OLD CS 473: Fundamental Algorithms, Spring 2015

# **Polynomial Time Reductions**

Lecture 21 April 14, 2015

# 21.1: Introduction to Reductions

# 21.2: Overview

- Reduction from Problem X to Problem Y (informally): having algorithm for Y, then have algorithm for Problem X.
- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)
- Also, the right reductions might win you a million dollars!

- Reduction from Problem X to Problem Y (informally): having algorithm for Y, then have algorithm for Problem X.
- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)
- Also, the right reductions might win you a million dollars!

- Reduction from Problem X to Problem Y (informally): having algorithm for Y, then have algorithm for Problem X.
- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)
- Also, the right reductions might win you a million dollars!

- Reduction from Problem X to Problem Y (informally): having algorithm for Y, then have algorithm for Problem X.
- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)
- 4 Also, the right reductions might win you a million dollars!





#### Solution

#### How do we solve the **Bipartite Matching** Problem? Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of



#### Solution

size > k?

# How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph  $G = (U \cup V, E)$  and number k, does G have a matching of size  $\geq k$ ?



#### Solution

# How do we solve the **Bipartite Matching** Problem?

Given a bipartite graph  $G = (U \cup V, E)$  and number k, does G have a matching of size  $\geq k$ ?



#### Solution

# 21.3: Definitions

# Types of Problems

#### Decision, Search, and Optimization

- **Decision problem**. Example: given *n*, is *n* prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of *n*.

# Types of Problems

#### Decision, Search, and Optimization

- **Decision problem**. Example: given *n*, is *n* prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of *n*.

# Types of Problems

#### Decision, Search, and Optimization

- **Decision problem**. Example: given *n*, is *n* prime?.
- Search problem. Example: given n, find a factor of n if it exists.
- Optimization problem. Example: find the smallest prime factor of *n*.

## Optimization and Decision problems For max flow...

#### Max-flow as optimization problem:

#### Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between s and t.

2 Max-flow as decision problem:

#### Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Sariel (UIUC)

## Optimization and Decision problems For max flow...

Max-flow as optimization problem:

#### Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between s and t.

② Max-flow as decision problem:

#### Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

# Optimization and Decision problems For max flow...

Max-flow as optimization problem:

#### Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between s and t.

② Max-flow as decision problem:

#### Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Sariel (UIUC)

- A problem  $\Pi$  consists of an **infinite** collection of inputs  $\{l_1, l_2, \ldots, \}$ . Each input is referred to as an instance.
- 2 The size of an instance *I* is the number of bits in its representation.
- For an instance *I*, *sol*(*I*) is a set of feasible solutions to *I*.
- ④ For optimization problems each solution s ∈ sol(l) has an associated value.

- A problem  $\Pi$  consists of an **infinite** collection of inputs  $\{l_1, l_2, \ldots, \}$ . Each input is referred to as an instance.
- The size of an instance *I* is the number of bits in its representation.
- ③ For an instance I, sol(I) is a set of feasible solutions to I.
- ④ For optimization problems each solution s ∈ sol(l) has an associated value.

- A problem  $\Pi$  consists of an **infinite** collection of inputs  $\{l_1, l_2, \ldots, \}$ . Each input is referred to as an instance.
- The size of an instance *I* is the number of bits in its representation.
- **(3)** For an instance I, sol(I) is a set of feasible solutions to I.
- ④ For optimization problems each solution s ∈ sol(l) has an associated value.

- A problem  $\Pi$  consists of an **infinite** collection of inputs  $\{l_1, l_2, \ldots, \}$ . Each input is referred to as an instance.
- The size of an instance *I* is the number of bits in its representation.
- **3** For an instance I, sol(I) is a set of feasible solutions to I.
- For optimization problems each solution  $s \in sol(I)$  has an associated value.

- **1** Instance **Bipartite Matching**: a bipartite graph, and integer **k**.
- 2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".
- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- 5 An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

#### **(a)** Instance **Bipartite Matching**: a bipartite graph, and integer k.

- 2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".
- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- 5 An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

**(1)** Instance **Bipartite Matching**: a bipartite graph, and integer **k**.

2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".

- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- 5 An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

**(1)** Instance **Bipartite Matching**: a bipartite graph, and integer **k**.

2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".

- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- 5 An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

- **(1)** Instance **Bipartite Matching**: a bipartite graph, and integer k.
- 2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".
- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- 5 An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

- **1** Instance **Bipartite Matching**: a bipartite graph, and integer k.
- 2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".
- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- 5 An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

- **(1)** Instance **Bipartite Matching**: a bipartite graph, and integer k.
- 2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".
- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- 5 An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

- **(1)** Instance **Bipartite Matching**: a bipartite graph, and integer k.
- 2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".
- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- An algorithm for a decision Problem X?
- Decision algorithm: Input an instance of X, and outputs either "YES" or "NO".

- **(1)** Instance **Bipartite Matching**: a bipartite graph, and integer k.
- 2 Solution is "YES" if graph has matching size  $\geq k$ , else "NO".
- Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- ④ Solution to instance is "YES" if there is a flow from s to t of value ≥ k, else "NO".
- An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

#### I; Instance of some problem.

- 2 *I* can be fully and precisely described (say in a text file).
- 3 Resulting text file is a binary string.
- $\implies$  Any input can be interpreted as a binary string S.
- S ... Running time of algorithm: Function of length of S (i.e., n).

- I; Instance of some problem.
- 2 I can be fully and precisely described (say in a text file).
- 3 Resulting text file is a binary string.
- $\implies$  Any input can be interpreted as a binary string S.
- S ... Running time of algorithm: Function of length of S (i.e., n).

- I; Instance of some problem.
- 2 *I* can be fully and precisely described (say in a text file).
- ③ Resulting text file is a binary string.
- Any input can be interpreted as a binary string S.
- ... Running time of algorithm: Function of length of S (i.e., n).

- I; Instance of some problem.
- 2 *I* can be fully and precisely described (say in a text file).
- ③ Resulting text file is a binary string.
- $\implies$  Any input can be interpreted as a binary string S.
- ... Running time of algorithm: Function of length of S (i.e., n).

- I; Instance of some problem.
- 2 I can be fully and precisely described (say in a text file).
- ③ Resulting text file is a binary string.
- $\implies$  Any input can be interpreted as a binary string S.
- In the second second

- **(**) A finite alphabet  $\Sigma$ .  $\Sigma^*$  is set of all finite strings on  $\Sigma$ .
- **2** A language *L* is simply a subset of  $\Sigma^*$ ; a set of strings.
- 3 Language  $\equiv$  decision problem.
  - For any language  $L \implies$  there is a decision problem  $\Pi_L$ .
  - 2 For any decision problem  $\Pi \implies$  an associated language  $L_{\Pi}$ .
- Given L, Π<sub>L</sub> is the decision problem: Given x ∈ Σ\*, is x ∈ L? Each string in Σ\* is an instance of Π<sub>L</sub> and L is the set of instances for which the answer is YES.
- Given  $\Pi$  the associated language is  $L_{\Pi} = \left\{ I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \right\}.$
- 6 Thus, decision problems and languages are used interchangeably.

- **(**) A finite alphabet  $\Sigma$ .  $\Sigma^*$  is set of all finite strings on  $\Sigma$ .
- **2** A language *L* is simply a subset of  $\Sigma^*$ ; a set of strings.
- 3 Language  $\equiv$  decision problem.
  - For any language  $L \implies$  there is a decision problem  $\Pi_L$ .
  - 2 For any decision problem  $\Pi \implies$  an associated language  $L_{\Pi}$ .
- Given L, Π<sub>L</sub> is the decision problem: Given x ∈ Σ\*, is x ∈ L? Each string in Σ\* is an instance of Π<sub>L</sub> and L is the set of instances for which the answer is YES.
- Given  $\Pi$  the associated language is  $L_{\Pi} = \left\{ I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \right\}.$
- Thus, decision problems and languages are used interchangeably.

- **(**) A finite alphabet  $\Sigma$ .  $\Sigma^*$  is set of all finite strings on  $\Sigma$ .
- **2** A language *L* is simply a subset of  $\Sigma^*$ ; a set of strings.
- - For any language  $L \implies$  there is a decision problem  $\Pi_L$ .
  - **2** For any decision problem  $\Pi \implies$  an associated language  $L_{\Pi}$ .
- Given L, Π<sub>L</sub> is the decision problem: Given x ∈ Σ\*, is x ∈ L? Each string in Σ\* is an instance of Π<sub>L</sub> and L is the set of instances for which the answer is YES.
- Given  $\Pi$  the associated language is  $L_{\Pi} = \left\{ I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \right\}.$
- Thus, decision problems and languages are used interchangeably.

- **(**) A finite alphabet  $\Sigma$ .  $\Sigma^*$  is set of all finite strings on  $\Sigma$ .
- **2** A language *L* is simply a subset of  $\Sigma^*$ ; a set of strings.
- - For any language  $L \implies$  there is a decision problem  $\Pi_L$ .
  - 2 For any decision problem  $\Pi \implies$  an associated language  $L_{\Pi}$ .
- Given L, Π<sub>L</sub> is the decision problem: Given x ∈ Σ\*, is x ∈ L? Each string in Σ\* is an instance of Π<sub>L</sub> and L is the set of instances for which the answer is YES.
- Given  $\Pi$  the associated language is  $L_{\Pi} = \left\{ I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \right\}.$
- Thus, decision problems and languages are used interchangeably.

- **(**) A finite alphabet  $\Sigma$ .  $\Sigma^*$  is set of all finite strings on  $\Sigma$ .
- **2** A language *L* is simply a subset of  $\Sigma^*$ ; a set of strings.
- - For any language  $L \implies$  there is a decision problem  $\Pi_L$ .
  - **a** For any decision problem  $\Pi \implies$  an associated language  $L_{\Pi}$ .
- Given L, Π<sub>L</sub> is the decision problem: Given x ∈ Σ\*, is x ∈ L? Each string in Σ\* is an instance of Π<sub>L</sub> and L is the set of instances for which the answer is YES.
- Given  $\Pi$  the associated language is  $L_{\Pi} = \left\{ I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \right\}.$
- 6 Thus, decision problems and languages are used interchangeably.

- **(**) A finite alphabet  $\Sigma$ .  $\Sigma^*$  is set of all finite strings on  $\Sigma$ .
- **2** A language *L* is simply a subset of  $\Sigma^*$ ; a set of strings.
- - For any language  $L \implies$  there is a decision problem  $\Pi_L$ .
  - **a** For any decision problem  $\Pi \implies$  an associated language  $L_{\Pi}$ .
- ④ Given L, Π<sub>L</sub> is the decision problem: Given x ∈ Σ\*, is x ∈ L? Each string in Σ\* is an instance of Π<sub>L</sub> and L is the set of instances for which the answer is YES.
- Given  $\Pi$  the associated language is  $L_{\Pi} = \left\{ I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \right\}.$
- Thus, decision problems and languages are used interchangeably.

- **(**) A finite alphabet  $\Sigma$ .  $\Sigma^*$  is set of all finite strings on  $\Sigma$ .
- **2** A language *L* is simply a subset of  $\Sigma^*$ ; a set of strings.
- 3 Language  $\equiv$  decision problem.
  - For any language  $L \implies$  there is a decision problem  $\Pi_L$ .
  - **a** For any decision problem  $\Pi \implies$  an associated language  $L_{\Pi}$ .
- Given L, Π<sub>L</sub> is the decision problem: Given x ∈ Σ\*, is x ∈ L? Each string in Σ\* is an instance of Π<sub>L</sub> and L is the set of instances for which the answer is YES.
- Given  $\Pi$  the associated language is  $L_{\Pi} = \left\{ I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \right\}.$
- 6 Thus, decision problems and languages are used interchangeably.

12 / 40

- **(1)** A finite alphabet  $\Sigma$ .  $\Sigma^*$  is set of all finite strings on  $\Sigma$ .
- **2** A language *L* is simply a subset of  $\Sigma^*$ ; a set of strings.
- 3 Language  $\equiv$  decision problem.
  - For any language  $L \implies$  there is a decision problem  $\Pi_L$ .
  - **a** For any decision problem  $\Pi \implies$  an associated language  $L_{\Pi}$ .
- Given L, Π<sub>L</sub> is the decision problem: Given x ∈ Σ\*, is x ∈ L? Each string in Σ\* is an instance of Π<sub>L</sub> and L is the set of instances for which the answer is YES.
- **(a)** Given  $\Pi$  the associated language is  $L_{\Pi} = \left\{ I \mid I \text{ is an instance of } \Pi \text{ for which answer is YES} \right\}.$
- Thus, decision problems and languages are used interchangeably.

### Example

The decision problem Primality, and the language

$$\boldsymbol{L} = \left\{ \# \boldsymbol{p} \mid \boldsymbol{p} \text{ is a prime number} \right\}.$$

Here #p is the string in base 10 representing p.

2 Bipartite (is given graph is bipartite. The language is

 $L = \{ S(G) \mid G \text{ is a bipartite graph} \}.$ 

### Example

The decision problem Primality, and the language

$$\boldsymbol{L} = \left\{ \boldsymbol{\#p} \mid \boldsymbol{p} \text{ is a prime number} \right\}.$$

Here #p is the string in base 10 representing p. **Bipartite** (is given graph is bipartite. The language is 2

$$L = \left\{ S(G) \mid G \text{ is a bipartite graph} \right\}.$$

Here  $\mathcal{S}(G)$  is the string encoding the graph G.

- For decision problems *X*, *Y*, a reduction from *X* to *Y* is:
  - 1 An algorithm ...
  - 2 Input:  $I_X$ , an instance of X.
  - **3** Output:  $I_Y$  an instance of Y.
  - Such that:

 $I_Y$  is YES instance of  $Y \iff I_X$  is YES instance of X

2 There are other kinds of reductions.

**(**) For decision problems **X**, **Y**, a reduction from **X** to **Y** is:



- **a** Input:  $I_X$ , an instance of **X**.
- **3** Output:  $I_Y$  an instance of Y.
- 4 Such that:

```
I_Y is YES instance of Y \iff I_X is YES instance of X
```

2 There are other kinds of reductions.

**(**) For decision problems **X**, **Y**, a reduction from **X** to **Y** is:



- **a** Input:  $I_X$ , an instance of **X**.
- **3** Output:  $I_Y$  an instance of **Y**.
- Such that:

 $I_Y$  is YES instance of  $Y \iff I_X$  is YES instance of X

2 There are other kinds of reductions.

**(**) For decision problems **X**, **Y**, a reduction from **X** to **Y** is:



- **a** Input:  $I_X$ , an instance of **X**.
- **3** Output:  $I_Y$  an instance of **Y**.
- Such that:

 $I_Y$  is YES instance of  $Y \iff I_X$  is YES instance of X

Provide the state of the sta

# Using reductions to solve problems

- **(1)**  $\mathcal{R}$ : Reduction  $X \to Y$
- **2**  $\mathcal{A}_{\mathbf{Y}}$ : algorithm for  $\mathbf{Y}$ :

 $X(I_X):$   $// I_X:$  instance of X.  $I_Y \leftarrow \mathcal{R}(I_X)$ return  $\mathcal{A}_Y(I_Y)$ 

If  $\mathcal{R}$  and  $\mathcal{A}_Y$  polynomial-time  $\implies \mathcal{A}_X$  polynomial-time.

# Using reductions to solve problems

- **2**  $\mathcal{A}_{\mathbf{Y}}$ : algorithm for  $\mathbf{Y}$ :
- $\implies \text{New algorithm for } X:$

 $\mathcal{A}_X(I_X)$ :  $// I_X$ : instance of X.  $I_Y \leftarrow \mathcal{R}(I_X)$ return  $\mathcal{A}_Y(I_Y)$ 

If  $\mathcal{R}$  and  $\mathcal{A}_Y$  polynomial-time  $\implies \mathcal{A}_X$  polynomial-time.

# Using reductions to solve problems



#### "Problem X is no harder to solve than Problem Y".

- If Problem X reduces to Problem Y (we write X ≤ Y), then X cannot be harder to solve than Y.
- Bipartite Matching ≤ Max-Flow.
   Bipartite Matching cannot be harder than Max-Flow.
- Equivalently, Max-Flow is at least as hard as Bipartite Matching.
- **5**  $X \leq Y$ :
  - **1** X is no harder than Y, or
  - 2 Y is at least as hard as X.

- Image of the problem X is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write  $X \leq Y$ ), then X cannot be harder to solve than Y.
- Bipartite Matching ≤ Max-Flow.
   Bipartite Matching cannot be harder than Max-Flow.
- Equivalently, Max-Flow is at least as hard as Bipartite Matching.
- **5**  $X \leq Y$ :
  - **1** X is no harder than Y, or
  - 2 Y is at least as hard as X.

- Image of the problem X is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write  $X \leq Y$ ), then X cannot be harder to solve than Y.
- Bipartite Matching < Max-Flow.</li>
   Bipartite Matching cannot be harder than Max-Flow.
- Equivalently, Max-Flow is at least as hard as Bipartite Matching.
- **5**  $X \leq Y$ :
  - **1** X is no harder than Y, or
  - 2 Y is at least as hard as X.

- Image of the problem X is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write  $X \leq Y$ ), then X cannot be harder to solve than Y.
- Bipartite Matching ≤ Max-Flow. Bipartite Matching cannot be harder than Max-Flow.
- Equivalently,
   Max-Flow is at least as hard as Bipartite Matching.
- **5**  $X \leq Y$ :
  - **1** X is no harder than Y, or
  - Y is at least as hard as X.

- Image of the problem X is no harder to solve than Problem Y".
- If Problem X reduces to Problem Y (we write  $X \leq Y$ ), then X cannot be harder to solve than Y.
- Bipartite Matching ≤ Max-Flow. Bipartite Matching cannot be harder than Max-Flow.
- Equivalently,

Max-Flow is at least as hard as Bipartite Matching.

- $X \leq Y :$ 
  - X is no harder than Y, or
  - Y is at least as hard as X.

# 21.4: Examples of Reductions

# 21.4.1: Independent Set and Clique



#### Given a graph G.

A set of vertices V' is an independent set:
 no two vertices of V' connected by an edge.

Clique: every pair of vertices in V' is connected by an edge of G.



Given a graph G.

A set of vertices V' is an independent set: no two vertices of V' connected by an edge.

Clique: every pair of vertices in V' is connected by an edge of G.



Given a graph G.

A set of vertices V' is an **independent set**: no two vertices of V' connected by an edge.



clique: every pair of vertices in V' is connected by an edge of G.

Sariel (UIUC)



- Given a graph G.
- A set of vertices V' is an **independent set**: no two vertices of V' connected by an edge.



Output: every pair of vertices in V' is connected by an edge of G.



- Given a graph G.
- A set of vertices V' is an **independent set**: no two vertices of V' connected by an edge.



Clique: every pair of vertices in V' is connected by an edge of G.



# The Independent Set and Clique Problems

#### Problem: Independent Set

**Instance:** A graph G and an integer k. **Question:** Does G has an independent set of size  $\geq k$ ?

#### **Problem: Clique**

**Instance:** A graph G and an integer k. **Question:** Does G has a clique of size  $\geq k$ ?

# The Independent Set and Clique Problems

**Problem:** Independent Set

**Instance:** A graph G and an integer k. **Question:** Does G has an independent set of size  $\geq k$ ?

#### Problem: Clique

**Instance:** A graph G and an integer k. **Question:** Does G has a clique of size  $\geq k$ ?

### Recall

For decision problems X, Y, a reduction from X to Y is:

- An algorithm . . .
- 2) that takes  $I_X$ , an instance of X as input ...
- 3) and returns  $I_Y$ , an instance of Y as output ...
- Such that the solution (YES/NO) to *I<sub>Y</sub>* is the same as the solution to *I<sub>X</sub>*.



An instance of Independent Set is a graph G and an integer k.

- 2 Convert G to  $\overline{G}$ , in which (u, v) is an edge  $\iff (u, v)$  is not an edge of G.  $(\overline{G}$  is the *complement* of G.)
- **3** ([)] $\overline{G}$ , k: instance of Clique.



An instance of Independent Set is a graph G and an integer k.

- 2 Convert G to  $\overline{G}$ , in which (u, v) is an edge  $\iff (u, v)$  is not an edge of G.  $(\overline{G}$  is the *complement* of G.)
- **3** ([)] $\overline{G}$ , k: instance of Clique.



- **(1)** An instance of **Independent Set** is a graph **G** and an integer **k**.
- ② Convert G to  $\overline{G}$ , in which (u, v) is an edge  $\iff (u, v)$  is not an edge of G.  $(\overline{G}$  is the *complement* of G.)
- **3** ([)] $\overline{G}$ , k: instance of Clique.



- **(1)** An instance of **Independent Set** is a graph **G** and an integer **k**.
- **2** Convert **G** to  $\overline{G}$ , in which (u, v) is an edge  $\iff (u, v)$  is not an edge of **G**. ( $\overline{G}$  is the *complement* of **G**.)
- ([)] $\overline{G}$ , k: instance of Clique.

#### • Independent Set $\leq$ Clique.

What does this mean?

- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- **3** Clique is at least as hard as Independent Set.
- Also... Independent Set is at least as hard as Clique.

- Independent Set < Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- **3** Clique is at least as hard as Independent Set.
- Also... Independent Set is at least as hard as Clique.

- Independent Set < Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- **Olique** is at least as hard as **Independent Set**.
- Also... Independent Set is at least as hard as Clique.

- Independent Set < Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- **Olique** is at least as hard as **Independent Set**.
- Also... Independent Set is at least as hard as Clique.

# $21.4.2: {\rm NFAs/DFAs \ and \ Universality}$

- DFAs (Remember 373?) are deterministic automata that accept regular languages.
- 2 NFAs are the same, except that non-deterministic.
- Every NFA can be converted to a DFA that accepts the same language using the subset construction.
- ④ (How long does this take?)
- S The smallest DFA equivalent to an NFA with n states may have ≈ 2<sup>n</sup> states.

- DFAs (Remember 373?) are deterministic automata that accept regular languages.
- INFAs are the same, except that non-deterministic.
- Every NFA can be converted to a DFA that accepts the same language using the subset construction.
- ④ (How long does this take?)
- S The smallest DFA equivalent to an NFA with *n* states may have ≈ 2<sup>n</sup> states.

- DFAs (Remember 373?) are deterministic automata that accept regular languages.
- 2 NFAs are the same, except that non-deterministic.
- Every NFA can be converted to a DFA that accepts the same language using the subset construction.
- (How long does this take?)
- S The smallest DFA equivalent to an NFA with n states may have ≈ 2<sup>n</sup> states.

- DFAs (Remember 373?) are deterministic automata that accept regular languages.
- 2 NFAs are the same, except that non-deterministic.
- Every NFA can be converted to a DFA that accepts the same language using the subset construction.
- (How long does this take?)
- 5 The smallest DFA equivalent to an NFA with n states may have ≈ 2<sup>n</sup> states.

- DFAs (Remember 373?) are deterministic automata that accept regular languages.
- 2 NFAs are the same, except that non-deterministic.
- Severy NFA can be converted to a DFA that accepts the same language using the subset construction.
- (How long does this take?)
- Solution 5 States 5 The smallest DFA equivalent to an NFA with *n* states may have ≈ 2<sup>n</sup> states.

- **1** A DFA **M** is universal if it accepts every string.
- **2** That is,  $L(M) = \Sigma^*$ , the set of all strings.
- **3** DFA universality problem:

#### Problem (**DFA universality**)

- How do we solve DFA Universality?
- We check if *M* has *any* reachable non-final state.
- Ilternatively, minimize *M* to obtain *M'* and see if *M'* has a single state which is an accepting state.

#### **(1)** A DFA **M** is universal if it accepts every string.

- 2 That is,  $L(M) = \Sigma^*$ , the set of all strings.
- **3** DFA universality problem:

#### Problem (**DFA universality**)

- How do we solve **DFA Universality**?
- We check if *M* has *any* reachable non-final state.
- Ilternatively, minimize *M* to obtain *M'* and see if *M'* has a single state which is an accepting state.

- **(1)** A DFA **M** is universal if it accepts every string.
- **2** That is,  $L(M) = \Sigma^*$ , the set of all strings.
- **3** DFA universality problem:

#### Problem (**DFA universality**)

- How do we solve DFA Universality?
- We check if *M* has *any* reachable non-final state.
- Ilternatively, minimize *M* to obtain *M'* and see if *M'* has a single state which is an accepting state.

**(1)** A DFA **M** is universal if it accepts every string.

- **2** That is,  $L(M) = \Sigma^*$ , the set of all strings.
- **③** DFA universality problem:

#### Problem (**DFA universality**)

- How do we solve **DFA Universality**?
- We check if *M* has *any* reachable non-final state.
- Iternatively, minimize *M* to obtain *M'* and see if *M'* has a single state which is an accepting state.

**(1)** A DFA **M** is universal if it accepts every string.

- **2** That is,  $L(M) = \Sigma^*$ , the set of all strings.
- **③** DFA universality problem:

#### Problem (**DFA universality**)

- How do we solve DFA Universality?
- 9 We check if *M* has *any* reachable non-final state.
- Iternatively, minimize *M* to obtain *M'* and see if *M'* has a single state which is an accepting state.

**(1)** A DFA **M** is universal if it accepts every string.

- **2** That is,  $L(M) = \Sigma^*$ , the set of all strings.
- **③** DFA universality problem:

#### Problem (**DFA universality**)

- How do we solve DFA Universality?
- 9 We check if *M* has *any* reachable non-final state.
- Alternatively, minimize M to obtain M' and see if M' has a single state which is an accepting state.

- An NFA N is universal if it accepts every string. That is,
   L(N) = Σ\*, the set of all strings.
- 2 NFA universality problem:

#### Problem (**NFA universality**)

- How do we solve NFA Universality?
- Reduce it to **DFA Universality**...
- Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
- 6 The reduction takes exponential time!

- An NFA N is universal if it accepts every string. That is,
   L(N) = Σ\*, the set of all strings.
- In NFA universality problem:

#### Problem (NFA universality)

- 3 How do we solve NFA Universality?
- Reduce it to **DFA Universality**...
- Siven an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
- 6 The reduction takes exponential time!

- An NFA N is universal if it accepts every string. That is,
   L(N) = Σ\*, the set of all strings.
- In NFA universality problem:

#### Problem (NFA universality)

- Item 4 is the solve NFA Universality?
- ④ Reduce it to DFA Universality...
- Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
- 6 The reduction takes exponential time!

- An NFA N is universal if it accepts every string. That is,
   L(N) = Σ\*, the set of all strings.
- In NFA universality problem:

#### Problem (**NFA universality**)

- Item to we solve NFA Universality?
- Reduce it to DFA Universality...
- Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
- The reduction takes exponential time!

- An NFA N is universal if it accepts every string. That is,
   L(N) = Σ\*, the set of all strings.
- In NFA universality problem:

#### Problem (**NFA universality**)

- Item to we solve NFA Universality?
- Reduce it to DFA Universality...
- Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
- The reduction takes exponential time!

- An NFA N is universal if it accepts every string. That is,
   L(N) = Σ\*, the set of all strings.
- In NFA universality problem:

#### Problem (NFA universality)

- Item to we solve NFA Universality?
- Reduce it to DFA Universality...
- Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
- The reduction takes exponential time!

- **1** An algorithm is **efficient** if it runs in polynomial-time.
- To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.
- If we have a polynomial-time reduction from problem X to problem Y (we write  $X \leq_P Y$ ), and a poly-time algorithm  $\mathcal{A}_Y$ for Y, we have a polynomial-time/efficient algorithm for X.

#### An algorithm is **efficient** if it runs in polynomial-time.

- To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.
- If we have a polynomial-time reduction from problem X to problem Y (we write  $X \leq_P Y$ ), and a poly-time algorithm  $\mathcal{A}_Y$ for Y, we have a polynomial-time/efficient algorithm for X.

- An algorithm is efficient if it runs in polynomial-time.
- To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.
- If we have a polynomial-time reduction from problem X to problem Y (we write  $X \leq_P Y$ ), and a poly-time algorithm  $\mathcal{A}_Y$ for Y, we have a polynomial-time/efficient algorithm for X.

- An algorithm is efficient if it runs in polynomial-time.
- To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.
- If we have a polynomial-time reduction from problem X to problem Y (we write X ≤<sub>P</sub> Y), and a poly-time algorithm A<sub>Y</sub> for Y, we have a polynomial-time/efficient algorithm for X.



28

- A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:
  - **()** given an instance  $I_X$  of X,  $\mathcal{A}$  produces an instance  $I_Y$  of Y
  - **a**  $\mathcal{A}$  runs in time polynomial in  $|I_X|$ .
  - **3** Answer to  $I_X$  YES  $\iff$  answer to  $I_Y$  is YES.
- 2 Polynomial transitivity:

#### Proposition

If  $X \leq_P Y$  then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is a Karp reduction. Most reductions we will need are Karp reductions.

- A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:
  - **()** given an instance  $I_X$  of X,  $\mathcal{A}$  produces an instance  $I_Y$  of Y
  - **2**  $\mathcal{A}$  runs in time polynomial in  $|I_X|$ .
  - **3** Answer to  $I_X$  YES  $\iff$  answer to  $I_Y$  is YES.
- Polynomial transitivity:

#### Proposition

If  $X \leq_P Y$  then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is a Karp reduction. Most reductions we will need are Karp reductions.

29

- A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:
  - **()** given an instance  $I_X$  of X,  $\mathcal{A}$  produces an instance  $I_Y$  of Y
  - **a**  $\mathcal{A}$  runs in time polynomial in  $|I_X|$ .
  - **3** Answer to  $I_X$  YES  $\iff$  answer to  $I_Y$  is YES.
- Polynomial transitivity:

#### Proposition

If  $X \leq_P Y$  then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is a Karp reduction. Most reductions we will need are Karp reductions.

29

- For decision problems X and Y, if  $X \leq_P Y$ , and Y has an efficient algorithm, X has an efficient algorithm.
- If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?
- ③ Because we showed Independent Set ≤<sub>P</sub> Clique. If Clique had an efficient algorithm, so would Independent Set!
- If  $X \leq_P Y$  and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

- For decision problems X and Y, if  $X \leq_P Y$ , and Y has an efficient algorithm, X has an efficient algorithm.
- If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?
- ③ Because we showed Independent Set ≤<sub>P</sub> Clique. If Clique had an efficient algorithm, so would Independent Set!
- If  $X \leq_P Y$  and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

- For decision problems X and Y, if  $X \leq_P Y$ , and Y has an efficient algorithm, X has an efficient algorithm.
- If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?
- ③ Because we showed Independent Set ≤<sub>P</sub> Clique. If Clique had an efficient algorithm, so would Independent Set!
- If  $X \leq_P Y$  and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

- For decision problems X and Y, if  $X \leq_P Y$ , and Y has an efficient algorithm, X has an efficient algorithm.
- If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?
- Because we showed Independent Set ≤<sub>P</sub> Clique. If Clique had an efficient algorithm, so would Independent Set!
- If X ≤<sub>P</sub> Y and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

30

- For decision problems X and Y, if  $X \leq_P Y$ , and Y has an efficient algorithm, X has an efficient algorithm.
- If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?
- Because we showed Independent Set ≤<sub>P</sub> Clique. If Clique had an efficient algorithm, so would Independent Set!
- **a** If  $X \leq_P Y$  and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

#### Proposition

Let  $\mathcal{R}$  be a polynomial-time reduction from X to Y. Then for any instance  $I_X$  of X, the size of the instance  $I_Y$  of Y produced from  $I_X$  by  $\mathcal{R}$  is polynomial in the size of  $I_X$ .

#### Proof.

 $\mathcal{R}$  is a polynomial-time algorithm and hence on input  $I_X$  of size  $|I_X|$  it runs in time  $p(|I_X|)$  for some polynomial p().  $I_Y$  is the output of  $\mathcal{R}$  on input  $I_X$ .  $\mathcal{R}$  can write at most  $p(|I_X|)$  bits and hence  $|I_Y| \leq p(|I_X|)$ .

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

#### Proposition

Let  $\mathcal{R}$  be a polynomial-time reduction from X to Y. Then for any instance  $I_X$  of X, the size of the instance  $I_Y$  of Y produced from  $I_X$  by  $\mathcal{R}$  is polynomial in the size of  $I_X$ .

#### Proof.

 $\mathcal{R}$  is a polynomial-time algorithm and hence on input  $I_X$  of size  $|I_X|$  it runs in time  $p(|I_X|)$  for some polynomial p().  $I_Y$  is the output of  $\mathcal{R}$  on input  $I_X$ .  $\mathcal{R}$  can write at most  $p(|I_X|)$  bits and hence  $|I_Y| \leq p(|I_X|)$ .

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

#### Proposition

Let  $\mathcal{R}$  be a polynomial-time reduction from X to Y. Then for any instance  $I_X$  of X, the size of the instance  $I_Y$  of Y produced from  $I_X$  by  $\mathcal{R}$  is polynomial in the size of  $I_X$ .

#### Proof.

 $\mathcal{R}$  is a polynomial-time algorithm and hence on input  $I_X$  of size  $|I_X|$  it runs in time  $p(|I_X|)$  for some polynomial p().  $I_Y$  is the output of  $\mathcal{R}$  on input  $I_X$ .  $\mathcal{R}$  can write at most  $p(|I_X|)$  bits and hence  $|I_Y| \leq p(|I_X|)$ .

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

# Polynomial-time Reduction

A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- **(**) Given an instance  $I_X$  of X, A produces an instance  $I_Y$  of Y.
- A runs in time polynomial in |I<sub>X</sub>|. This implies that |I<sub>Y</sub>| (size of I<sub>Y</sub>) is polynomial in |I<sub>X</sub>|.
- **3** Answer to  $I_X$  YES *iff* answer to  $I_Y$  is YES.

#### Proposition

If  $X \leq_P Y$  then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

#### Reductions are transitive:

#### Proposition

 $X \leq_P Y$  and  $Y \leq_P Z$  implies that  $X \leq_P Z$ .

- 2 Note:  $X \leq_P Y$  does not imply that  $Y \leq_P X$  and hence it is very important to know the FROM and TO in a reduction.
- 3 To prove  $X \leq_{P} Y$  you need to show a reduction FROM X TO Y.
- In other words show that an algorithm for Y implies an algorithm for X.

#### Reductions are transitive:

#### Proposition $X <_P Y$ and $Y <_P Z$ implies that $X <_P Z$ .

- **2** Note:  $X \leq_P Y$  does not imply that  $Y \leq_P X$  and hence it is very important to know the FROM and TO in a reduction.
- 3 To prove  $X \leq_{P} Y$  you need to show a reduction FROM X TO Y.
- In other words show that an algorithm for Y implies an algorithm for X.

#### Reductions are transitive:

#### Proposition

 $X \leq_P Y$  and  $Y \leq_P Z$  implies that  $X \leq_P Z$ .

- **2** Note:  $X \leq_P Y$  does not imply that  $Y \leq_P X$  and hence it is very important to know the FROM and TO in a reduction.
- 3 To prove  $X \leq_P Y$  you need to show a reduction FROM X TO Y.
- In other words show that an algorithm for Y implies an algorithm for X.

#### Reductions are transitive:

#### Proposition

 $X \leq_P Y$  and  $Y \leq_P Z$  implies that  $X \leq_P Z$ .

- **2** Note:  $X \leq_P Y$  does not imply that  $Y \leq_P X$  and hence it is very important to know the FROM and TO in a reduction.
- 3 To prove  $X \leq_P Y$  you need to show a reduction FROM X TO Y.
- In other words show that an algorithm for Y implies an algorithm for X.

# 21.5: Independent Set and Vertex Cover

### Vertex Cover

Given a graph G = (V, E), a set of vertices S is:



### Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

**(1)** A vertex cover if every  $e \in E$  has at least one endpoint in S.



### The Vertex Cover Problem

#### Problem (Vertex Cover)

**Input:** A graph G and integer k. **Goal:** Is there a vertex cover of size  $\leq k$  in G?

Can we relate Independent Set and Vertex Cover?

36

### The Vertex Cover Problem

#### Problem (Vertex Cover)

**Input:** A graph G and integer k. **Goal:** Is there a vertex cover of size  $\leq k$  in G?

Can we relate Independent Set and Vertex Cover?

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

- $\Rightarrow$ ) Let **S** be an independent set
  - Consider any edge  $uv \in E$ .
  - 2 Since **S** is an independent set, either  $u \not\in S$  or  $v \notin S$ .
  - **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ .
  - (4)  $V \setminus S$  is a vertex cover.

#### $\Leftarrow$ ) Let $V \setminus S$ be some vertex cover:

- **1** Consider  $u, v \in S$
- 2 uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.
- $\mathfrak{s} \implies S$  is thus an independent set.

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

- **1** Consider any edge  $uv \in E$ .
- 2 Since S is an independent set, either  $u \not\in S$  or  $v \not\in S$ .
- **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ .
- **4**  $V \setminus S$  is a vertex cover.
- ) Let  $V \setminus S$  be some vertex cover:
  - **1** Consider  $u, v \in S$
  - **2** uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.
  - $\mathfrak{s} \implies S$  is thus an independent set.

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

- Consider any edge  $uv \in E$ .
- 2 Since **S** is an independent set, either  $u \not\in S$  or  $v \notin S$ .
- **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ .
- (a)  $V \setminus S$  is a vertex cover.
- ) Let  $V \setminus S$  be some vertex cover:
  - **1** Consider  $u, v \in S$
  - 2 uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.
  - $\mathfrak{s} \implies S$  is thus an independent set.

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

- Consider any edge  $uv \in E$ .
- **2** Since **S** is an independent set, either  $u \not\in S$  or  $v \notin S$ .
- **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ .
- **4**  $V \setminus S$  is a vertex cover.
- ) Let  $V \setminus S$  be some vertex cover:
  - **1** Consider  $u, v \in S$
  - 2 uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.
  - $\mathfrak{s} \implies S$  is thus an independent set.

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

- Consider any edge  $uv \in E$ .
- **2** Since **S** is an independent set, either  $u \not\in S$  or  $v \notin S$ .
- **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ .
- **4**  $V \setminus S$  is a vertex cover.
- ) Let  $V \setminus S$  be some vertex cover:
  - **1** Consider  $u, v \in S$
  - **2** uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.
  - $\mathfrak{s} \implies S$  is thus an independent set.

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

- Consider any edge  $uv \in E$ .
- **2** Since **S** is an independent set, either  $u \not\in S$  or  $v \notin S$ .
- **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ .
- **4**  $V \setminus S$  is a vertex cover.
- $(\Leftarrow)$  Let  $V \setminus S$  be some vertex cover:
  - **1** Consider  $u, v \in S$
  - 2 uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.
  - $\mathfrak{s} \implies S$  is thus an independent set.

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

(⇒) Let S be an independent set
Consider any edge uv ∈ E.
Since S is an independent set, either u ∉ S or v ∉ S.

- **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ .
- **4**  $V \setminus S$  is a vertex cover.
- $(\Leftarrow)$  Let  $V \setminus S$  be some vertex cover:
  - Consider  $u, v \in S$
  - 2 uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.
  - $\mathfrak{s} \implies S$  is thus an independent set.

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

 $(\Rightarrow)$  Let **S** be an independent set **(1)** Consider any edge  $uv \in E$ . 2 Since S is an independent set, either  $u \notin S$  or  $v \notin S$ . **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ . **4**  $V \setminus S$  is a vertex cover.  $(\Leftarrow)$  Let  $V \setminus S$  be some vertex cover: **(1)** Consider  $u, v \in S$ **a** uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if  $V \setminus S$  is a vertex cover.

#### Proof.

 $(\Rightarrow)$  Let **S** be an independent set **(1)** Consider any edge  $uv \in E$ . 2 Since S is an independent set, either  $u \notin S$  or  $v \notin S$ . **3** Thus, either  $u \in V \setminus S$  or  $v \in V \setminus S$ . **4**  $V \setminus S$  is a vertex cover.  $(\Leftarrow)$  Let  $V \setminus S$  be some vertex cover: **(1)** Consider  $u, v \in S$ **a** uv is not an edge of G, as otherwise  $V \setminus S$  does not cover uv.  $3 \implies S$  is thus an independent set.

- G: graph with *n* vertices, and an integer *k* be an instance of the Independent Set problem.
- G has an independent set of size ≥ k iff G has a vertex cover of size ≤ n − k
- (*G*, *k*) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- ④ Therefore, Independent Set ≤<sub>P</sub> Vertex Cover. Also Vertex Cover ≤<sub>P</sub> Independent Set.

- G: graph with *n* vertices, and an integer *k* be an instance of the Independent Set problem.
- G has an independent set of size ≥ k iff G has a vertex cover of size ≤ n − k
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set ≤<sub>P</sub> Vertex Cover. Also Vertex Cover ≤<sub>P</sub> Independent Set.

- G: graph with *n* vertices, and an integer *k* be an instance of the Independent Set problem.
- G has an independent set of size ≥ k iff G has a vertex cover of size ≤ n − k
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set ≤<sub>P</sub> Vertex Cover. Also Vertex Cover ≤<sub>P</sub> Independent Set.

- G: graph with *n* vertices, and an integer *k* be an instance of the Independent Set problem.
- G has an independent set of size ≥ k iff G has a vertex cover of size ≤ n − k
- **3** (G, k) is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set ≤<sub>P</sub> Vertex Cover. Also Vertex Cover ≤<sub>P</sub> Independent Set.

# 21.6: Vertex Cover and Set Cover

- Suppose you work for the United Nations. Let U be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from U.
- 2 Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?
- More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

40

- Suppose you work for the United Nations. Let U be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from U.
- Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?
- More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

40

- Suppose you work for the United Nations. Let U be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from U.
- Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?
- More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

- Suppose you work for the United Nations. Let U be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from U.
- Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?
- More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

40

#### Problem (Set Cover)

Input: Given a set U of n elements, a collection S<sub>1</sub>, S<sub>2</sub>,..., S<sub>m</sub> of subsets of U, and an integer k.
Goal: Is there a collection of at most k of these sets S<sub>i</sub> whose union is equal to U?

#### Example

Let 
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
,  $k = 2$  with

#### $\{S_2, S_6\}$ is a set cover

Sariel (UIUC)

#### Problem (Set Cover)

**Input:** Given a set U of n elements, a collection  $S_1, S_2, \ldots S_m$  of subsets of U, and an integer k.

**Goal:** Is there a collection of at most *k* of these sets *S<sub>i</sub>* whose union is equal to *U*?

#### Example

Let 
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
,  $k = 2$  with

 $\{S_2, S_6\}$  is a set cover

#### Problem (Set Cover)

**Input:** Given a set U of n elements, a collection  $S_1, S_2, \ldots S_m$  of subsets of U, and an integer k.

**Goal:** Is there a collection of at most *k* of these sets *S<sub>i</sub>* whose union is equal to *U*?

#### Example

Let 
$$U = \{1, 2, 3, 4, 5, 6, 7\}$$
,  $k = 2$  with

 $\{S_2, S_6\}$  is a set cover

### Vertex Cover $\leq_{\mathsf{P}}$ Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

 Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.

### Vertex Cover $\leq_{P}$ Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.

### Vertex Cover $\leq_{P}$ Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.

U = E.

### Vertex Cover $\leq_{P}$ Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- U = E.
- We will have one set corresponding to each vertex;
   S<sub>v</sub> = {e | e is incident on v}.

## Vertex Cover $\leq_{P}$ Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- U = E.
- We will have one set corresponding to each vertex;
   S<sub>v</sub> = {e | e is incident on v}.

Observe that **G** has vertex cover of size **k** if and only if  $U, \{S_v\}_{v \in V}$  has a set cover of size **k**. (Exercise: Prove this.)

## **Vertex Cover** $\leq_{P}$ **Set Cover**: Example



Let  $U = \{a, b, c, d, e, f, g\}$ , k = 2 with

 $\begin{array}{ll} S_1 = \{c,g\} & S_2 = \{b,d\} \\ S_3 = \{c,d,e\} & S_4 = \{e,f\} \\ S_5 = \{a\} & S_6 = \{a,b,f,g\} \end{array}$ 

 $\{S_3, S_6\}$  is a set cover

{3,6} is a vertex cover

### **Vertex Cover** $\leq_{P}$ **Set Cover**: Example



Let  $U = \{a, b, c, d, e, f, g\}$ , k = 2 with  $S_1 = \{c, g\}$   $S_2 = \{b, d\}$   $S_3 = \{c, d, e\}$   $S_4 = \{e, f\}$  $S_5 = \{a\}$   $S_6 = \{a, b, f, g\}$ 

{3,6} is a vertex cover

{**S**<sub>3</sub>, **S**<sub>6</sub>} is a set cover

### **Vertex Cover** $\leq_{P}$ **Set Cover**: Example



| Let $U = \{a, b\}$<br>k = 2 with                         | o, c, d, e, f, g},                                                   |
|----------------------------------------------------------|----------------------------------------------------------------------|
| $S_1 = \{c, g\}$<br>$S_3 = \{c, d, e\}$<br>$S_5 = \{a\}$ | $S_{2} = \{b, d\}$<br>$S_{4} = \{e, f\}$<br>$S_{6} = \{a, b, f, g\}$ |
| $\{S_3, S_6\}$ is a set cover                            |                                                                      |

 $\{3, 6\}$  is a vertex cover

## Proving Reductions

### To prove that $X \leq_P Y$ you need to give an algorithm $\mathcal{A}$ that:

- **(1)** Transforms an instance  $I_X$  of X into an instance  $I_Y$  of Y.
- 2 Satisfies the property that answer to  $I_X$  is YES iff  $I_Y$  is YES.
  - typical easy direction to prove: answer to  $I_Y$  is YES if answer to  $I_X$  is YES
  - typical difficult direction to prove: answer to I<sub>X</sub> is YES if answer to I<sub>Y</sub> is YES (equivalently answer to I<sub>X</sub> is NO if answer to I<sub>Y</sub> is NO).

44

3 Runs in polynomial time.

## Proving Reductions

To prove that  $X \leq_P Y$  you need to give an algorithm  $\mathcal{A}$  that:

- **(1)** Transforms an instance  $I_X$  of X into an instance  $I_Y$  of Y.
- 2 Satisfies the property that answer to  $I_X$  is YES iff  $I_Y$  is YES.
  - typical easy direction to prove: answer to *I<sub>Y</sub>* is YES if answer to *I<sub>X</sub>* is YES
  - typical difficult direction to prove: answer to I<sub>X</sub> is YES if answer to I<sub>Y</sub> is YES (equivalently answer to I<sub>X</sub> is NO if answer to I<sub>Y</sub> is NO).

44

**3** Runs in **polynomial** time.

## Proving Reductions

To prove that  $X \leq_P Y$  you need to give an algorithm  $\mathcal{A}$  that:

- **(1)** Transforms an instance  $I_X$  of X into an instance  $I_Y$  of Y.
- **2** Satisfies the property that answer to  $I_X$  is YES iff  $I_Y$  is YES.
  - typical easy direction to prove: answer to *I<sub>Y</sub>* is YES if answer to *I<sub>X</sub>* is YES
  - typical difficult direction to prove: answer to I<sub>X</sub> is YES if answer to I<sub>Y</sub> is YES (equivalently answer to I<sub>X</sub> is NO if answer to I<sub>Y</sub> is NO).

44

3 Runs in polynomial time.

### Example of incorrect reduction proof

Try proving Matching  $\leq_P$  Bipartite Matching via following reduction:

Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
Let V<sub>1</sub> = {u<sub>1</sub> | u ∈ V} and V<sub>2</sub> = {u<sub>2</sub> | u ∈ V}. We set V' = V<sub>1</sub> ∪ V<sub>2</sub> (that is, we make two copies of V)
E' = {u<sub>1</sub>v<sub>2</sub> | u ≠ v and uv ∈ E}

**2** Given **G** and integer k the reduction outputs **G'** and k.

# Example



Reduction is a poly-time algorithm. If **G** has a matching of size k then **G'** has a matching of size k.

#### Proof.

Exercise.

### Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex  $u \in V$  has two copies  $u_1$  and  $u_2$  in G'. A matching in G' may use both copies!



Reduction is a poly-time algorithm. If **G** has a matching of size k then **G'** has a matching of size k.

### Proof.

#### Exercise.

#### Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex  $u \in V$  has two copies  $u_1$  and  $u_2$  in G'. A matching in G' may use both copies!



Reduction is a poly-time algorithm. If **G** has a matching of size k then **G'** has a matching of size k.

### Proof.

Exercise.

### Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex  $u \in V$  has two copies  $u_1$  and  $u_2$  in G'. A matching in G' may use both copies!



Reduction is a poly-time algorithm. If **G** has a matching of size k then **G'** has a matching of size k.

### Proof.

Exercise.

### Claim

If G' has a matching of size k then G has a matching of size k.

**Incorrect!** Why? Vertex  $u \in V$  has two copies  $u_1$  and  $u_2$  in G'. A matching in G' may use both copies!



Reduction is a poly-time algorithm. If **G** has a matching of size k then **G'** has a matching of size k.

### Proof.

Exercise.

### Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex  $u \in V$  has two copies  $u_1$  and  $u_2$  in G'. A matching in G' may use both copies!

- 1 We looked at polynomial-time reductions.
- 2 Using polynomial-time reductions
  - **1** If  $X \leq_{P} Y$ , and we have an efficient algorithm for Y, we have an efficient algorithm for X.
  - 2 If  $X \leq_P Y$ , and there is no efficient algorithm for X, there is no efficient algorithm for Y.
- We looked at some examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

### We looked at polynomial-time reductions.

- 2 Using polynomial-time reductions
  - **1** If  $X \leq_{P} Y$ , and we have an efficient algorithm for Y, we have an efficient algorithm for X.
  - 2 If  $X \leq_P Y$ , and there is no efficient algorithm for X, there is no efficient algorithm for Y.
- We looked at some examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

We looked at polynomial-time reductions.

- ② Using polynomial-time reductions
  - **1** If  $X \leq_P Y$ , and we have an efficient algorithm for Y, we have an efficient algorithm for X.
  - 2 If  $X \leq_P Y$ , and there is no efficient algorithm for X, there is no efficient algorithm for Y.
- We looked at some examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

- We looked at polynomial-time reductions.
- ② Using polynomial-time reductions
  - **1** If  $X \leq_{P} Y$ , and we have an efficient algorithm for Y, we have an efficient algorithm for X.
  - 2 If  $X \leq_P Y$ , and there is no efficient algorithm for X, there is no efficient algorithm for Y.
- We looked at some examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

- We looked at polynomial-time reductions.
- ② Using polynomial-time reductions
  - **1** If  $X \leq_{P} Y$ , and we have an efficient algorithm for Y, we have an efficient algorithm for X.
  - If X ≤<sub>P</sub> Y, and there is no efficient algorithm for X, there is no efficient algorithm for Y.
- We looked at some examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

- We looked at polynomial-time reductions.
- ② Using polynomial-time reductions
  - **1** If  $X \leq_{P} Y$ , and we have an efficient algorithm for Y, we have an efficient algorithm for X.
  - If X ≤<sub>P</sub> Y, and there is no efficient algorithm for X, there is no efficient algorithm for Y.
- We looked at some examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.