap
Turing Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

1 Infinite tape.

2 Finite state control.

3 Input at beginning of tape.

4 Special tape letter “blank” ⊔.

5 Head can move only one cell to left or right.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 44

Turing Machines: Recap
Turing Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

1 Infinite tape.

2 Finite state control.

3 Input at beginning of tape.

4 Special tape letter “blank” ⊔.

5 Head can move only one cell to left or right.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 44

Turing Machines: Recap
Turing Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

1 Infinite tape.

2 Finite state control.

3 Input at beginning of tape.

4 Special tape letter “blank” ⊔.

5 Head can move only one cell to left or right.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 44

Turing Machines: Recap
Turing Machines

X1 X2 · · · Xn ! !

finite-state
control

tape

head

Unrestricted memory: an infinite tape
A finite state machine that reads/writes symbols on the tape
Can read/write anywhere on the tape
Tape is infinite in one direction only (other variants possible)

Initially, tape has input and the machine is reading (i.e., tape
head is on) the leftmost input symbol.
Transition (based on current state and symbol under head):

Change control state
Overwrite a new symbol on the tape cell under the head
Move the head left, or right.

Prabhakaran-Viswanathan CS373

1 Infinite tape.

2 Finite state control.

3 Input at beginning of tape.

4 Special tape letter “blank” ⊔.

5 Head can move only one cell to left or right.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 44

Turing Machines: Formally

1 A TM M = (Q,Σ, Γ, δ, q0, qaccept, qreject):
1 Q is set of states in finite control
2 q0 start state, qaccept is accept state, qreject is reject state
3 Σ is input alphabet, Γ is tape alphabet (includes ⊔)
4 δ : Q × Γ → {L,R} × Γ × Q is transition function

1 δ(q, a) = (q′, b, L) means that M in state q and head seeing
a on tape will move to state q′ while replacing a on tape with b
and head moves left.

2 L(M): language accepted by M is set of all input strings s on
which M accepts; that is:

1 TM is started in state q0.
2 Initially, the tape head is located at the first cell.
3 The tape contain s on the tape followed by blanks.
4 The TM halts in the state qaccept .

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 44

Turing Machines: Formally

1 A TM M = (Q,Σ, Γ, δ, q0, qaccept, qreject):
1 Q is set of states in finite control
2 q0 start state, qaccept is accept state, qreject is reject state
3 Σ is input alphabet, Γ is tape alphabet (includes ⊔)
4 δ : Q × Γ → {L,R} × Γ × Q is transition function

1 δ(q, a) = (q′, b, L) means that M in state q and head seeing
a on tape will move to state q′ while replacing a on tape with b
and head moves left.

2 L(M): language accepted by M is set of all input strings s on
which M accepts; that is:

1 TM is started in state q0.
2 Initially, the tape head is located at the first cell.
3 The tape contain s on the tape followed by blanks.
4 The TM halts in the state qaccept .

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 44

Turing Machines: Formally

1 A TM M = (Q,Σ, Γ, δ, q0, qaccept, qreject):
1 Q is set of states in finite control
2 q0 start state, qaccept is accept state, qreject is reject state
3 Σ is input alphabet, Γ is tape alphabet (includes ⊔)
4 δ : Q × Γ → {L,R} × Γ × Q is transition function

1 δ(q, a) = (q′, b, L) means that M in state q and head seeing
a on tape will move to state q′ while replacing a on tape with b
and head moves left.

2 L(M): language accepted by M is set of all input strings s on
which M accepts; that is:

1 TM is started in state q0.
2 Initially, the tape head is located at the first cell.
3 The tape contain s on the tape followed by blanks.
4 The TM halts in the state qaccept .

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 44

Turing Machines: Formally

1 A TM M = (Q,Σ, Γ, δ, q0, qaccept, qreject):
1 Q is set of states in finite control
2 q0 start state, qaccept is accept state, qreject is reject state
3 Σ is input alphabet, Γ is tape alphabet (includes ⊔)
4 δ : Q × Γ → {L,R} × Γ × Q is transition function

1 δ(q, a) = (q′, b, L) means that M in state q and head seeing
a on tape will move to state q′ while replacing a on tape with b
and head moves left.

2 L(M): language accepted by M is set of all input strings s on
which M accepts; that is:

1 TM is started in state q0.
2 Initially, the tape head is located at the first cell.
3 The tape contain s on the tape followed by blanks.
4 The TM halts in the state qaccept .

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 44

Turing Machines: Formally

1 A TM M = (Q,Σ, Γ, δ, q0, qaccept, qreject):
1 Q is set of states in finite control
2 q0 start state, qaccept is accept state, qreject is reject state
3 Σ is input alphabet, Γ is tape alphabet (includes ⊔)
4 δ : Q × Γ → {L,R} × Γ × Q is transition function

1 δ(q, a) = (q′, b, L) means that M in state q and head seeing
a on tape will move to state q′ while replacing a on tape with b
and head moves left.

2 L(M): language accepted by M is set of all input strings s on
which M accepts; that is:

1 TM is started in state q0.
2 Initially, the tape head is located at the first cell.
3 The tape contain s on the tape followed by blanks.
4 The TM halts in the state qaccept .

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 44

Turing Machines: Formally

1 A TM M = (Q,Σ, Γ, δ, q0, qaccept, qreject):
1 Q is set of states in finite control
2 q0 start state, qaccept is accept state, qreject is reject state
3 Σ is input alphabet, Γ is tape alphabet (includes ⊔)
4 δ : Q × Γ → {L,R} × Γ × Q is transition function

1 δ(q, a) = (q′, b, L) means that M in state q and head seeing
a on tape will move to state q′ while replacing a on tape with b
and head moves left.

2 L(M): language accepted by M is set of all input strings s on
which M accepts; that is:

1 TM is started in state q0.
2 Initially, the tape head is located at the first cell.
3 The tape contain s on the tape followed by blanks.
4 The TM halts in the state qaccept .

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 44

Turing Machines: Formally

1 A TM M = (Q,Σ, Γ, δ, q0, qaccept, qreject):
1 Q is set of states in finite control
2 q0 start state, qaccept is accept state, qreject is reject state
3 Σ is input alphabet, Γ is tape alphabet (includes ⊔)
4 δ : Q × Γ → {L,R} × Γ × Q is transition function

1 δ(q, a) = (q′, b, L) means that M in state q and head seeing
a on tape will move to state q′ while replacing a on tape with b
and head moves left.

2 L(M): language accepted by M is set of all input strings s on
which M accepts; that is:

1 TM is started in state q0.
2 Initially, the tape head is located at the first cell.
3 The tape contain s on the tape followed by blanks.
4 The TM halts in the state qaccept .

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 44

P via TMs

1 Polynomial time Turing machine.

Definition
M is a polynomial time TM if there is some polynomial p(·) such
that on all inputs w , M halts in p(|w |) steps.

2 Polynomial time language.

Definition
L is a language in P iff there is a polynomial time TM M such that
L = L(M).

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 44

P via TMs

1 Polynomial time Turing machine.

Definition
M is a polynomial time TM if there is some polynomial p(·) such
that on all inputs w , M halts in p(|w |) steps.

2 Polynomial time language.

Definition
L is a language in P iff there is a polynomial time TM M such that
L = L(M).

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 44

P via TMs

1 Polynomial time Turing machine.

Definition
M is a polynomial time TM if there is some polynomial p(·) such
that on all inputs w , M halts in p(|w |) steps.

2 Polynomial time language.

Definition
L is a language in P iff there is a polynomial time TM M such that
L = L(M).

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 44

NP via TMs

1 NP language...

Definition
L is an NP language iff there is a non-deterministic polynomial time
TM M such that L = L(M).

2 Non-deterministic TM: each step has a choice of moves
1 δ : Q × Γ → P(Q × Γ × {L,R}).

1 Example: δ(q, a) = {(q1, b, L), (q2, c,R), (q3, a,R)} means
that M can non-deterministically choose one of the three
possible moves from (q, a).

2 L(M): set of all strings s on which there exists some sequence
of valid choices at each step that lead from q0 to qaccept

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 44

NP via TMs

1 NP language...

Definition
L is an NP language iff there is a non-deterministic polynomial time
TM M such that L = L(M).

2 Non-deterministic TM: each step has a choice of moves
1 δ : Q × Γ → P(Q × Γ × {L,R}).

1 Example: δ(q, a) = {(q1, b, L), (q2, c,R), (q3, a,R)} means
that M can non-deterministically choose one of the three
possible moves from (q, a).

2 L(M): set of all strings s on which there exists some sequence
of valid choices at each step that lead from q0 to qaccept

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 44

NP via TMs

1 NP language...

Definition
L is an NP language iff there is a non-deterministic polynomial time
TM M such that L = L(M).

2 Non-deterministic TM: each step has a choice of moves
1 δ : Q × Γ → P(Q × Γ × {L,R}).

1 Example: δ(q, a) = {(q1, b, L), (q2, c,R), (q3, a,R)} means
that M can non-deterministically choose one of the three
possible moves from (q, a).

2 L(M): set of all strings s on which there exists some sequence
of valid choices at each step that lead from q0 to qaccept

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 44

NP via TMs

1 NP language...

Definition
L is an NP language iff there is a non-deterministic polynomial time
TM M such that L = L(M).

2 Non-deterministic TM: each step has a choice of moves
1 δ : Q × Γ → P(Q × Γ × {L,R}).

1 Example: δ(q, a) = {(q1, b, L), (q2, c,R), (q3, a,R)} means
that M can non-deterministically choose one of the three
possible moves from (q, a).

2 L(M): set of all strings s on which there exists some sequence
of valid choices at each step that lead from q0 to qaccept

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 44

NP via TMs

1 NP language...

Definition
L is an NP language iff there is a non-deterministic polynomial time
TM M such that L = L(M).

2 Non-deterministic TM: each step has a choice of moves
1 δ : Q × Γ → P(Q × Γ × {L,R}).

1 Example: δ(q, a) = {(q1, b, L), (q2, c,R), (q3, a,R)} means
that M can non-deterministically choose one of the three
possible moves from (q, a).

2 L(M): set of all strings s on which there exists some sequence
of valid choices at each step that lead from q0 to qaccept

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 44

Non-deterministic TMs vs certifiers

1 Two definition of NP:
1 L is in NP iff L has a polynomial time certifier C(·, ·).
2 L is in NP iff L is decided by a non-deterministic polynomial

time TM M .

2 Equivalence...

Claim
Two definitions are equivalent.

3 Why?
4 Informal proof idea: the certificate t for C corresponds to

non-deterministic choices of M and vice-versa.
5 In other words L is in NP iff L is accepted by a NTM which

first guesses a proof t of length poly in input |s| and then acts
as a deterministic TM.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 44

Non-deterministic TMs vs certifiers

1 Two definition of NP:
1 L is in NP iff L has a polynomial time certifier C(·, ·).
2 L is in NP iff L is decided by a non-deterministic polynomial

time TM M .

2 Equivalence...

Claim
Two definitions are equivalent.

3 Why?
4 Informal proof idea: the certificate t for C corresponds to

non-deterministic choices of M and vice-versa.
5 In other words L is in NP iff L is accepted by a NTM which

first guesses a proof t of length poly in input |s| and then acts
as a deterministic TM.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 44

Non-deterministic TMs vs certifiers

1 Two definition of NP:
1 L is in NP iff L has a polynomial time certifier C(·, ·).
2 L is in NP iff L is decided by a non-deterministic polynomial

time TM M .

2 Equivalence...

Claim
Two definitions are equivalent.

3 Why?
4 Informal proof idea: the certificate t for C corresponds to

non-deterministic choices of M and vice-versa.
5 In other words L is in NP iff L is accepted by a NTM which

first guesses a proof t of length poly in input |s| and then acts
as a deterministic TM.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 44

Non-deterministic TMs vs certifiers

1 Two definition of NP:
1 L is in NP iff L has a polynomial time certifier C(·, ·).
2 L is in NP iff L is decided by a non-deterministic polynomial

time TM M .

2 Equivalence...

Claim
Two definitions are equivalent.

3 Why?
4 Informal proof idea: the certificate t for C corresponds to

non-deterministic choices of M and vice-versa.
5 In other words L is in NP iff L is accepted by a NTM which

first guesses a proof t of length poly in input |s| and then acts
as a deterministic TM.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 44

Non-deterministic TMs vs certifiers

1 Two definition of NP:
1 L is in NP iff L has a polynomial time certifier C(·, ·).
2 L is in NP iff L is decided by a non-deterministic polynomial

time TM M .

2 Equivalence...

Claim
Two definitions are equivalent.

3 Why?
4 Informal proof idea: the certificate t for C corresponds to

non-deterministic choices of M and vice-versa.
5 In other words L is in NP iff L is accepted by a NTM which

first guesses a proof t of length poly in input |s| and then acts
as a deterministic TM.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 44

Non-deterministic TMs vs certifiers

1 Two definition of NP:
1 L is in NP iff L has a polynomial time certifier C(·, ·).
2 L is in NP iff L is decided by a non-deterministic polynomial

time TM M .

2 Equivalence...

Claim
Two definitions are equivalent.

3 Why?
4 Informal proof idea: the certificate t for C corresponds to

non-deterministic choices of M and vice-versa.
5 In other words L is in NP iff L is accepted by a NTM which

first guesses a proof t of length poly in input |s| and then acts
as a deterministic TM.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 44

Non-deterministic TMs vs certifiers

1 Two definition of NP:
1 L is in NP iff L has a polynomial time certifier C(·, ·).
2 L is in NP iff L is decided by a non-deterministic polynomial

time TM M .

2 Equivalence...

Claim
Two definitions are equivalent.

3 Why?
4 Informal proof idea: the certificate t for C corresponds to

non-deterministic choices of M and vice-versa.
5 In other words L is in NP iff L is accepted by a NTM which

first guesses a proof t of length poly in input |s| and then acts
as a deterministic TM.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 44

Non-deterministic TMs vs certifiers

1 Two definition of NP:
1 L is in NP iff L has a polynomial time certifier C(·, ·).
2 L is in NP iff L is decided by a non-deterministic polynomial

time TM M .

2 Equivalence...

Claim
Two definitions are equivalent.

3 Why?
4 Informal proof idea: the certificate t for C corresponds to

non-deterministic choices of M and vice-versa.
5 In other words L is in NP iff L is accepted by a NTM which

first guesses a proof t of length poly in input |s| and then acts
as a deterministic TM.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 44

Non-determinism, guessing and verification

1 A non-deterministic machine has choices at each step and
accepts a string if there exists a set of choices which lead to a
final state.

2 Equivalently the choices can be thought of as guessing a solution
and then verifying that solution. In this view all the choices are
made a priori and hence the verification can be deterministic.
The “guess” is the “proof” and the “verifier” is the “certifier”.

3 Note: Symmetry inherent in the definition of non-determinism.
Strings in the language can be easily verified. No easy way to
verify that a string is not in the language.

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 44

Non-determinism, guessing and verification

1 A non-deterministic machine has choices at each step and
accepts a string if there exists a set of choices which lead to a
final state.

2 Equivalently the choices can be thought of as guessing a solution
and then verifying that solution. In this view all the choices are
made a priori and hence the verification can be deterministic.
The “guess” is the “proof” and the “verifier” is the “certifier”.

3 Note: Symmetry inherent in the definition of non-determinism.
Strings in the language can be easily verified. No easy way to
verify that a string is not in the language.

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 44

Non-determinism, guessing and verification

1 A non-deterministic machine has choices at each step and
accepts a string if there exists a set of choices which lead to a
final state.

2 Equivalently the choices can be thought of as guessing a solution
and then verifying that solution. In this view all the choices are
made a priori and hence the verification can be deterministic.
The “guess” is the “proof” and the “verifier” is the “certifier”.

3 Note: Symmetry inherent in the definition of non-determinism.
Strings in the language can be easily verified. No easy way to
verify that a string is not in the language.

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 44

Algorithms: TMs vs RAM Model

1 Why do we use TMs some times and RAM Model other times?
2 TMs are very simple: no complicated instruction set, no

jumps/pointers, no explicit loops etc.
1 Simplicity is useful in proofs.
2 The “right” formal bare-bones model when dealing with

subtleties.

3 RAM model is a closer approximation to the running
time/space usage of realistic computers for reasonable problem
sizes

1 Not appropriate for certain kinds of formal proofs when
algorithms can take super-polynomial time and space

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 44

Algorithms: TMs vs RAM Model

1 Why do we use TMs some times and RAM Model other times?
2 TMs are very simple: no complicated instruction set, no

jumps/pointers, no explicit loops etc.
1 Simplicity is useful in proofs.
2 The “right” formal bare-bones model when dealing with

subtleties.

3 RAM model is a closer approximation to the running
time/space usage of realistic computers for reasonable problem
sizes

1 Not appropriate for certain kinds of formal proofs when
algorithms can take super-polynomial time and space

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 44

Algorithms: TMs vs RAM Model

1 Why do we use TMs some times and RAM Model other times?
2 TMs are very simple: no complicated instruction set, no

jumps/pointers, no explicit loops etc.
1 Simplicity is useful in proofs.
2 The “right” formal bare-bones model when dealing with

subtleties.

3 RAM model is a closer approximation to the running
time/space usage of realistic computers for reasonable problem
sizes

1 Not appropriate for certain kinds of formal proofs when
algorithms can take super-polynomial time and space

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 44

Algorithms: TMs vs RAM Model

1 Why do we use TMs some times and RAM Model other times?
2 TMs are very simple: no complicated instruction set, no

jumps/pointers, no explicit loops etc.
1 Simplicity is useful in proofs.
2 The “right” formal bare-bones model when dealing with

subtleties.

3 RAM model is a closer approximation to the running
time/space usage of realistic computers for reasonable problem
sizes

1 Not appropriate for certain kinds of formal proofs when
algorithms can take super-polynomial time and space

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 44

23.2: Cook-Levin Theorem

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 44

23.2.1: Completeness

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 44

“Hardest” Problems

1

Question
What is the hardest problem in NP? How do we
define it?

2 Towards a definition
1 Hardest problem must be in NP.
2 Hardest problem must be at least as “difficult” as every other

problem in NP.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 44

“Hardest” Problems

1

Question
What is the hardest problem in NP? How do we
define it?

2 Towards a definition
1 Hardest problem must be in NP.
2 Hardest problem must be at least as “difficult” as every other

problem in NP.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 44

“Hardest” Problems

1

Question
What is the hardest problem in NP? How do we
define it?

2 Towards a definition
1 Hardest problem must be in NP.
2 Hardest problem must be at least as “difficult” as every other

problem in NP.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 44

“Hardest” Problems

1

Question
What is the hardest problem in NP? How do we
define it?

2 Towards a definition
1 Hardest problem must be in NP.
2 Hardest problem must be at least as “difficult” as every other

problem in NP.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 44

“Hardest” Problems

1

Question
What is the hardest problem in NP? How do we
define it?

2 Towards a definition
1 Hardest problem must be in NP.
2 Hardest problem must be at least as “difficult” as every other

problem in NP.

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 44

NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 (Hardness) For any Y ∈ NP, Y ≤P X.

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 44

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 44

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 44

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 44

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 44

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 44

Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 44

NP-Hard Problems

1 NP-Hard problems:

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

2 An NP-Hard problem need not be in NP!

3 Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 44

NP-Hard Problems

1 NP-Hard problems:

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

2 An NP-Hard problem need not be in NP!

3 Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 44

NP-Hard Problems

1 NP-Hard problems:

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

2 An NP-Hard problem need not be in NP!

3 Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 44

NP-Hard Problems

1 NP-Hard problems:

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

2 An NP-Hard problem need not be in NP!

3 Example: Halting problem is NP-Hard (why?) but not
NP-Complete.

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 44

Consequences of proving NP-Completeness

1 If X is NP-Complete
1 Since we believe P ̸= NP,
2 and solving X implies P = NP.

2 =⇒ X is unlikely to be efficiently solvable.

3 =⇒ At the very least, many smart people before you have
failed to find an efficient algorithm for X .

4 (This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 44

Consequences of proving NP-Completeness

1 If X is NP-Complete
1 Since we believe P ̸= NP,
2 and solving X implies P = NP.

2 =⇒ X is unlikely to be efficiently solvable.

3 =⇒ At the very least, many smart people before you have
failed to find an efficient algorithm for X .

4 (This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 44

Consequences of proving NP-Completeness

1 If X is NP-Complete
1 Since we believe P ̸= NP,
2 and solving X implies P = NP.

2 =⇒ X is unlikely to be efficiently solvable.

3 =⇒ At the very least, many smart people before you have
failed to find an efficient algorithm for X .

4 (This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 44

Consequences of proving NP-Completeness

1 If X is NP-Complete
1 Since we believe P ̸= NP,
2 and solving X implies P = NP.

2 =⇒ X is unlikely to be efficiently solvable.

3 =⇒ At the very least, many smart people before you have
failed to find an efficient algorithm for X .

4 (This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 44

Consequences of proving NP-Completeness

1 If X is NP-Complete
1 Since we believe P ̸= NP,
2 and solving X implies P = NP.

2 =⇒ X is unlikely to be efficiently solvable.

3 =⇒ At the very least, many smart people before you have
failed to find an efficient algorithm for X .

4 (This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 44

Consequences of proving NP-Completeness

1 If X is NP-Complete
1 Since we believe P ̸= NP,
2 and solving X implies P = NP.

2 =⇒ X is unlikely to be efficiently solvable.

3 =⇒ At the very least, many smart people before you have
failed to find an efficient algorithm for X .

4 (This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 44

Consequences of proving NP-Completeness

1 If X is NP-Complete
1 Since we believe P ̸= NP,
2 and solving X implies P = NP.

2 =⇒ X is unlikely to be efficiently solvable.

3 =⇒ At the very least, many smart people before you have
failed to find an efficient algorithm for X .

4 (This is proof by mob opinion — take with a grain of salt.)

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 44

23.2.2: Preliminaries

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 44

NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 44

Circuits

Definition
A circuit is a directed acyclic graph with

1 ? ? 0 ?

∧ ∨ ∨

¬ ∧

Inputs:

Output: ∧ 1 Input vertices (without
incoming edges) labelled with
0, 1 or a distinct variable.

2 Every other vertex is labelled
∨, ∧ or ¬.

3 Single node output vertex
with no outgoing edges.

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 44

23.2.3: Cook-Levin Theorem

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 44

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)
Given a circuit as input, is there an assignment to the input variables
that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT is NP-Complete.

Need to show

1 CSAT is in NP.

2 every NP problem X reduces to CSAT.

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 44

CSAT: Circuit Satisfaction

Claim
CSAT is in NP.

1 Certificate: Assignment to input variables.

2 Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 44

CSAT: Circuit Satisfaction

Claim
CSAT is in NP.

1 Certificate: Assignment to input variables.

2 Certifier: Evaluate the value of each gate in a topological sort of
DAG and check the output gate value.

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 44

CSAT is NP-hard: Idea

1 Need to show that every NP problem X reduces to CSAT.

2 What does it mean that X ∈ NP?
3 X ∈ NP implies that there are polynomials p() and q() and

certifier/verifier program C such that for every string s the
following is true:

1 If s is a YES instance (s ∈ X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

2 If s is a NO instance (s ̸∈ X) then for every string t of length
at p(|s|), C(s, t) says NO.

3 C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 44

CSAT is NP-hard: Idea

1 Need to show that every NP problem X reduces to CSAT.

2 What does it mean that X ∈ NP?
3 X ∈ NP implies that there are polynomials p() and q() and

certifier/verifier program C such that for every string s the
following is true:

1 If s is a YES instance (s ∈ X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

2 If s is a NO instance (s ̸∈ X) then for every string t of length
at p(|s|), C(s, t) says NO.

3 C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 44

CSAT is NP-hard: Idea

1 Need to show that every NP problem X reduces to CSAT.

2 What does it mean that X ∈ NP?
3 X ∈ NP implies that there are polynomials p() and q() and

certifier/verifier program C such that for every string s the
following is true:

1 If s is a YES instance (s ∈ X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

2 If s is a NO instance (s ̸∈ X) then for every string t of length
at p(|s|), C(s, t) says NO.

3 C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 44

CSAT is NP-hard: Idea

1 Need to show that every NP problem X reduces to CSAT.

2 What does it mean that X ∈ NP?
3 X ∈ NP implies that there are polynomials p() and q() and

certifier/verifier program C such that for every string s the
following is true:

1 If s is a YES instance (s ∈ X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

2 If s is a NO instance (s ̸∈ X) then for every string t of length
at p(|s|), C(s, t) says NO.

3 C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 44

CSAT is NP-hard: Idea

1 Need to show that every NP problem X reduces to CSAT.

2 What does it mean that X ∈ NP?
3 X ∈ NP implies that there are polynomials p() and q() and

certifier/verifier program C such that for every string s the
following is true:

1 If s is a YES instance (s ∈ X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

2 If s is a NO instance (s ̸∈ X) then for every string t of length
at p(|s|), C(s, t) says NO.

3 C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 44

CSAT is NP-hard: Idea

1 Need to show that every NP problem X reduces to CSAT.

2 What does it mean that X ∈ NP?
3 X ∈ NP implies that there are polynomials p() and q() and

certifier/verifier program C such that for every string s the
following is true:

1 If s is a YES instance (s ∈ X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

2 If s is a NO instance (s ̸∈ X) then for every string t of length
at p(|s|), C(s, t) says NO.

3 C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 44

CSAT is NP-hard: Idea

1 Need to show that every NP problem X reduces to CSAT.

2 What does it mean that X ∈ NP?
3 X ∈ NP implies that there are polynomials p() and q() and

certifier/verifier program C such that for every string s the
following is true:

1 If s is a YES instance (s ∈ X) then there is a proof t of length
p(|s|) such that C(s, t) says YES.

2 If s is a NO instance (s ̸∈ X) then for every string t of length
at p(|s|), C(s, t) says NO.

3 C(s, t) runs in time q(|s|+ |t|) time (hence polynomial time).

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 44

Reducing X to CSAT

1 X is in NP means we have access to p(), q(),C(·, ·).
2 What is C(·, ·)? It is a program or equivalently a Turing

Machine!

3 How are p() and q() given? As numbers (coefficients and
powers).

4 Example: if 3 is given then p(n) = n3.

5 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or a TM.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 44

Reducing X to CSAT

1 X is in NP means we have access to p(), q(),C(·, ·).
2 What is C(·, ·)? It is a program or equivalently a Turing

Machine!

3 How are p() and q() given? As numbers (coefficients and
powers).

4 Example: if 3 is given then p(n) = n3.

5 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or a TM.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 44

Reducing X to CSAT

1 X is in NP means we have access to p(), q(),C(·, ·).
2 What is C(·, ·)? It is a program or equivalently a Turing

Machine!

3 How are p() and q() given? As numbers (coefficients and
powers).

4 Example: if 3 is given then p(n) = n3.

5 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or a TM.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 44

Reducing X to CSAT

1 X is in NP means we have access to p(), q(),C(·, ·).
2 What is C(·, ·)? It is a program or equivalently a Turing

Machine!

3 How are p() and q() given? As numbers (coefficients and
powers).

4 Example: if 3 is given then p(n) = n3.

5 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or a TM.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 44

Reducing X to CSAT

1 X is in NP means we have access to p(), q(),C(·, ·).
2 What is C(·, ·)? It is a program or equivalently a Turing

Machine!

3 How are p() and q() given? As numbers (coefficients and
powers).

4 Example: if 3 is given then p(n) = n3.

5 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or a TM.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 44

Reducing X to CSAT

1 X is in NP means we have access to p(), q(),C(·, ·).
2 What is C(·, ·)? It is a program or equivalently a Turing

Machine!

3 How are p() and q() given? As numbers (coefficients and
powers).

4 Example: if 3 is given then p(n) = n3.

5 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or a TM.

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 44

Reducing X to CSAT

1 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or TM.

2 Problem X: Given string s, is s ∈ X?

3 Same as the following: is there a proof t of length p(|s|) such
that C(s, t) says YES.

4 How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial

time in |s| (note that ⟨p, q,C⟩ are fixed).
2 G is satisfiable if and only if there is a proof t such that

C(s, t) says YES.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 44

Reducing X to CSAT

1 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or TM.

2 Problem X: Given string s, is s ∈ X?

3 Same as the following: is there a proof t of length p(|s|) such
that C(s, t) says YES.

4 How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial

time in |s| (note that ⟨p, q,C⟩ are fixed).
2 G is satisfiable if and only if there is a proof t such that

C(s, t) says YES.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 44

Reducing X to CSAT

1 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or TM.

2 Problem X: Given string s, is s ∈ X?

3 Same as the following: is there a proof t of length p(|s|) such
that C(s, t) says YES.

4 How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial

time in |s| (note that ⟨p, q,C⟩ are fixed).
2 G is satisfiable if and only if there is a proof t such that

C(s, t) says YES.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 44

Reducing X to CSAT

1 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or TM.

2 Problem X: Given string s, is s ∈ X?

3 Same as the following: is there a proof t of length p(|s|) such
that C(s, t) says YES.

4 How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial

time in |s| (note that ⟨p, q,C⟩ are fixed).
2 G is satisfiable if and only if there is a proof t such that

C(s, t) says YES.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 44

Reducing X to CSAT

1 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or TM.

2 Problem X: Given string s, is s ∈ X?

3 Same as the following: is there a proof t of length p(|s|) such
that C(s, t) says YES.

4 How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial

time in |s| (note that ⟨p, q,C⟩ are fixed).
2 G is satisfiable if and only if there is a proof t such that

C(s, t) says YES.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 44

Reducing X to CSAT

1 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or TM.

2 Problem X: Given string s, is s ∈ X?

3 Same as the following: is there a proof t of length p(|s|) such
that C(s, t) says YES.

4 How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial

time in |s| (note that ⟨p, q,C⟩ are fixed).
2 G is satisfiable if and only if there is a proof t such that

C(s, t) says YES.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 44

Reducing X to CSAT

1 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or TM.

2 Problem X: Given string s, is s ∈ X?

3 Same as the following: is there a proof t of length p(|s|) such
that C(s, t) says YES.

4 How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial

time in |s| (note that ⟨p, q,C⟩ are fixed).
2 G is satisfiable if and only if there is a proof t such that

C(s, t) says YES.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 44

Reducing X to CSAT

1 Thus an NP problem is essentially a three tuple ⟨p, q,C⟩
where C is either a program or TM.

2 Problem X: Given string s, is s ∈ X?

3 Same as the following: is there a proof t of length p(|s|) such
that C(s, t) says YES.

4 How do we reduce X to CSAT? Need an algorithm A that
1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial

time in |s| (note that ⟨p, q,C⟩ are fixed).
2 G is satisfiable if and only if there is a proof t such that

C(s, t) says YES.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Reducing X to CSAT

1 How do we reduce X to CSAT?
2 Need an algorithm A that

1 takes s (and ⟨p, q,C⟩) and creates a circuit G in polynomial
time in |s| (note that ⟨p, q,C⟩ are fixed).

2 G is satisfiable if and only if there is a proof t such that
C(s, t) says YES

3 Simple but Big Idea: Programs are essentially the same as
Circuits!

1 Convert C(s, t) into a circuit G with t as unknown inputs (rest
is known including s)

2 We know that |t| = p(|s|) so express boolean string t as
p(|s|) variables t1, t2, . . . , tk where k = p(|s|).

3 Asking if there is a proof t that makes C(s, t) say YES is same
as whether there is an assignment of values to “unknown”
variables t1, t2, . . . , tk that will make G evaluate to true/YES.

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 44

Example: Independent Set

1 Problem: Does G = (V ,E) have an Independent Set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

2 Formally, why is Independent Set in NP?

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 44

Example: Independent Set

1 Problem: Does G = (V ,E) have an Independent Set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.

2 Formally, why is Independent Set in NP?

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 44

Example: Independent Set

Formally why is Independent Set in NP?
1 Input: <

n, y1,1, y1,2, . . . , y1,n, y2,1, . . . , y2,n, . . . , yn,1, . . . , yn,n, k >
encodes < G , k >.

1 n is number of vertices in G
2 yi ,j is a bit which is 1 if edge (i , j) is in G and 0 otherwise

(adjacency matrix representation)
3 k is size of independent set.

2 Certificate: t = t1t2 . . . tn. Interpretation is that ti is 1 if
vertex i is in the independent set, 0 otherwise.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 44

Example: Independent Set

Formally why is Independent Set in NP?
1 Input: <

n, y1,1, y1,2, . . . , y1,n, y2,1, . . . , y2,n, . . . , yn,1, . . . , yn,n, k >
encodes < G , k >.

1 n is number of vertices in G
2 yi ,j is a bit which is 1 if edge (i , j) is in G and 0 otherwise

(adjacency matrix representation)
3 k is size of independent set.

2 Certificate: t = t1t2 . . . tn. Interpretation is that ti is 1 if
vertex i is in the independent set, 0 otherwise.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 44

Example: Independent Set

Formally why is Independent Set in NP?
1 Input: <

n, y1,1, y1,2, . . . , y1,n, y2,1, . . . , y2,n, . . . , yn,1, . . . , yn,n, k >
encodes < G , k >.

1 n is number of vertices in G
2 yi ,j is a bit which is 1 if edge (i , j) is in G and 0 otherwise

(adjacency matrix representation)
3 k is size of independent set.

2 Certificate: t = t1t2 . . . tn. Interpretation is that ti is 1 if
vertex i is in the independent set, 0 otherwise.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 44

Example: Independent Set

Formally why is Independent Set in NP?
1 Input: <

n, y1,1, y1,2, . . . , y1,n, y2,1, . . . , y2,n, . . . , yn,1, . . . , yn,n, k >
encodes < G , k >.

1 n is number of vertices in G
2 yi ,j is a bit which is 1 if edge (i , j) is in G and 0 otherwise

(adjacency matrix representation)
3 k is size of independent set.

2 Certificate: t = t1t2 . . . tn. Interpretation is that ti is 1 if
vertex i is in the independent set, 0 otherwise.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 44

Example: Independent Set

Formally why is Independent Set in NP?
1 Input: <

n, y1,1, y1,2, . . . , y1,n, y2,1, . . . , y2,n, . . . , yn,1, . . . , yn,n, k >
encodes < G , k >.

1 n is number of vertices in G
2 yi ,j is a bit which is 1 if edge (i , j) is in G and 0 otherwise

(adjacency matrix representation)
3 k is size of independent set.

2 Certificate: t = t1t2 . . . tn. Interpretation is that ti is 1 if
vertex i is in the independent set, 0 otherwise.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 44

Example: Independent Set

Formally why is Independent Set in NP?
1 Input: <

n, y1,1, y1,2, . . . , y1,n, y2,1, . . . , y2,n, . . . , yn,1, . . . , yn,n, k >
encodes < G , k >.

1 n is number of vertices in G
2 yi ,j is a bit which is 1 if edge (i , j) is in G and 0 otherwise

(adjacency matrix representation)
3 k is size of independent set.

2 Certificate: t = t1t2 . . . tn. Interpretation is that ti is 1 if
vertex i is in the independent set, 0 otherwise.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 44

Certifier for Independent Set

Certifier C(s, t) for Independent Set:

if (t1 + t2 + . . . + tn < k) then
return NO

else
for each (i , j) do

if (ti ∧ tj ∧ yi ,j) then
return NO

return YES

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44

Example: Independent Set
A certifier circuit for Independent Set

v w

u

Figure: Graph
G with k = 2

∨

1 0 1

u, v u, w v, w u v w

Two nodes?

∧
¬∨Both ends of an edge

∨

∧ ∧ ∧

∨

∧ ∧ ∧

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 44

Example: Independent Set
A certifier circuit for Independent Set

v w

u

Figure: Graph
G with k = 2

∨

1 0 1

u, v u, w v, w u v w

Two nodes?

∧
¬∨Both ends of an edge

∨

∧ ∧ ∧

∨

∧ ∧ ∧

Encoding the graph

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 44

Example: Independent Set
A certifier circuit for Independent Set

v w

u

Figure: Graph
G with k = 2

∨

1 0 1

u, v u, w v, w u v w

Two nodes?

∧
¬∨Both ends of an edge

∨

∧ ∧ ∧

∨

∧ ∧ ∧

Encoding the graph Encoding the independent set

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 44

Programs, Turing Machines and Circuits

1 Consider “program” A that takes f (|s|) steps on input string s.
2 Question: What computer is the program running on and what

does step mean?
3 Real computers difficult to reason with mathematically because

1 instruction set is too rich
2 pointers and control flow jumps in one step
3 assumption that pointer to code fits in one word

4 Turing Machines
1 simpler model of computation to reason with
2 can simulate real computers with polynomial slow down
3 all moves are local (head moves only one cell)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 44

Programs, Turing Machines and Circuits

1 Consider “program” A that takes f (|s|) steps on input string s.
2 Question: What computer is the program running on and what

does step mean?
3 Real computers difficult to reason with mathematically because

1 instruction set is too rich
2 pointers and control flow jumps in one step
3 assumption that pointer to code fits in one word

4 Turing Machines
1 simpler model of computation to reason with
2 can simulate real computers with polynomial slow down
3 all moves are local (head moves only one cell)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 44

Programs, Turing Machines and Circuits

1 Consider “program” A that takes f (|s|) steps on input string s.
2 Question: What computer is the program running on and what

does step mean?
3 Real computers difficult to reason with mathematically because

1 instruction set is too rich
2 pointers and control flow jumps in one step
3 assumption that pointer to code fits in one word

4 Turing Machines
1 simpler model of computation to reason with
2 can simulate real computers with polynomial slow down
3 all moves are local (head moves only one cell)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 44

Programs, Turing Machines and Circuits

1 Consider “program” A that takes f (|s|) steps on input string s.
2 Question: What computer is the program running on and what

does step mean?
3 Real computers difficult to reason with mathematically because

1 instruction set is too rich
2 pointers and control flow jumps in one step
3 assumption that pointer to code fits in one word

4 Turing Machines
1 simpler model of computation to reason with
2 can simulate real computers with polynomial slow down
3 all moves are local (head moves only one cell)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 44

Programs, Turing Machines and Circuits

1 Consider “program” A that takes f (|s|) steps on input string s.
2 Question: What computer is the program running on and what

does step mean?
3 Real computers difficult to reason with mathematically because

1 instruction set is too rich
2 pointers and control flow jumps in one step
3 assumption that pointer to code fits in one word

4 Turing Machines
1 simpler model of computation to reason with
2 can simulate real computers with polynomial slow down
3 all moves are local (head moves only one cell)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 44

Programs, Turing Machines and Circuits

1 Consider “program” A that takes f (|s|) steps on input string s.
2 Question: What computer is the program running on and what

does step mean?
3 Real computers difficult to reason with mathematically because

1 instruction set is too rich
2 pointers and control flow jumps in one step
3 assumption that pointer to code fits in one word

4 Turing Machines
1 simpler model of computation to reason with
2 can simulate real computers with polynomial slow down
3 all moves are local (head moves only one cell)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 44

Programs, Turing Machines and Circuits

1 Consider “program” A that takes f (|s|) steps on input string s.
2 Question: What computer is the program running on and what

does step mean?
3 Real computers difficult to reason with mathematically because

1 instruction set is too rich
2 pointers and control flow jumps in one step
3 assumption that pointer to code fits in one word

4 Turing Machines
1 simpler model of computation to reason with
2 can simulate real computers with polynomial slow down
3 all moves are local (head moves only one cell)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 44

Programs, Turing Machines and Circuits

1 Consider “program” A that takes f (|s|) steps on input string s.
2 Question: What computer is the program running on and what

does step mean?
3 Real computers difficult to reason with mathematically because

1 instruction set is too rich
2 pointers and control flow jumps in one step
3 assumption that pointer to code fits in one word

4 Turing Machines
1 simpler model of computation to reason with
2 can simulate real computers with polynomial slow down
3 all moves are local (head moves only one cell)

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 44

Certifiers that at TMs

1 Assume C(·, ·) is a (deterministic) Turing Machine M
2 Problem: Given M , input s, p, q decide if there is a proof t of

length p(|s|) such that M on s, t will halt in q(|s|) time and
say YES.

3 There is an algorithm A that can reduce above problem to
CSAT mechanically as follows.

1 A first computes p(|s|) and q(|s|).
2 Knows that M can use at most q(|s|) memory/tape cells
3 Knows that M can run for at most q(|s|) time
4 Simulates the evolution of the state of M and memory over

time using a big circuit.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44

Certifiers that at TMs

1 Assume C(·, ·) is a (deterministic) Turing Machine M
2 Problem: Given M , input s, p, q decide if there is a proof t of

length p(|s|) such that M on s, t will halt in q(|s|) time and
say YES.

3 There is an algorithm A that can reduce above problem to
CSAT mechanically as follows.

1 A first computes p(|s|) and q(|s|).
2 Knows that M can use at most q(|s|) memory/tape cells
3 Knows that M can run for at most q(|s|) time
4 Simulates the evolution of the state of M and memory over

time using a big circuit.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44

Certifiers that at TMs

1 Assume C(·, ·) is a (deterministic) Turing Machine M
2 Problem: Given M , input s, p, q decide if there is a proof t of

length p(|s|) such that M on s, t will halt in q(|s|) time and
say YES.

3 There is an algorithm A that can reduce above problem to
CSAT mechanically as follows.

1 A first computes p(|s|) and q(|s|).
2 Knows that M can use at most q(|s|) memory/tape cells
3 Knows that M can run for at most q(|s|) time
4 Simulates the evolution of the state of M and memory over

time using a big circuit.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44

Certifiers that at TMs

1 Assume C(·, ·) is a (deterministic) Turing Machine M
2 Problem: Given M , input s, p, q decide if there is a proof t of

length p(|s|) such that M on s, t will halt in q(|s|) time and
say YES.

3 There is an algorithm A that can reduce above problem to
CSAT mechanically as follows.

1 A first computes p(|s|) and q(|s|).
2 Knows that M can use at most q(|s|) memory/tape cells
3 Knows that M can run for at most q(|s|) time
4 Simulates the evolution of the state of M and memory over

time using a big circuit.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44

Certifiers that at TMs

1 Assume C(·, ·) is a (deterministic) Turing Machine M
2 Problem: Given M , input s, p, q decide if there is a proof t of

length p(|s|) such that M on s, t will halt in q(|s|) time and
say YES.

3 There is an algorithm A that can reduce above problem to
CSAT mechanically as follows.

1 A first computes p(|s|) and q(|s|).
2 Knows that M can use at most q(|s|) memory/tape cells
3 Knows that M can run for at most q(|s|) time
4 Simulates the evolution of the state of M and memory over

time using a big circuit.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44

Certifiers that at TMs

1 Assume C(·, ·) is a (deterministic) Turing Machine M
2 Problem: Given M , input s, p, q decide if there is a proof t of

length p(|s|) such that M on s, t will halt in q(|s|) time and
say YES.

3 There is an algorithm A that can reduce above problem to
CSAT mechanically as follows.

1 A first computes p(|s|) and q(|s|).
2 Knows that M can use at most q(|s|) memory/tape cells
3 Knows that M can run for at most q(|s|) time
4 Simulates the evolution of the state of M and memory over

time using a big circuit.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44

Certifiers that at TMs

1 Assume C(·, ·) is a (deterministic) Turing Machine M
2 Problem: Given M , input s, p, q decide if there is a proof t of

length p(|s|) such that M on s, t will halt in q(|s|) time and
say YES.

3 There is an algorithm A that can reduce above problem to
CSAT mechanically as follows.

1 A first computes p(|s|) and q(|s|).
2 Knows that M can use at most q(|s|) memory/tape cells
3 Knows that M can run for at most q(|s|) time
4 Simulates the evolution of the state of M and memory over

time using a big circuit.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44

Certifiers that at TMs

1 Assume C(·, ·) is a (deterministic) Turing Machine M
2 Problem: Given M , input s, p, q decide if there is a proof t of

length p(|s|) such that M on s, t will halt in q(|s|) time and
say YES.

3 There is an algorithm A that can reduce above problem to
CSAT mechanically as follows.

1 A first computes p(|s|) and q(|s|).
2 Knows that M can use at most q(|s|) memory/tape cells
3 Knows that M can run for at most q(|s|) time
4 Simulates the evolution of the state of M and memory over

time using a big circuit.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44

Simulation of Computation via Circuit

1 Think of M ’s state at time ℓ as a string xℓ = x1x2 . . . xk where
each xi ∈ {0, 1,B} × Q ∪ {q−1}.

2 At time 0 the state of M consists of input string s a guess t
(unknown variables) of length p(|s|) and rest q(|s|) blank
symbols.

3 At time q(|s|) we wish to know if M stops in qaccept with say
all blanks on the tape.

4 We write a circuit Cℓ which captures the transition of M from
time ℓ to time ℓ + 1.

5 Composition of the circuits for all times 0 to q(|s|) gives a big
(still poly) sized circuit C

6 The final output of C should be true if and only if the entire
state of M at the end leads to an accept state.

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 44

Simulation of Computation via Circuit

1 Think of M ’s state at time ℓ as a string xℓ = x1x2 . . . xk where
each xi ∈ {0, 1,B} × Q ∪ {q−1}.

2 At time 0 the state of M consists of input string s a guess t
(unknown variables) of length p(|s|) and rest q(|s|) blank
symbols.

3 At time q(|s|) we wish to know if M stops in qaccept with say
all blanks on the tape.

4 We write a circuit Cℓ which captures the transition of M from
time ℓ to time ℓ + 1.

5 Composition of the circuits for all times 0 to q(|s|) gives a big
(still poly) sized circuit C

6 The final output of C should be true if and only if the entire
state of M at the end leads to an accept state.

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 44

Simulation of Computation via Circuit

1 Think of M ’s state at time ℓ as a string xℓ = x1x2 . . . xk where
each xi ∈ {0, 1,B} × Q ∪ {q−1}.

2 At time 0 the state of M consists of input string s a guess t
(unknown variables) of length p(|s|) and rest q(|s|) blank
symbols.

3 At time q(|s|) we wish to know if M stops in qaccept with say
all blanks on the tape.

4 We write a circuit Cℓ which captures the transition of M from
time ℓ to time ℓ + 1.

5 Composition of the circuits for all times 0 to q(|s|) gives a big
(still poly) sized circuit C

6 The final output of C should be true if and only if the entire
state of M at the end leads to an accept state.

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 44

Simulation of Computation via Circuit

1 Think of M ’s state at time ℓ as a string xℓ = x1x2 . . . xk where
each xi ∈ {0, 1,B} × Q ∪ {q−1}.

2 At time 0 the state of M consists of input string s a guess t
(unknown variables) of length p(|s|) and rest q(|s|) blank
symbols.

3 At time q(|s|) we wish to know if M stops in qaccept with say
all blanks on the tape.

4 We write a circuit Cℓ which captures the transition of M from
time ℓ to time ℓ + 1.

5 Composition of the circuits for all times 0 to q(|s|) gives a big
(still poly) sized circuit C

6 The final output of C should be true if and only if the entire
state of M at the end leads to an accept state.

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 44

Simulation of Computation via Circuit

1 Think of M ’s state at time ℓ as a string xℓ = x1x2 . . . xk where
each xi ∈ {0, 1,B} × Q ∪ {q−1}.

2 At time 0 the state of M consists of input string s a guess t
(unknown variables) of length p(|s|) and rest q(|s|) blank
symbols.

3 At time q(|s|) we wish to know if M stops in qaccept with say
all blanks on the tape.

4 We write a circuit Cℓ which captures the transition of M from
time ℓ to time ℓ + 1.

5 Composition of the circuits for all times 0 to q(|s|) gives a big
(still poly) sized circuit C

6 The final output of C should be true if and only if the entire
state of M at the end leads to an accept state.

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 44

Simulation of Computation via Circuit

1 Think of M ’s state at time ℓ as a string xℓ = x1x2 . . . xk where
each xi ∈ {0, 1,B} × Q ∪ {q−1}.

2 At time 0 the state of M consists of input string s a guess t
(unknown variables) of length p(|s|) and rest q(|s|) blank
symbols.

3 At time q(|s|) we wish to know if M stops in qaccept with say
all blanks on the tape.

4 We write a circuit Cℓ which captures the transition of M from
time ℓ to time ℓ + 1.

5 Composition of the circuits for all times 0 to q(|s|) gives a big
(still poly) sized circuit C

6 The final output of C should be true if and only if the entire
state of M at the end leads to an accept state.

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 44

NP-Hardness of Circuit Satisfaction

1 Key Ideas in reduction:
1 Use TMs as the code for certifier for simplicity
2 Since p() and q() are known to A, it can set up all required

memory and time steps in advance
3 Simulate computation of the TM from one time to the next as

a circuit that only looks at three adjacent cells at a time

2 Note: Above reduction can be done to SAT as well. Reduction
to SAT was the original proof of Steve Cook.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 44

NP-Hardness of Circuit Satisfaction

1 Key Ideas in reduction:
1 Use TMs as the code for certifier for simplicity
2 Since p() and q() are known to A, it can set up all required

memory and time steps in advance
3 Simulate computation of the TM from one time to the next as

a circuit that only looks at three adjacent cells at a time

2 Note: Above reduction can be done to SAT as well. Reduction
to SAT was the original proof of Steve Cook.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 44

NP-Hardness of Circuit Satisfaction

1 Key Ideas in reduction:
1 Use TMs as the code for certifier for simplicity
2 Since p() and q() are known to A, it can set up all required

memory and time steps in advance
3 Simulate computation of the TM from one time to the next as

a circuit that only looks at three adjacent cells at a time

2 Note: Above reduction can be done to SAT as well. Reduction
to SAT was the original proof of Steve Cook.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 44

NP-Hardness of Circuit Satisfaction

1 Key Ideas in reduction:
1 Use TMs as the code for certifier for simplicity
2 Since p() and q() are known to A, it can set up all required

memory and time steps in advance
3 Simulate computation of the TM from one time to the next as

a circuit that only looks at three adjacent cells at a time

2 Note: Above reduction can be done to SAT as well. Reduction
to SAT was the original proof of Steve Cook.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 44

NP-Hardness of Circuit Satisfaction

1 Key Ideas in reduction:
1 Use TMs as the code for certifier for simplicity
2 Since p() and q() are known to A, it can set up all required

memory and time steps in advance
3 Simulate computation of the TM from one time to the next as

a circuit that only looks at three adjacent cells at a time

2 Note: Above reduction can be done to SAT as well. Reduction
to SAT was the original proof of Steve Cook.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 44

23.2.4: Other NP Complete Problems

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 44

SAT is NP-Complete

1 We have seen that SAT ∈ NP

2 To show NP-Hardness, we will reduce Circuit Satisfiability
(CSAT) to SAT
Instance of CSAT (we label each node):

1,a ?,b ?,c 0,d ?,e

Inputs:

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 44

SAT is NP-Complete

1 We have seen that SAT ∈ NP

2 To show NP-Hardness, we will reduce Circuit Satisfiability
(CSAT) to SAT
Instance of CSAT (we label each node):

1,a ?,b ?,c 0,d ?,e

Inputs:

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 44

Converting a circuit into a CNF formula
Label the nodes

1 ? ? 0 ?

Inputs

Output:

∧

∧

∧

∨ ∨

¬

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

(A) Input circuit (B) Label the nodes.

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 44

Converting a circuit into a CNF formula
Introduce a variable for each node

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

(B) Label the nodes. (C) Introduce var for each node.

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 44

Converting a circuit into a CNF formula
Write a sub-formula for each variable that is true if the var is computed correctly.

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk (Demand a sat’ assignment!)
xk = xi ∧ xk
xj = xg ∧ xh
xi = ¬xf
xh = xd ∨ xe
xg = xb ∨ xc
xf = xa ∧ xb
xd = 0
xa = 1

(C) Introduce var for each node.
(D) Write a sub-formula for
each variable that is true if the
var is computed correctly.

Sariel (UIUC) OLD CS473 41 Spring 2015 41 / 44

Converting a circuit into a CNF formula
Convert each sub-formula to an equivalent CNF formula

xk xk

xk = xi ∧ xj (¬xk ∨ xi) ∧ (¬xk ∨ xj) ∧ (xk ∨ ¬xi ∨ ¬xj)
xj = xg ∧ xh (¬xj ∨ xg) ∧ (¬xj ∨ xh) ∧ (xj ∨ ¬xg ∨ ¬xh)

xi = ¬xf (xi ∨ xf) ∧ (¬xi ∨ xf)
xh = xd ∨ xe (xh ∨ ¬xd) ∧ (xh ∨ ¬xe) ∧ (¬xh ∨ xd ∨ xe)
xg = xb ∨ xc (xg ∨ ¬xb) ∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
xf = xa ∧ xb (¬xf ∨ xa) ∧ (¬xf ∨ xb) ∧ (xf ∨ ¬xa ∨ ¬xb)

xd = 0 ¬xd

xa = 1 xa

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 44

Converting a circuit into a CNF formula
Take the conjunction of all the CNF sub-formulas

1,a ?,b ?,c 0,d ?,e

Inputs

Output: ∧, k

¬, i ∧, j

∧, f ∨, g ∨, h

xk

xjxi

xf xg xh

xa xb xc xd xe

xk ∧ (¬xk ∨ xi) ∧ (¬xk ∨ xj)
∧ (xk ∨¬xi ∨¬xj) ∧ (¬xj ∨ xg)
∧ (¬xj ∨xh) ∧ (xj ∨¬xg ∨¬xh)
∧ (xi ∨ xf) ∧ (¬xi ∨ xf)
∧ (xh ∨ ¬xd) ∧ (xh ∨ ¬xe)
∧ (¬xh ∨ xd ∨ xe) ∧ (xg ∨ ¬xb)
∧ (xg ∨ ¬xc) ∧ (¬xg ∨ xb ∨ xc)
∧ (¬xf ∨ xa) ∧ (¬xf ∨ xb)
∧ (xf ∨¬xa∨¬xb) ∧ ([)]¬xd∧xa

We got a CNF formula that is satisfiable if and only if the original
circuit is satisfiable.

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 44

Reduction: CSAT ≤P SAT

1 For each gate (vertex) v in the circuit, create a variable xv

2 Case ¬: v is labeled ¬ and has one incoming edge from u (so
xv = ¬xu). In SAT formula generate, add clauses (xu ∨ xv),
(¬xu ∨ ¬xv). Observe that

xv = ¬xu is true ⇐⇒ (xu ∨ xv)
(¬xu ∨ ¬xv)

both true.

Sariel (UIUC) OLD CS473 44 Spring 2015 44 / 44

Reduction: CSAT ≤P SAT
Continued...

1 Case ∨: So xv = xu ∨ xw . In SAT formula generated, add
clauses (xv ∨ ¬xu), (xv ∨ ¬xw), and (¬xv ∨ xu ∨ xw). Again,
observe that

(
xv = xu ∨ xw

)
is true ⇐⇒

(xv ∨ ¬xu),
(xv ∨ ¬xw),
(¬xv ∨ xu ∨ xw)

all true.

Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 44

Reduction: CSAT ≤P SAT
Continued...

1 Case ∧: So xv = xu ∧ xw . In SAT formula generated, add
clauses (¬xv ∨ xu), (¬xv ∨ xw), and (xv ∨ ¬xu ∨ ¬xw).
Again observe that

xv = xu ∧ xw is true ⇐⇒
(¬xv ∨ xu),
(¬xv ∨ xw),
(xv ∨ ¬xu ∨ ¬xw)

all true.

Sariel (UIUC) OLD CS473 46 Spring 2015 46 / 44

Reduction: CSAT ≤P SAT
Continued...

1 If v is an input gate with a fixed value then we do the following.
If xv = 1 add clause xv . If xv = 0 add clause ¬xv

2 Add the clause xv where v is the variable for the output gate

Sariel (UIUC) OLD CS473 47 Spring 2015 47 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Correctness of Reduction

Need to show circuit C is satisfiable iff φC is satisfiable

⇒ Consider a satisfying assignment a for C
1 Find values of all gates in C under a
2 Give value of gate v to variable xv ; call this assignment a′

3 a′ satisfies φC (exercise)

⇐ Consider a satisfying assignment a for φC

1 Let a′ be the restriction of a to only the input variables
2 Value of gate v under a′ is the same as value of xv in a
3 Thus, a′ satisfies C

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 44

Showed that...

Theorem
SAT is NP-Complete.

Sariel (UIUC) OLD CS473 49 Spring 2015 49 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

Proving that a problem X is NP-Complete

1 To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

2 SAT ≤P X implies that every NP problem Y ≤P X . Why?

3 Transitivity of reductions:

4 Y ≤P SAT and SAT ≤P X and hence Y ≤P X .

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44

NP-Completeness via Reductions

1 What we know so far:
1 CSAT is NP-Complete.
2 CSAT ≤P SAT and SAT is in NP and hence SAT is

NP-Complete.
3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
4 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
5 Vertex Cover is NP-Complete.
6 Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and
engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 44

NP-Completeness via Reductions

1 What we know so far:
1 CSAT is NP-Complete.
2 CSAT ≤P SAT and SAT is in NP and hence SAT is

NP-Complete.
3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
4 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
5 Vertex Cover is NP-Complete.
6 Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and
engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 44

NP-Completeness via Reductions

1 What we know so far:
1 CSAT is NP-Complete.
2 CSAT ≤P SAT and SAT is in NP and hence SAT is

NP-Complete.
3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
4 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
5 Vertex Cover is NP-Complete.
6 Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and
engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 44

NP-Completeness via Reductions

1 What we know so far:
1 CSAT is NP-Complete.
2 CSAT ≤P SAT and SAT is in NP and hence SAT is

NP-Complete.
3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
4 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
5 Vertex Cover is NP-Complete.
6 Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and
engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 44

NP-Completeness via Reductions

1 What we know so far:
1 CSAT is NP-Complete.
2 CSAT ≤P SAT and SAT is in NP and hence SAT is

NP-Complete.
3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
4 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
5 Vertex Cover is NP-Complete.
6 Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and
engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 44

NP-Completeness via Reductions

1 What we know so far:
1 CSAT is NP-Complete.
2 CSAT ≤P SAT and SAT is in NP and hence SAT is

NP-Complete.
3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
4 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
5 Vertex Cover is NP-Complete.
6 Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and
engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 44

NP-Completeness via Reductions

1 What we know so far:
1 CSAT is NP-Complete.
2 CSAT ≤P SAT and SAT is in NP and hence SAT is

NP-Complete.
3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
4 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
5 Vertex Cover is NP-Complete.
6 Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and
engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 44

NP-Completeness via Reductions

1 What we know so far:
1 CSAT is NP-Complete.
2 CSAT ≤P SAT and SAT is in NP and hence SAT is

NP-Complete.
3 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
4 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
5 Vertex Cover is NP-Complete.
6 Clique is NP-Complete.

2 Gazillion of different problems from many areas of science and
engineering have been shown to be NP-Complete.

3 A surprisingly frequent phenomenon!

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 44

Notes

Sariel (UIUC) OLD CS473 52 Spring 2015 52 / 44

Notes

Sariel (UIUC) OLD CS473 53 Spring 2015 53 / 44

Notes

Sariel (UIUC) OLD CS473 54 Spring 2015 54 / 44

Notes

Sariel (UIUC) OLD CS473 55 Spring 2015 55 / 44

S. Even, A. Itai, and A. Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM J. Comput., 5(4):691–703,
1976.

Sariel (UIUC) OLD CS473 55 Spring 2015 55 / 44

	NP
	Turing machines

	Cook-Levin Theorem
	Completeness
	Preliminaries
	Cook-Levin Theorem
	Other NP Complete Problems

