Chapter 21

Polynomial Time Reductions

OLD CS 473: Fundamental Algorithms, Spring 2015
April 14, 2015

21.0.1 Introduction to Reductions

21.0.2 Overview

21.0.2.1 Reductions

(A) Reduction from Problem X to Problem Y (informally): having algorithm for Y, then have algorithm for Problem X.
(B) We use reductions to find algorithms to solve problems.
(C) We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)
(D) Also, the right reductions might win you a million dollars!

21.0.2.2 Example 1: Bipartite Matching and Flows

How do we solve the Bipartite Matching
Problem? Given a bipartite graph $G=$
$(U \cup V, E)$ and number k, does G have a
matching of size $\geq k$?

¡4-iSolution Reduce it to Max-Flow. G has a matching of size $\geq k \Longleftrightarrow$ there is a flow from s to t of value $\geq k$.

21.0.3 Definitions

21.0.3.1 Types of Problems

Decision, Search, and Optimization
(A) Decision problem. Example: given n, is n prime?.
(B) Search problem. Example: given n, find a factor of n if it exists.
(C) Optimization problem. Example: find the smallest prime factor of n.

21.0.4 Optimization and Decision problems

21.0.4.1 For max flow...

(A) Max-flow as optimization problem:

Problem 21.0.1 (Max-Flow optimization version). Given an instance G of network flow, find the maximum flow between s and t.
(B) Max-flow as decision problem:

Problem 21.0.2 (Max-Flow decision version). Given an instance G of network flow and a parameter K, is there a flow in G, from s to t, of value at least K ?
(C) While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

21.0.4.2 Problems vs Instances

(A) A problem Π consists of an infinite collection of inputs $\left\{I_{1}, I_{2}, \ldots,\right\}$. Each input is referred to as an instance.
(B) The size of an instance I is the number of bits in its representation.
(C) For an instance I, $\operatorname{sol}(I)$ is a set of feasible solutions to I.
(D) For optimization problems each solution $s \in \operatorname{sol}(I)$ has an associated value.

21.0.4.3 Examples

(A) Instance Bipartite Matching: a bipartite graph, and integer k.
(B) Solution is "YES" if graph has matching size $\geq k$, else "NO".
(C) Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
(D) Solution to instance is "YES" if there is a flow from s to t of value $\geq k$, else "NO".
(E) An algorithm for a decision Problem X ?
(F) Decision algorithm: Input an instance of X, and outputs either "YES" or "NO".

21.0.4.4 Encoding an instance into a string

(A) I; Instance of some problem.
(B) I can be fully and precisely described (say in a text file).
(C) Resulting text file is a binary string.
(D) \Longrightarrow Any input can be interpreted as a binary string S.
(E) ... Running time of algorithm: Function of length of S (i.e., n).

21.0.4.5 Decision Problems and Languages

(A) A finite alphabet $\Sigma . \Sigma^{*}$ is set of all finite strings on Σ.
(B) A language L is simply a subset of Σ^{*}; a set of strings.
(C) Language \equiv decision problem.
(A) For any language $L \Longrightarrow$ there is a decision problem Π_{L}.
(B) For any decision problem $\Pi \Longrightarrow$ an associated language L_{Π}.
(D) Given L, Π_{L} is the decision problem: Given $x \in \Sigma^{*}$, is $x \in L$? Each string in Σ^{*} is an instance of Π_{L} and L is the set of instances for which the answer is YES.
(E) Given Π the associated language is $L_{\Pi}=\{I \mid I$ is an instance of Π for which answer is YES $\}$.
(F) Thus, decision problems and languages are used interchangeably.

21.0.4.6 Example

(A) The decision problem Primality, and the language

$$
L=\{\# p \mid p \text { is a prime number }\} .
$$

Here $\# p$ is the string in base 10 representing p.
(B) Bipartite (is given graph is bipartite. The language is

$$
L=\{\mathcal{S}(\mathrm{G}) \mid \mathrm{G} \text { is a bipartite graph }\} .
$$

Here $\mathcal{S}(\mathrm{G})$ is the string encoding the graph G .

21.0.4.7 Reductions, revised.

(A) For decision problems X, Y, a reduction from X to Y is:
(A) An algorithm ...
(B) Input: I_{X}, an instance of X.
(C) Output: I_{Y} an instance of Y.
(D) Such that:

$$
I_{Y} \text { is YES instance of } Y \Longleftrightarrow I_{X} \text { is YES instance of } X
$$

(B) (Actually, this is only one type of reduction, but this is the one we'll use most often.)

21.0.4.8 Using reductions to solve problems

(A) \mathcal{R} : Reduction $X \rightarrow Y$
(B) $\mathcal{A}_{Y}:$ algorithm for Y :
(C) \Longrightarrow New algorithm for X :

In particular, if \mathcal{R} and \mathcal{A}_{Y} are polynomial-time algorithms, \mathcal{A}_{X} is also polynomial-time.

21.0.4.9 Comparing Problems

(A) Reductions allow us to formalize the notion of "Problem X is no harder to solve than Problem $Y^{\prime \prime}$.
(B) If Problem X reduces to Problem Y (we write $X \leq Y$), then X cannot be harder to solve than Y.
(C) Bipartite Matching \leq Max-Flow.

Therefore, Bipartite Matching cannot be harder than Max-Flow.
(D) Equivalently,

Max-Flow is at least as hard as Bipartite Matching.
(E) More generally, if $X \leq Y$, we can say that X is no harder than Y, or Y is at least as hard as X.

21.0.5 Examples of Reductions

21.0.6 Independent Set and Clique

21.0.6.1 Independent Sets and Cliques
(A) Given a graph G.

(B) A set of vertices V^{\prime} is an independent set: if no two vertices of V^{\prime} are connected by an edge of G.

(C) clique: every pair of vertices in V^{\prime} is connected by an edge of G.

21.0.6.2 The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k.
Question: Does G has an independent set of size $\geq k$?

Problem: Clique
Instance: A graph G and an integer k.
Question: Does G has a clique of size $\geq k$?

21.0.6.3 Recall

For decision problems X, Y, a reduction from X to Y is:
(A) An algorithm ...
(B) that takes I_{X}, an instance of X as input...
(C) and returns I_{Y}, an instance of Y as output...
(D) such that the solution (YES/NO) to I_{Y} is the same as the solution to I_{X}.

21.0.6.4 Reducing Independent Set to Clique

(A) An instance of Independent Set is a graph G and an integer k.
(B) Convert G to \bar{G}, in which (u, v) is an edge $\Longleftrightarrow(u, v)$ is not an edge of G. (\bar{G} is the complement of G.)
(C) $([)] \bar{G}, k$: instance of Clique.

21.0.6.5 Independent Set and Clique

(A) Independent Set \leq Clique.

What does this mean?
(B) If have an algorithm for Clique, then we have an algorithm for Independent Set.
(C) Clique is at least as hard as Independent Set.
(D) Also... Independent Set is at least as hard as Clique.

21.0.7 NFAs/DFAs and Universality

 21.0.7.1 DFAs and NFAs(A) DFAs (Remember 373?) are determinstic automata that accept regular languages.
(B) NFAs are the same, except that non-deterministic.
(C) Every NFA can be converted to a DFA that accepts the same language using the subset construction.
(D) (How long does this take?)
(E) The smallest DFA equivalent to an NFA with n states may have $\approx 2^{n}$ states.

21.0.7.2 DFA Universality

(A) A DFA M is universal if it accepts every string.
(B) That is, $L(M)=\Sigma^{*}$, the set of all strings.
(C) DFA universality problem:

Problem 21.0.3 (DFA universality).
Input: A DFA M.
Goal: Is M universal?
(D) How do we solve DFA Universality?
(E) We check if M has any reachable non-final state.
(F) Alternatively, minimize M to obtain M^{\prime} and see if M^{\prime} has a single state which is an accepting state.

21.0.7.3 NFA Universality

(A) An NFA N is universal if it accepts every string. That is, $L(N)=\Sigma^{*}$, the set of all strings.
(B) NFA universality problem:

Problem 21.0.4 (NFA universality).
Input: A NFA M.
Goal: Is M universal?
(C) How do we solve NFA Universality?
(D) Reduce it to DFA Universality...
(E) Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
(F) The reduction takes exponential time!

21.0.7.4 Polynomial-time reductions

(A) An algorithm is efficient if it runs in polynomial-time.
(B) To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.
(C) If we have a polynomial-time reduction from problem X to problem Y (we write $X \leq_{P}$ Y), and a poly-time algorithm \mathcal{A}_{Y} for Y, we have a polynomial-time/efficient algorithm for X.

21.0.7.5 Polynomial-time Reduction

(A) A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm \mathcal{A} that has the following properties:
(A) given an instance I_{X} of X, \mathcal{A} produces an instance I_{Y} of Y
(B) \mathcal{A} runs in time polynomial in $\left|I_{X}\right|$.
(C) Answer to I_{X} YES \Longleftrightarrow answer to I_{Y} is YES.
(B) Polynomial transitivity:

Proposition 21.0.5. If $X \leq_{P} Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.
(C) Such a reduction is a Karp reduction. Most reductions we will need are Karp reductions.

21.0.7.6 Polynomial-time reductions and hardness

(A) For decision problems X and Y, if $X \leq_{P} Y$, and Y has an efficient algorithm, X has an efficient algorithm.
(B) If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?
(C) Because we showed Independent Set \leq_{P} Clique. If Clique had an efficient algorithm, so would Independent Set!
(D) If $X \leq_{P} Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

21.0.7.7 Polynomial-time reductions and instance sizes

Proposition 21.0.6. Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_{X} of X, the size of the instance I_{Y} of Y produced from I_{X} by \mathcal{R} is polynomial in the size of I_{X}.

Proof: \mathcal{R} is a polynomial-time algorithm and hence on input I_{X} of size $\left|I_{X}\right|$ it runs in time $p\left(\left|I_{X}\right|\right)$ for some polynomial $p()$.
I_{Y} is the output of \mathcal{R} on input I_{X}.
\mathcal{R} can write at most $p\left(\left|I_{X}\right|\right)$ bits and hence $\left|I_{Y}\right| \leq p\left(\left|I_{X}\right|\right)$.
Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

21.0.7.8 Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision problem Y is an algorithm \mathcal{A} that has the following properties:
(A) Given an instance I_{X} of X, \mathcal{A} produces an instance I_{Y} of Y.
(B) \mathcal{A} runs in time polynomial in $\left|I_{X}\right|$. This implies that $\left|I_{Y}\right|$ (size of I_{Y}) is polynomial in $\left|I_{X}\right|$.
(C) Answer to I_{X} YES iff answer to I_{Y} is YES.

Proposition 21.0.7. If $X \leq_{P} Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

21.0.7.9 Transitivity of Reductions

(A) Reductions are transitive:

Proposition 21.0.8. $X \leq_{P} Y$ and $Y \leq_{P} Z$ implies that $X \leq_{P} Z$.
(B) Note: $X \leq_{P} Y$ does not imply that $Y \leq_{P} X$ and hence it is very important to know the FROM and TO in a reduction.
(C) To prove $X \leq_{P} Y$ you need to show a reduction FROM X TO Y.
(D) In other words show that an algorithm for Y implies an algorithm for X.

21.0.8 Independent Set and Vertex Cover 21.0.8.1 Vertex Cover

Given a graph $G=(V, E)$, a set of vertices S is:
(A) A vertex cover if every $e \in E$ has at least one endpoint in S.

21.0.8.2 The Vertex Cover Problem

Problem 21.0.9 (Vertex Cover).
Input: A graph G and integer k.
Goal: Is there a vertex cover of size $\leq k$ in G?
Can we relate Independent Set and Vertex Cover?

21.0.9 Relationship between...

21.0.9.1 Vertex Cover and Independent Set

Proposition 21.0.10. Let $G=(V, E)$ be a graph. S is an independent set if and only if $V \backslash S$ is a vertex cover.

Proof:
(\Rightarrow) Let S be an independent set
(A) Consider any edge $u v \in E$.
(B) Since S is an independent set, either $u \notin S$ or $v \notin S$.
(C) Thus, either $u \in V \backslash S$ or $v \in V \backslash S$.
(D) $V \backslash S$ is a vertex cover.
(\Leftarrow) Let $V \backslash S$ be some vertex cover:
(A) Consider $u, v \in S$
(B) $u v$ is not an edge of G , as otherwise $V \backslash S$ does not cover $u v$.
(C) $\Longrightarrow S$ is thus an independent set.

21.0.9.2 Independent Set \leq_{P} Vertex Cover

(A) G : graph with n vertices, and an integer k be an instance of the Independent Set problem.
(B) G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq n-k$
(C) (G, k) is an instance of Independent Set, and $(G, n-k)$ is an instance of Vertex Cover with the same answer.
(D) Therefore, Independent Set \leq_{P} Vertex Cover. Also Vertex Cover \leq_{P} Independent Set.

21.0.10 Vertex Cover and Set Cover
 21.0.10.1 A problem of Languages

(A) Suppose you work for the United Nations. Let U be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from U.
(B) Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U ?
(C) More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

21.0.10.2 The Set Cover Problem

Problem 21.0.11 (Set Cover).
Input: Given a set U of n elements, a collection $S_{1}, S_{2}, \ldots S_{m}$ of subsets of U, and an integer k.
Goal: Is there a collection of at most k of these sets S_{i} whose union is equal to U ?

Example 21.0.12. i2- Let $U=\{1,2,3,4,5,6,7\}, k=2$ with

$$
\begin{array}{ll}
S_{1}=\{3,7\} & j 3->S_{2}=\{3,4,5\} \\
S_{3}=\{1\} & S_{4}=\{2,4\} \\
S_{5}=\{5\} & j 3->S_{6}=\{1,2,6,7\}
\end{array}
$$

$\left\{S_{2}, S_{6}\right\}$ is a set cover

21.0.10.3 Vertex Cover \leq_{P} Set Cover

Given graph $G=(V, E)$ and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:
(A) Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
(B) $U=E$.
(C) We will have one set corresponding to each vertex; $S_{v}=\{e \mid e$ is incident on $v\}$.

Observe that G has vertex cover of size k if and only if $U,\left\{S_{v}\right\}_{v \in V}$ has a set cover of size k. (Exercise: Prove this.)

21.0.10.4 Vertex Cover \leq_{P} Set Cover: Example

Let $U=\{a, b, c, d, e, f, g\}, k=2$ with

$$
\begin{array}{ll}
S_{1}=\{c, g\} & S_{2}=\{b, d\} \\
\mathfrak{i} 3->S_{3}=\{c, d, e\} & S_{4}=\{e, f\} \\
S_{5}=\{a\} & \mathfrak{i} 3->S_{6}=\{a, b, f, g\} \\
\left\{S_{3}, S_{6}\right\} \text { is a set cover }
\end{array}
$$

$\{3,6\}$ is a vertex cover

21.0.10.5 Proving Reductions

To prove that $X \leq_{P} Y$ you need to give an algorithm \mathcal{A} that:
(A) Transforms an instance I_{X} of X into an instance I_{Y} of Y.
(B) Satisfies the property that answer to I_{X} is YES iff I_{Y} is YES.
(A) typical easy direction to prove: answer to I_{Y} is YES if answer to I_{X} is YES
(B) typical difficult direction to prove: answer to I_{X} is YES if answer to I_{Y} is YES (equivalently answer to I_{X} is NO if answer to I_{Y} is NO).
(C) Runs in polynomial time.

21.0.10.6 Example of incorrect reduction proof

Try proving Matching \leq_{P} Bipartite Matching via following reduction:
(A) Given graph $G=(V, E)$ obtain a bipartite graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows.
(A) Let $V_{1}=\left\{u_{1} \mid u \in V\right\}$ and $V_{2}=\left\{u_{2} \mid u \in V\right\}$. We set $V^{\prime}=V_{1} \cup V_{2}$ (that is, we make two copies of V)
(B) $E^{\prime}=\left\{u_{1} v_{2} \mid u \neq v\right.$ and $\left.u v \in E\right\}$
(B) Given G and integer k the reduction outputs G^{\prime} and k.

21.0.10.7 Example
 21.0.10.8 "Proof"

Claim 21.0.13. Reduction is a poly-time algorithm. If G has a matching of size k then G^{\prime} has a matching of size k.

Proof: Exercise.
Claim 21.0.14. If G^{\prime} has a matching of size k then G has a matching of size k.
Incorrect! Why? Vertex $u \in V$ has two copies u_{1} and u_{2} in G^{\prime}. A matching in G^{\prime} may use both copies!

21.0.10.9 Summary

(A) We looked at polynomial-time reductions.
(B) Using polynomial-time reductions
(A) If $X \leq_{P} Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
(B) If $X \leq_{P} Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.
(C) We looked at some examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

