OLD CS 473: Fundamental Algorithms, Spring 2015

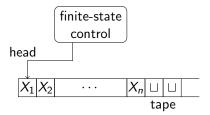
NP Completeness and Cook-Levin Theorem

Lecture 23 April 21, 2015

P and NP and Turing Machines

- Polynomial vs. polynomial time verifiable...
 - 1 P: set of decision problems that have polynomial time algorithms.
 - 2 NP: set of decision problems that have polynomial time non-deterministic algorithms.
- **Question:** What is an algorithm? Depends on the model of computation!
- What is our model of computation?
- Formally speaking our model of computation is Turing Machines.

Turing Machines: Recap



- Infinite tape.
- Finite state control.
- Input at beginning of tape.
- Special tape letter "blank" □.
- Head can move only one cell to left or right.

Turing Machines: Formally

- **1** A TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$:
 - \mathbf{Q} is set of states in finite control
 - 2 q_0 start state, q_{accept} is accept state, q_{reject} is reject state
 - **3** Σ is input alphabet, Γ is tape alphabet (includes \sqcup)
 - $\delta: Q \times \Gamma \to \{L, R\} \times \Gamma \times Q$ is transition function
 - $\delta(q, a) = (q', b, L)$ means that M in state q and head seeing a on tape will move to state q' while replacing a on tape with band head moves left.
- (2) L(M): language accepted by M is set of all input strings s on which **M** accepts; that is:
 - **1** TM is started in state q_0 .
 - 2 Initially, the tape head is located at the first cell.
 - 3 The tape contain s on the tape followed by blanks.
 - 4 The TM halts in the state q_{accept} .

P via TMs

Polynomial time Turing machine.

Definition

M is a polynomial time TM if there is some polynomial $p(\cdot)$ such that on all inputs w, M halts in p(|w|) steps.

Polynomial time language.

Definition

L is a language in P iff there is a polynomial time TM M such that L=L(M).

Non-deterministic TMs vs certifiers

- Two definition of NP:
 - **1** L is in NP iff L has a polynomial time certifier $C(\cdot, \cdot)$.
 - 2 L is in NP iff L is decided by a non-deterministic polynomial time TM M.
- 2 Equivalence...

Claim

Two definitions are equivalent.

- Why?
- Informal proof idea: the certificate t for C corresponds to non-deterministic choices of M and vice-versa.
- 1 In other words L is in NP iff L is accepted by a NTM which first guesses a proof t of length poly in input |s| and then acts as a deterministic TM.

NP via TMs

NP language...

Definition

L is an NP language iff there is a non-deterministic polynomial time TM M such that L = L(M).

- 2 Non-deterministic TM: each step has a choice of moves
 - $\bullet \ \delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\}).$
 - **1** Example: $\delta(q, a) = \{(q_1, b, L), (q_2, c, R), (q_3, a, R)\}$ means that **M** can non-deterministically choose one of the three possible moves from (q, a).
 - **2** L(M): set of all strings **s** on which there *exists* some sequence of valid choices at each step that lead from q_0 to q_{accept}

Non-determinism, guessing and verification

- A non-deterministic machine has choices at each step and accepts a string if there exists a set of choices which lead to a final state.
- 2 Equivalently the choices can be thought of as guessing a solution and then verifying that solution. In this view all the choices are made a priori and hence the verification can be deterministic. The "guess" is the "proof" and the "verifier" is the "certifier".
- 3 Note: Symmetry inherent in the definition of non-determinism. Strings in the language can be easily verified. No easy way to verify that a string is not in the language.

Algorithms: TMs vs RAM Model

- Why do we use TMs some times and RAM Model other times?
- 2 TMs are very simple: no complicated instruction set, no jumps/pointers, no explicit loops etc.
 - Simplicity is useful in proofs.
 - 2 The "right" formal bare-bones model when dealing with subtleties.
- 3 RAM model is a closer approximation to the running time/space usage of realistic computers for reasonable problem sizes
 - 1 Not appropriate for certain kinds of formal proofs when algorithms can take super-polynomial time and space

"Hardest" Problems

Question

- What is the hardest problem in NP? How do we define it?
- Towards a definition
 - Hardest problem must be in NP.
 - A Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem X is said to be NP-Complete if

- \bullet $X \in NP$, and
- (Hardness) For any $Y \in NP$, $Y <_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof

- \Rightarrow Suppose X can be solved in polynomial time
 - Let $Y \in NP$. We know $Y \leq_P X$.
 - 2 We showed that if $Y \leq_{P} X$ and X can be solved in polynomial time, then **Y** can be solved in polynomial time.
 - **3** Thus, every problem $Y \in \mathbb{NP}$ is such that $Y \in P$; $\mathbb{NP} \subseteq P$.
 - **3** Since $P \subset NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

NP-Hard problems:

Definition

A problem X is said to be **NP-Hard** if

- (Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.
- 2 An NP-Hard problem need not be in NP!
- **Solution** Example: Halting problem is NP-Hard (why?) but not NP-Complete.

Sariel (UIUC

OLD CS473

13

g 2015 13

Consequences of proving NP-Completeness

- If X is NP-Complete
 - Since we believe $P \neq NP$,
 - 2 and solving X implies P = NP.
- \Longrightarrow At the very least, many smart people before you have failed to find an efficient algorithm for X.
- (This is proof by mob opinion take with a grain of salt.)

Sariel (UIUC)

OLD CS47

.

Carina 201E 1/

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

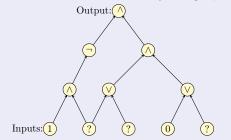
Answer

Yes! Many, many problems are NP-Complete.

Circuits

Definition

A circuit is a directed acyclic graph with



- Input vertices (without incoming edges) labelled with
 0, 1 or a distinct variable.
- ② Every other vertex is labelled ∨. ∧ or ¬.
- Single node output vertex with no outgoing edges.

ariel (UIUC) OLD CS473 15 Spring 2015 15 /

Sariel (UIUC) OI

173

Spring 2015

Cook-Levin Theorem

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value 1?

Theorem (Cook-Levin)

CSAT *is* NP-Complete.

Need to show

- CSAT is in NP.
- every NP problem X reduces to CSAT.

Sariel (UIUC

DLD CS473

17

ring 2015

17 / 63

CSAT is **NP**-hard: Idea

- 1 Need to show that every NP problem X reduces to CSAT.
- ② What does it mean that $X \in \mathbb{NP}$?
- **3** $X \in \mathbb{NP}$ implies that there are polynomials p() and q() and certifier/verifier program C such that for every string s the following is true:
 - If s is a YES instance $(s \in X)$ then there is a proof t of length p(|s|) such that C(s, t) says YES.
 - ② If s is a NO instance $(s \not\in X)$ then for every string t of length at p(|s|), C(s,t) says NO.
 - **3** C(s, t) runs in time q(|s| + |t|) time (hence polynomial time).

CSAT: Circuit Satisfaction

Claim

CSAT is in NP.

- Certificate: Assignment to input variables.
- Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Sariel (UIUC)

OLD CS473

.

..... 2015 1

ing 2015 18 / 6

Reducing X to CSAT

- **1 X** is in **NP** means we have access to $p(), q(), C(\cdot, \cdot)$.
- What is $C(\cdot, \cdot)$? It is a program or equivalently a Turing Machine!
- **1** How are p() and q() given? As numbers (coefficients and powers).
- **3** Example: if **3** is given then $p(n) = n^3$.
- **5** Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where C is either a program or a TM.

ariel (UIUC) OLD CS473 19 Spring 2015 19

Sariel (IIIIC)

OLD CS473

5pring 2015 20

Reducing X to CSAT

- 1 Thus an NP problem is essentially a three tuple $\langle p, q, C \rangle$ where \boldsymbol{C} is either a program or TM.
- 2 Problem X: Given string s, is $s \in X$?
- 3 Same as the following: is there a proof t of length p(|s|) such that C(s, t) says YES.
- **1** How do we reduce X to CSAT? Need an algorithm A that
 - 1 takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in |s| (note that $\langle p, q, C \rangle$ are fixed).
 - $\mathbf{0}$ \mathbf{G} is satisfiable if and only if there is a proof \mathbf{t} such that C(s, t) says YES.

Example: Independent Set

- **1** Problem: Does G = (V, E) have an **Independent Set** of size > k?
 - Certificate: Set $S \subset V$.
 - 2 Certifier: Check |S| > k and no pair of vertices in S is connected by an edge.
- Formally, why is Independent Set in NP?

Reducing X to CSAT

- How do we reduce X to CSAT?
- $oldsymbol{0}$ Need an algorithm \mathcal{A} that
 - 1 takes s (and $\langle p, q, C \rangle$) and creates a circuit G in polynomial time in |s| (note that $\langle p, q, C \rangle$ are fixed).
 - $\mathbf{0}$ \mathbf{G} is satisfiable if and only if there is a proof \mathbf{t} such that C(s,t) says YES
- 3 Simple but Big Idea: Programs are essentially the same as Circuits!
 - ① Convert C(s, t) into a circuit G with t as unknown inputs (rest is known including s)
 - 2 We know that |t| = p(|s|) so express boolean string t as p(|s|) variables t_1, t_2, \ldots, t_k where k = p(|s|).
 - 3 Asking if there is a proof t that makes C(s, t) say YES is same as whether there is an assignment of values to "unknown" variables t_1, t_2, \ldots, t_k that will make **G** evaluate to true/YES.

Example: Independent Set

Formally why is **Independent Set** in **NP**?

- Input: <</p>
 - $n, y_{1,1}, y_{1,2}, \ldots, y_{1,n}, y_{2,1}, \ldots, y_{2,n}, \ldots, y_{n,1}, \ldots, y_{n,n}, k > 1$ encodes $\langle G, k \rangle$.
 - $\mathbf{0}$ \mathbf{n} is number of vertices in \mathbf{G}
 - 2 $y_{i,j}$ is a bit which is 1 if edge (i,j) is in G and 0 otherwise (adjacency matrix representation)
 - **6 k** is size of independent set.
- ② Certificate: $t = t_1 t_2 \dots t_n$. Interpretation is that t_i is 1 if vertex i is in the independent set, 0 otherwise.

Sariel (UIUC)

Certifier for Independent Set

```
Certifier C(s,t) for Independent Set: 

if (t_1+t_2+\ldots+t_n < k) then return NO else 

for each (i,j) do 

if (t_i \wedge t_j \wedge y_{i,j}) then return NO
```

return YES

Sariel (UIUC)

OLD CS473

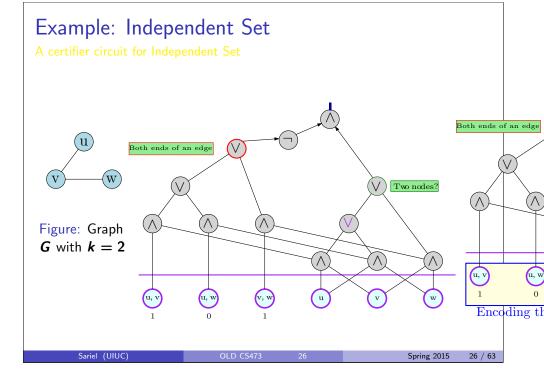
25

oring 2015

25 / 63

Programs, Turing Machines and Circuits

- Consider "program" A that takes f(|s|) steps on input string s.
- Question: What computer is the program running on and what does step mean?
- 3 Real computers difficult to reason with mathematically because
 - instruction set is too rich
 - pointers and control flow jumps in one step
 - 3 assumption that pointer to code fits in one word
- Turing Machines
 - simpler model of computation to reason with
 - 2 can simulate real computers with *polynomial* slow down
 - 3 all moves are local (head moves only one cell)



Certifiers that at TMs

- Assume $C(\cdot, \cdot)$ is a (deterministic) Turing Machine M
- **2** Problem: Given M, input s, p, q decide if there is a proof t of length p(|s|) such that M on s, t will halt in q(|s|) time and say YES.
- - **1** A first computes p(|s|) and q(|s|).
 - **2** Knows that M can use at most q(|s|) memory/tape cells
 - $footnote{s}$ Knows that $m{M}$ can run for at most $m{q}(|m{s}|)$ time
 - Simulates the evolution of the state of M and memory over time using a big circuit.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 63 Sariel (UIUC)

Simulation of Computation via Circuit

- ① Think of M's state at time ℓ as a string $x^{\ell} = x_1 x_2 \dots x_k$ where each $x_i \in \{0, 1, B\} \times Q \cup \{q_{-1}\}$.
- ② At time 0 the state of M consists of input string s a guess t (unknown variables) of length p(|s|) and rest q(|s|) blank symbols.
- **3** At time q(|s|) we wish to know if M stops in q_{accept} with say all blanks on the tape.
- We write a circuit C_{ℓ} which captures the transition of M from time ℓ to time $\ell+1$.
- **5** Composition of the circuits for all times **0** to q(|s|) gives a big (still poly) sized circuit C
- **5** The final output of \mathcal{C} should be true if and only if the entire state of M at the end leads to an accept state.

Sariel (UIUC)

OLD CS473

29

pring 2015

29 / 63

NP-Hardness of Circuit Satisfaction

- Key Ideas in reduction:
 - 1 Use TMs as the code for certifier for simplicity
 - 2 Since p() and q() are known to A, it can set up all required memory and time steps in advance
 - 3 Simulate computation of the TM from one time to the next as a circuit that only looks at three adjacent cells at a time
- Note: Above reduction can be done to SAT as well. Reduction to SAT was the original proof of Steve Cook.

Sariel (UIUC)

OLD CS473

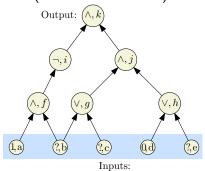
0

Spring 2015

SAT is NP-Complete

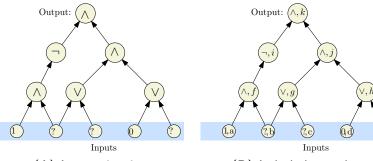
- We have seen that $SAT \in NP$
- To show NP-Hardness, we will reduce Circuit Satisfiability (CSAT) to SAT

Instance of **CSAT** (we label each node):



Converting a circuit into a CNF formula

Label the nodes



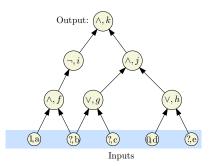
(A) Input circuit

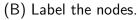
(B) Label the nodes.

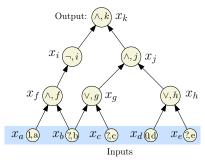
(UIUC) OLD CS473 32 Spring 2015

Converting a circuit into a CNF formula

Introduce a variable for each node







(C) Introduce var for each node.

Sariel (UIUC

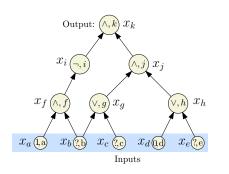
OLD C5473

33

oring 2015

Converting a circuit into a CNF formula

Write a sub-formula for each variable that is true if the var is computed correctly



(C) Introduce var for each node.

 x_k (Demand a sat' assignment!) $x_k = x_i \wedge x_k$ $x_j = x_g \wedge x_h$ $x_i = \neg x_f$ $x_h = x_d \vee x_e$ $x_g = x_b \vee x_c$ $x_f = x_a \wedge x_b$ $x_d = 0$ $x_a = 1$

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Sariel (UIUC)

OLD CS47

34

pring 2015 3

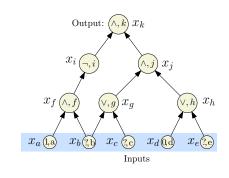
Converting a circuit into a CNF formula

Convert each sub-formula to an equivalent CNF formula

X _k	x _k
$x_k = x_i \wedge x_j$	$(\neg x_k \lor x_i) \land (\neg x_k \lor x_j) \land (x_k \lor \neg x_i \lor \neg x_j)$
$x_j = x_g \wedge x_h$	$ (\neg x_j \lor x_g) \land (\neg x_j \lor x_h) \land (x_j \lor \neg x_g \lor \neg x_h) $
$x_i = \neg x_f$	$(x_i \vee x_f) \wedge (\neg x_i \vee x_f)$
$x_h = x_d \vee x_e$	$(x_h \vee \neg x_d) \wedge (x_h \vee \neg x_e) \wedge (\neg x_h \vee x_d \vee x_e)$
$x_g = x_b \vee x_c$	$(x_g \vee \neg x_b) \wedge (x_g \vee \neg x_c) \wedge (\neg x_g \vee x_b \vee x_c)$
$x_f = x_a \wedge x_b$	$(\neg x_f \vee x_a) \wedge (\neg x_f \vee x_b) \wedge (x_f \vee \neg x_a \vee \neg x_b)$
$x_d = 0$	$\neg x_d$
$x_a = 1$	X _a

Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas



We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Sariel (UIUC) OLD CS473 35 Spring 2015 35 /

Sariel (UIUC)

OLD CS473

Spring 2015

2015 36 / 6

Reduction: CSAT < P SAT

- For each gate (vertex) v in the circuit, create a variable x_v
- **②** Case \neg : v is labeled \neg and has one incoming edge from u (so $x_v = \neg x_u$). In **SAT** formula generate, add clauses $(x_u \lor x_v)$, $(\neg x_u \lor \neg x_v)$. Observe that

$$x_v = \neg x_u$$
 is true \iff $(x_u \lor x_v)$ both true.

Sariel (UIUC)

OLD CS473

37

2015 37 / 63

Reduction: CSAT < P SAT

Continued.

① Case \vee : So $x_v = x_u \vee x_w$. In **SAT** formula generated, add clauses $(x_v \vee \neg x_u)$, $(x_v \vee \neg x_w)$, and $(\neg x_v \vee x_u \vee x_w)$. Again, observe that

$$(x_{\nu} = x_{u} \vee x_{w}) \text{ is true} \iff (x_{\nu} \vee \neg x_{u}), \\ (x_{\nu} \vee \neg x_{w}), \quad \text{all true.}$$

$$(\neg x_{\nu} \vee x_{u} \vee x_{w})$$

Sariel (UIUC)

OLD CS473

Reduction: $CSAT \leq_P SAT$

Continued..

1 Case ∧: So $x_v = x_u \wedge x_w$. In **SAT** formula generated, add clauses $(\neg x_v \vee x_u)$, $(\neg x_v \vee x_w)$, and $(x_v \vee \neg x_u \vee \neg x_w)$. Again observe that

$$x_{\nu} = x_{u} \wedge x_{w}$$
 is true \iff $(\neg x_{\nu} \vee x_{u}),$ $(\neg x_{\nu} \vee x_{w}),$ all true. $(x_{\nu} \vee \neg x_{u} \vee \neg x_{w})$

Reduction: $CSAT \leq_P SAT$

Continued

- If v is an input gate with a fixed value then we do the following. If $x_v = 1$ add clause x_v . If $x_v = 0$ add clause $\neg x_v$
- ② Add the clause x_v where v is the variable for the output gate

ariel (UIUC) OLD CS473 39 Spring 2015 39 /

Sariel (UIUC) OLD CS473

Spring 2015 40 /

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_C is satisfiable

- \Rightarrow Consider a satisfying assignment **a** for **C**
 - Find values of all gates in C under a
 - ② Give value of gate v to variable x_v ; call this assignment a'
 - 3 a' satisfies φ_C (exercise)
- \leftarrow Consider a satisfying assignment **a** for $\varphi_{\mathcal{C}}$
 - \bullet Let a' be the restriction of a to only the input variables
 - ② Value of gate v under a' is the same as value of x_v in a
 - f a' satisfies m C

Sariel (UIUC)

OLD CS473

41

Spring 2015

1 / 63

Theorem

SAT is NP-Complete.

Showed that...

NP-Completeness via Reductions

- What we know so far:
 - CSAT is NP-Complete.
 - **©** CSAT \leq_P SAT and SAT is in NP and hence SAT is NP-Complete.
 - **3** SAT \leq_P 3-SAT and hence 3-SAT is NP-Complete.
 - **3-SAT** \leq_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
 - **3** Vertex Cover is NP-Complete.
 - **6 Clique** is NP-Complete.
- Gazillion of different problems from many areas of science and engineering have been shown to be NP-Complete.
- 3 A surprisingly frequent phenomenon!

1 To prove **X** is **NP-Complete**, show

- Show **X** is in **NP**.
 - certificate/proof of polynomial size in input

Proving that a problem X is NP-Complete

- 2 polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as CSAT or SAT to X
- ② SAT $\leq_P X$ implies that every NP problem $Y \leq_P X$. Why?
- Transitivity of reductions:
- \P $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 6

Sariel (UIUC) OLD CS473 44 Spring 2015 44 / 63

