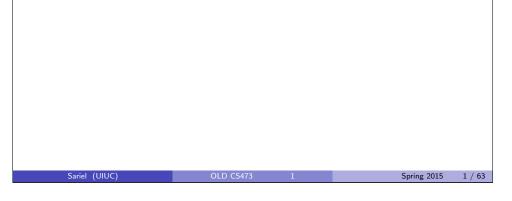
OLD CS 473: Fundamental Algorithms, Spring 2015

Polynomial Time Reductions

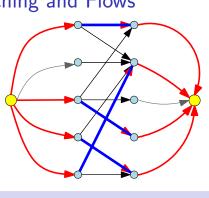
Lecture 21 April 14, 2015



Example 1: Bipartite Matching and Flows How do we solve the

Bipartite Matching Problem?

Given a bipartite graph $G = (U \cup V, E)$ and number k, does G have a matching of size $\geq k$?

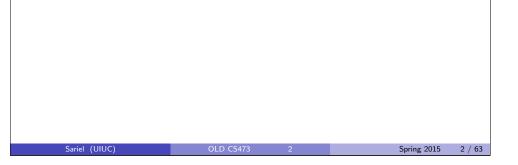


Solution

Reduce it to Max-Flow. G has a matching of size $\geq k \iff$ there is a flow from s to t of value $\geq k$.

Reductions

- Reduction from Problem X to Problem Y (informally): having algorithm for Y, then have algorithm for Problem X.
- We use reductions to find algorithms to solve problems.
- We also use reductions to show that we can't find algorithms for some problems. (We say that these problems are hard.)
- Also, the right reductions might win you a million dollars!



Types of Problems

Decision, Search, and Optimization

- **Decision problem**. Example: given *n*, is *n* prime?.
- Search problem. Example: given *n*, find a factor of *n* if it exists.
- Optimization problem. Example: find the smallest prime factor of *n*.

OL

Optimization and Decision problems For max flow...

Max-flow as optimization problem:

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between s and t.

Max-flow as decision problem:

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K, is there a flow in G, from s to t, of value at least K?

While using reductions and comparing problems, we typically work with the decision versions. Decision problems have Yes/No answers. This makes them easy to work with.

Problems vs Instances

- A problem Π consists of an *infinite* collection of inputs $\{I_1, I_2, \ldots, \}$. Each input is referred to as an instance.
- The size of an instance *I* is the number of bits in its representation.
- Solutions For an instance I, sol(I) is a set of feasible solutions to I.
- If or optimization problems each solution s ∈ sol(l) has an associated value.

Examples

Sariel (UIUC)

- **1** Instance **Bipartite Matching**: a bipartite graph, and integer **k**.
- **2** Solution is "YES" if graph has matching size $\geq k$, else "NO".
- Solution Instance Max-Flow: graph G with edge-capacities, two vertices s, t, and an integer k.
- Solution to instance is "YES" if there is a flow from s to t of value $\geq k$, else "NO".
- **(a)** An algorithm for a decision Problem X?
- Oecision algorithm: Input an instance of X, and outputs either "YES" or "NO".

Encoding an instance into a string

1; Instance of some problem.

Sariel (11111C

- I can be fully and precisely described (say in a text file).
- Resulting text file is a binary string.
- \implies Any input can be interpreted as a binary string S.
- \odot ... Running time of algorithm: Function of length of **S** (i.e., **n**).

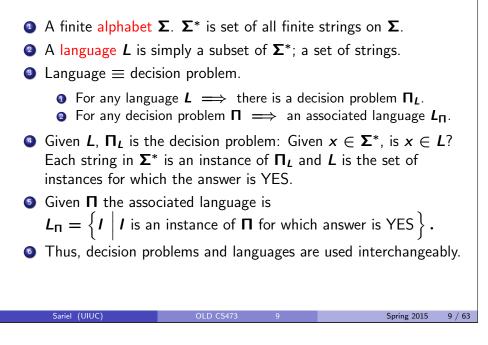
Spring 2015

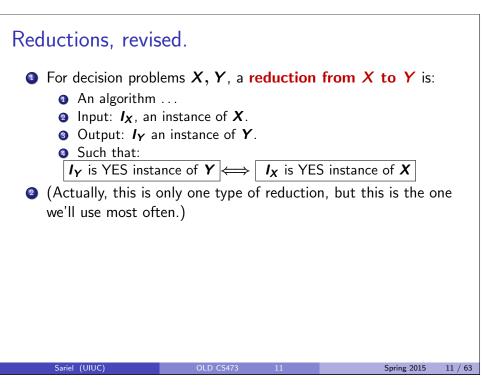
Spring 2015

OLD CS473

Spring 2015

Decision Problems and Languages





Example

Sariel

The decision problem Primality, and the language

 $\boldsymbol{L} = \left\{ \boldsymbol{\#p} \mid \boldsymbol{p} \text{ is a prime number} \right\}.$

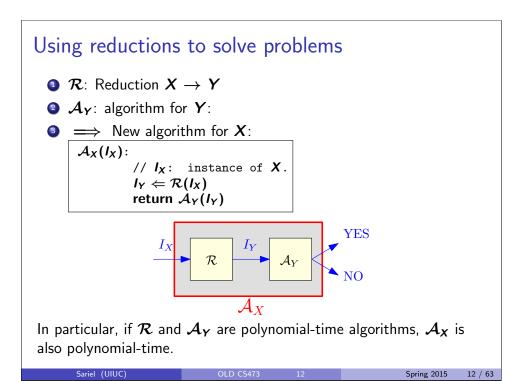
Here #p is the string in base 10 representing p.
Bipartite (is given graph is bipartite. The language is

 $L = \left\{ S(G) \mid G \text{ is a bipartite graph} \right\}.$

Spring 2015

10 / 63

Here $\mathcal{S}(G)$ is the string encoding the graph G.



Comparing Problems

Reductions allow the harder to solve the so		ne notion	n of "Problem X is n	0
 If Problem X redu X cannot be hard 		``	write $\pmb{X} \leq \pmb{Y}$), then	
Bipartite Matching Therefore, Biparting Max-Flow.			e harder than	
Equivalently, Max-Flow is at le	ast as hard as B	Sipartite	e Matching.	
 More generally, if Y, or Y is at leas 	—	say tha	t $oldsymbol{X}$ is no harder than	ı
Sariel (UIUC)	OLD CS473	13	Spring 2015 13	/ 63

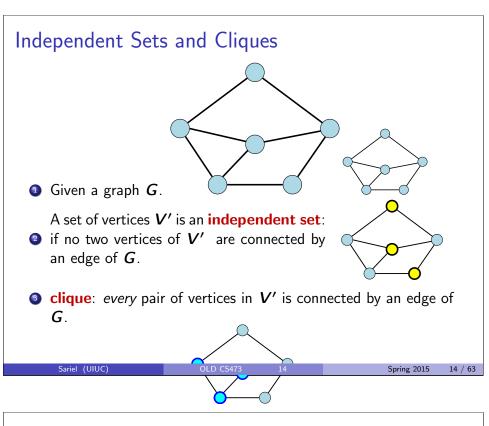
The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k. **Question:** Does G has an independent set of size > k?

Problem: Clique

Instance: A graph G and an integer k. **Question:** Does G has a clique of size $\geq k$?



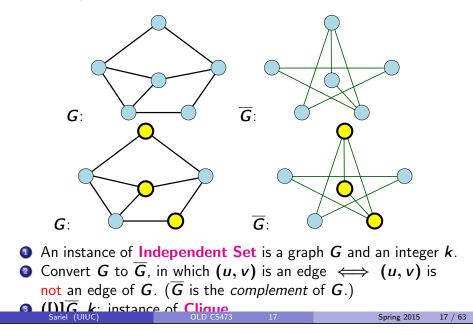
Recall

For decision problems X, Y, a reduction from X to Y is:

- An algorithm . . .
- 2 that takes I_X , an instance of X as input ...
- **3** and returns I_Y , an instance of Y as output ...
- such that the solution (YES/NO) to *I_Y* is the same as the solution to *I_X*.

OLD CS473

Reducing Independent Set to Clique

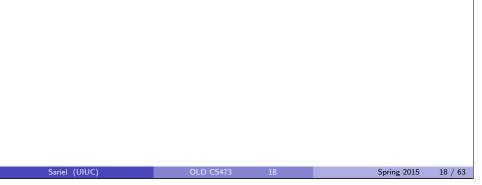


DFAs and NFAs

- DFAs (Remember 373?) are deterministic automata that accept regular languages.
- **②** NFAs are the same, except that non-deterministic.
- Every NFA can be converted to a DFA that accepts the same language using the subset construction.
- (How long does this take?)
- The smallest DFA equivalent to an NFA with *n* states may have $\approx 2^n$ states.

Independent Set and Clique

- Independent Set < Clique. What does this mean?
- If have an algorithm for Clique, then we have an algorithm for Independent Set.
- Solution Clique is at least as hard as Independent Set.
- Also... Independent Set is at least as hard as Clique.



DFA Universality

- A DFA *M* is universal if it accepts every string.
- **2** That is, $L(M) = \Sigma^*$, the set of all strings.
- **OFA** universality problem:

Problem (**DFA universality**)

Input: A DFA M.

Goal: Is M universal?

- How do we solve DFA Universality?
- So We check if *M* has any reachable non-final state.
- Alternatively, minimize M to obtain M' and see if M' has a single state which is an accepting state.

Sariel (UIUC)

___1

Spring 2015 19 / 63

NFA Universality

- An NFA N is universal if it accepts every string. That is, $L(N) = \Sigma^*$, the set of all strings.
- **②** NFA universality problem:

Problem (NFA universality)

Input: A NFA M. **Goal:** *Is* M *universal?*

- How do we solve NFA Universality?
- Reduce it to DFA Universality...
- Given an NFA N, convert it to an equivalent DFA M, and use the DFA Universality Algorithm.
- The reduction takes exponential time!

Polynomial-time Reduction

- A polynomial time reduction from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:
 - **9** given an instance I_X of X, \mathcal{A} produces an instance I_Y of Y
 - **2** \mathcal{A} runs in time polynomial in $|I_X|$.
- Polynomial transitivity:

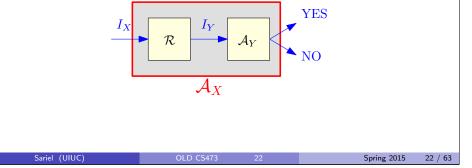
Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is a Karp reduction. Most reductions we will need are Karp reductions.

Polynomial-time reductions

- An algorithm is **efficient** if it runs in polynomial-time.
- To find efficient algorithms for problems, we are only interested in polynomial-time reductions. Reductions that take longer are not useful.
- If we have a polynomial-time reduction from problem X to problem Y (we write X ≤_P Y), and a poly-time algorithm A_Y for Y, we have a polynomial-time/efficient algorithm for X.



Polynomial-time reductions and hardness

- For decision problems X and Y, if $X \leq_P Y$, and Y has an efficient algorithm, X has an efficient algorithm.
- If you believe that Independent Set does not have an efficient algorithm, why should you believe the same of Clique?
- Secause we showed Independent Set ≤_P Clique. If Clique had an efficient algorithm, so would Independent Set!
- If $X \leq_P Y$ and X does not have an efficient algorithm, Y cannot have an efficient algorithm!

Spring 2015

21 / 63

OLD CS4

Polynomial-time reductions and instance sizes

Proposition

Let \mathcal{R} be a polynomial-time reduction from X to Y. Then for any instance I_X of X, the size of the instance I_Y of Y produced from I_X by \mathcal{R} is polynomial in the size of $I_{\mathbf{X}}$.

Proof.

Sariel (UIUC

 \mathcal{R} is a polynomial-time algorithm and hence on input I_X of size $|I_X|$ it runs in time $p(|I_X|)$ for some polynomial p(). $I_{\mathbf{Y}}$ is the output of \mathcal{R} on input $I_{\mathbf{X}}$. \mathcal{R} can write at most $p(|I_X|)$ bits and hence $|I_Y| < p(|I_X|)$.

Note: Converse is not true. A reduction need not be polynomial-time even if output of reduction is of size polynomial in its input.

Spring 2015

27 / 63

Transitivity of Reductions Reductions are transitive: Proposition $X <_P Y$ and $Y <_P Z$ implies that $X <_P Z$. **2** Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction. **(**) To prove $X <_P Y$ you need to show a reduction FROM X TO Y. 1 In other words show that an algorithm for Y implies an algorithm for X. Spring 2015

OLD CS473

Polynomial-time Reduction

A polynomial time reduction from a *decision* problem X to a *decision* problem **Y** is an *algorithm* \mathcal{A} that has the following properties:

- **(**) Given an instance I_X of X, A produces an instance I_Y of Y.
- **2** \mathcal{A} runs in time polynomial in $|I_{\mathcal{X}}|$. This implies that $|I_{\mathcal{Y}}|$ (size of I_{Y}) is polynomial in $|I_{X}|$.
- 3 Answer to I_X YES *iff* answer to I_Y is YES.

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

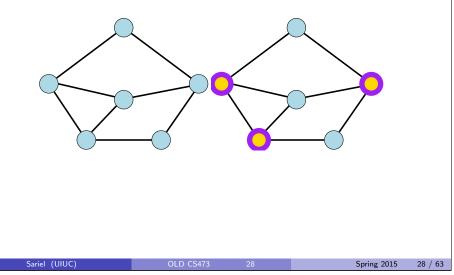
Such a reduction is called a Karp reduction. Most reductions we will need are Karp reductions

Spring 2015

Vertex Cover

Given a graph G = (V, E), a set of vertices S is:

• A vertex cover if every $e \in E$ has at least one endpoint in S.



The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k. **Goal:** Is there a vertex cover of size $\leq k$ in G?

Independent Set \leq_P Vertex Cover

- G: graph with *n* vertices, and an integer *k* be an instance of the Independent Set problem.
- **②** G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq n k$
- **(**G, k**)** is an instance of **Independent Set**, and (G, n k) is an instance of **Vertex Cover** with the same answer.
- Therefore, Independent Set \leq_P Vertex Cover. Also Vertex Cover \leq_P Independent Set.

Relationship between...

Vertex Cover and Independent Set

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if $V \setminus S$ is a vertex cover.

Proof.

(\Rightarrow) Let	S be an inde	pendent set			
0	Consider any	edge $uv \in E$.			
2	Since S is an	independent set,	either u	$ ot\in S$ or $v \not\in S$.	
3	3 Thus, either $u \in V \setminus S$ or $v \in V \setminus S$.				
4	• $V \setminus S$ is a vertex cover.				
(⇐) Let	$oldsymbol{V} \setminus oldsymbol{S}$ be sor	me vertex cover:			
0	Consider u , v	∈ S			
2	uv is not an	edge of G, as oth	erwise V	$\setminus \mathbf{S}$ does not cover	uv.
3	\Rightarrow S is th	us an independer	it set.		
Sar	iel (UIUC)	OLD CS473	30	Spring 2015	30 / 63

A problem of Languages

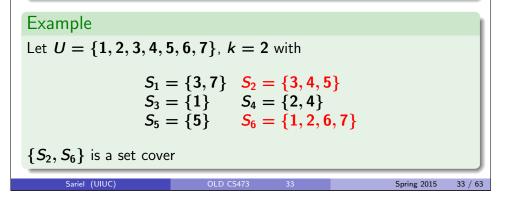
- Suppose you work for the United Nations. Let U be the set of all languages spoken by people across the world. The United Nations also has a set of translators, all of whom speak English, and some other languages from U.
- 2 Due to budget cuts, you can only afford to keep k translators on your payroll. Can you do this, while still ensuring that there is someone who speaks every language in U?
- More General problem: Find/Hire a small group of people who can accomplish a large number of tasks.

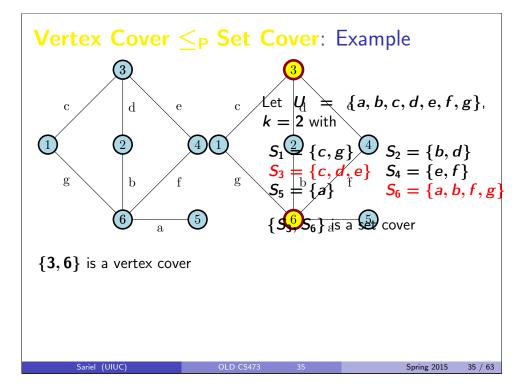
OLD CS473

The Set Cover Problem

Problem (Set Cover)

- **Input:** Given a set U of n elements, a collection $S_1, S_2, \ldots S_m$ of subsets of U, and an integer k.
- **Goal:** Is there a collection of at most k of these sets S_i whose union is equal to U?





Vertex Cover \leq_P Set Cover

Given graph G = (V, E) and integer k as instance of Vertex Cover, construct an instance of Set Cover as follows:

- Number k for the Set Cover instance is the same as the number k given for the Vertex Cover instance.
- U = E.
- We will have one set corresponding to each vertex; $S_{\nu} = \{e \mid e \text{ is incident on } \nu\}.$

Observe that **G** has vertex cover of size **k** if and only if $U, \{S_v\}_{v \in V}$ has a set cover of size **k**. (Exercise: Prove this.)

Proving Reductions

Sariel (UIUC

To prove that $X \leq_P Y$ you need to give an algorithm \mathcal{A} that:

OLD CS47

- **1** Transforms an instance I_X of X into an instance I_Y of Y.
- **2** Satisfies the property that answer to I_X is YES iff I_Y is YES.
 - typical easy direction to prove: answer to I_Y is YES if answer to I_X is YES
 - typical difficult direction to prove: answer to I_X is YES if answer to I_Y is YES (equivalently answer to I_X is NO if answer to I_Y is NO).
- 3 Runs in *polynomial* time.

OLD CS473

Spring 2015

Example of incorrect reduction proof

Try proving Matching \leq_P Bipartite Matching via following reduction:

- Given graph G = (V, E) obtain a bipartite graph G' = (V', E') as follows.
 - Let $V_1 = \{u_1 \mid u \in V\}$ and $V_2 = \{u_2 \mid u \in V\}$. We set $V' = V_1 \cup V_2$ (that is, we make two copies of V)

$${oldsymbol o}$$
 ${oldsymbol E'}=\left\{ u_1v_2 \; \middle|\; u
eq v \; ext{and}\; uv\in {oldsymbol E}
ight\}$

2 Given **G** and integer **k** the reduction outputs G' and **k**.

Sariel (UIUC)	OLD CS473	37	Spring 2015	37 / 63

"Proof"

Claim

Reduction is a poly-time algorithm. If **G** has a matching of size k then **G'** has a matching of size k.

Proof.

Exercise.

Claim

If G' has a matching of size k then G has a matching of size k.

Incorrect! Why? Vertex $u \in V$ has two copies u_1 and u_2 in G'. A matching in G' may use both copies!

Example				
Sariel (UIUC)	OLD CS473	38	Spring 2015	38 / 6

Summary

- We looked at polynomial-time reductions.
- Osing polynomial-time reductions
 - If $X \leq_P Y$, and we have an efficient algorithm for Y, we have an efficient algorithm for X.
 - **2** If $X \leq_{P} Y$, and there is no efficient algorithm for X, there is no efficient algorithm for Y.
- We looked at some examples of reductions between Independent Set, Clique, Vertex Cover, and Set Cover.

OLD C