
OLD CS 473: Fundamental Algorithms, Spring

2015

Polynomial Time Reductions
Lecture 21
April 14, 2015

Sariel (UIUC) OLD CS473 1 Spring 2015 1 / 63

Reductions

1 Reduction from Problem X to Problem Y (informally): having
algorithm for Y , then have algorithm for Problem X .

2 We use reductions to find algorithms to solve problems.

3 We also use reductions to show that we can’t find algorithms for
some problems. (We say that these problems are hard.)

4 Also, the right reductions might win you a million dollars!

Sariel (UIUC) OLD CS473 2 Spring 2015 2 / 63

Example 1: Bipartite Matching and Flows

How do we solve the
Bipartite Matching
Problem?
Given a bipartite graph
G = (U ∪ V ,E) and number
k , does G have a matching of
size ≥ k?

Solution
Reduce it to Max-Flow. G has a matching of size ≥ k ⇐⇒ there
is a flow from s to t of value ≥ k .

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 63

Types of Problems

Decision, Search, and Optimization
1 Decision problem. Example: given n, is n prime?.

2 Search problem. Example: given n, find a factor of n if it
exists.

3 Optimization problem. Example: find the smallest prime
factor of n.

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 63

Optimization and Decision problems
For max flow...

1 Max-flow as optimization problem:

Problem (Max-Flow optimization version)

Given an instance G of network flow, find the maximum flow between
s and t.

2 Max-flow as decision problem:

Problem (Max-Flow decision version)

Given an instance G of network flow and a parameter K , is there a
flow in G, from s to t, of value at least K?

3 While using reductions and comparing problems, we typically
work with the decision versions. Decision problems have Yes/No
answers. This makes them easy to work with.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 63

Problems vs Instances

1 A problem Π consists of an infinite collection of inputs
{I1, I2, . . . , }. Each input is referred to as an instance.

2 The size of an instance I is the number of bits in its
representation.

3 For an instance I , sol(I) is a set of feasible solutions to I .

4 For optimization problems each solution s ∈ sol(I) has an
associated value.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 63

Examples

1 Instance Bipartite Matching: a bipartite graph, and integer k .

2 Solution is “YES” if graph has matching size ≥ k , else “NO”.

3 Instance Max-Flow: graph G with edge-capacities, two vertices
s, t, and an integer k .

4 Solution to instance is “YES” if there is a flow from s to t of
value ≥ k , else “NO”.

5 An algorithm for a decision Problem X?

6 Decision algorithm: Input an instance of X , and outputs
either “YES” or “NO”.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 63

Encoding an instance into a string

1 I ; Instance of some problem.

2 I can be fully and precisely described (say in a text file).

3 Resulting text file is a binary string.

4 =⇒ Any input can be interpreted as a binary string S .

5 ... Running time of algorithm: Function of length of S (i.e., n).

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 63

Decision Problems and Languages

1 A finite alphabet Σ. Σ∗ is set of all finite strings on Σ.

2 A language L is simply a subset of Σ∗; a set of strings.

3 Language ≡ decision problem.

1 For any language L =⇒ there is a decision problem ΠL.
2 For any decision problem Π =⇒ an associated language LΠ.

4 Given L, ΠL is the decision problem: Given x ∈ Σ∗, is x ∈ L?
Each string in Σ∗ is an instance of ΠL and L is the set of
instances for which the answer is YES.

5 Given Π the associated language is

LΠ =
{
I
∣∣∣ I is an instance of Π for which answer is YES

}
.

6 Thus, decision problems and languages are used interchangeably.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 63

Example

1 The decision problem Primality, and the language

L =
{

#p
∣∣∣ p is a prime number

}
.

Here #p is the string in base 10 representing p.

2 Bipartite (is given graph is bipartite. The language is

L =
{
S(G)

∣∣∣G is a bipartite graph
}
.

Here S(G) is the string encoding the graph G.

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 63

Reductions, revised.

1 For decision problems X ,Y , a reduction from X to Y is:
1 An algorithm . . .
2 Input: IX , an instance of X .
3 Output: IY an instance of Y .
4 Such that:
IY is YES instance of Y ⇐⇒ IX is YES instance of X

2 (Actually, this is only one type of reduction, but this is the one
we’ll use most often.)

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 63

Using reductions to solve problems

1 R: Reduction X → Y
2 AY : algorithm for Y :

3 =⇒ New algorithm for X :
AX (IX):

// IX: instance of X.

IY ⇐R(IX)
return AY (IY)

AY

IY
YES

NO

IX
R

AX

In particular, if R and AY are polynomial-time algorithms, AX is
also polynomial-time.

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 63

Comparing Problems

1 Reductions allow us to formalize the notion of “Problem X is no
harder to solve than Problem Y ”.

2 If Problem X reduces to Problem Y (we write X ≤ Y), then
X cannot be harder to solve than Y .

3 Bipartite Matching ≤ Max-Flow.
Therefore, Bipartite Matching cannot be harder than
Max-Flow.

4 Equivalently,
Max-Flow is at least as hard as Bipartite Matching.

5 More generally, if X ≤ Y , we can say that X is no harder than
Y , or Y is at least as hard as X .

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 63

Independent Sets and Cliques

1 Given a graph G .

2

A set of vertices V ′ is an independent set:
if no two vertices of V ′ are connected by
an edge of G .

3 clique: every pair of vertices in V ′ is connected by an edge of
G .

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 63

The Independent Set and Clique Problems

Problem: Independent Set

Instance: A graph G and an integer k .
Question: Does G has an independent set of size ≥ k?

Problem: Clique

Instance: A graph G and an integer k .
Question: Does G has a clique of size ≥ k?

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 63

Recall

For decision problems X ,Y , a reduction from X to Y is:

1 An algorithm . . .

2 that takes IX , an instance of X as input . . .

3 and returns IY , an instance of Y as output . . .

4 such that the solution (YES/NO) to IY is the same as the
solution to IX .

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 63

Reducing Independent Set to Clique

G : G :

G : G :

1 An instance of Independent Set is a graph G and an integer k .
2 Convert G to G , in which (u, v) is an edge ⇐⇒ (u, v) is

not an edge of G . (G is the complement of G .)
3 ([)]G , k : instance of Clique.

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 63

Independent Set and Clique

1 Independent Set ≤ Clique.
What does this mean?

2 If have an algorithm for Clique, then we have an algorithm for
Independent Set.

3 Clique is at least as hard as Independent Set.

4 Also... Independent Set is at least as hard as Clique.

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 63

DFAs and NFAs

1 DFAs (Remember 373?) are determinstic automata that accept
regular languages.

2 NFAs are the same, except that non-deterministic.

3 Every NFA can be converted to a DFA that accepts the same
language using the subset construction.

4 (How long does this take?)

5 The smallest DFA equivalent to an NFA with n states may
have ≈ 2n states.

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 63

DFA Universality

1 A DFA M is universal if it accepts every string.

2 That is, L(M) = Σ∗, the set of all strings.

3 DFA universality problem:

Problem (DFA universality)

Input: A DFA M .
Goal: Is M universal?

4 How do we solve DFA Universality?

5 We check if M has any reachable non-final state.

6 Alternatively, minimize M to obtain M ′ and see if M ′ has a
single state which is an accepting state.

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 63

NFA Universality

1 An NFA N is universal if it accepts every string. That is,
L(N) = Σ∗, the set of all strings.

2 NFA universality problem:

Problem (NFA universality)

Input: A NFA M .
Goal: Is M universal?

3 How do we solve NFA Universality?

4 Reduce it to DFA Universality...

5 Given an NFA N , convert it to an equivalent DFA M , and use
the DFA Universality Algorithm.

6 The reduction takes exponential time!

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 63

Polynomial-time reductions

1 An algorithm is efficient if it runs in polynomial-time.

2 To find efficient algorithms for problems, we are only interested
in polynomial-time reductions. Reductions that take longer are
not useful.

3 If we have a polynomial-time reduction from problem X to
problem Y (we write X ≤P Y), and a poly-time algorithm AY
for Y , we have a polynomial-time/efficient algorithm for X .

AY

IY
YES

NO

IX
R

AX

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 63

Polynomial-time Reduction

1 A polynomial time reduction from a decision problem X to a
decision problem Y is an algorithm A that has the following
properties:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time polynomial in |IX |.
3 Answer to IX YES ⇐⇒ answer to IY is YES.

2 Polynomial transitivity:

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

3 Such a reduction is a Karp reduction. Most reductions we will
need are Karp reductions.

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 63

Polynomial-time reductions and hardness

1 For decision problems X and Y , if X ≤P Y , and Y has an
efficient algorithm, X has an efficient algorithm.

2 If you believe that Independent Set does not have an efficient
algorithm, why should you believe the same of Clique?

3 Because we showed Independent Set ≤P Clique. If Clique
had an efficient algorithm, so would Independent Set!

4 If X ≤P Y and X does not have an efficient algorithm, Y
cannot have an efficient algorithm!

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 63

Polynomial-time reductions and instance sizes

Proposition
Let R be a polynomial-time reduction from X to Y . Then for any
instance IX of X , the size of the instance IY of Y produced from IX
by R is polynomial in the size of IX .

Proof.
R is a polynomial-time algorithm and hence on input IX of size |IX |
it runs in time p(|IX |) for some polynomial p().
IY is the output of R on input IX .
R can write at most p(|IX |) bits and hence |IY | ≤ p(|IX |).

Note: Converse is not true. A reduction need not be polynomial-time
even if output of reduction is of size polynomial in its input.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 63

Polynomial-time Reduction

A polynomial time reduction from a decision problem X to a decision
problem Y is an algorithm A that has the following properties:

1 Given an instance IX of X , A produces an instance IY of Y .

2 A runs in time polynomial in |IX |. This implies that |IY | (size of
IY) is polynomial in |IX |.

3 Answer to IX YES iff answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we will
need are Karp reductions

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 63

Transitivity of Reductions

1 Reductions are transitive:

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

2 Note: X ≤P Y does not imply that Y ≤P X and hence it is
very important to know the FROM and TO in a reduction.

3 To prove X ≤P Y you need to show a reduction FROM X TO
Y .

4 In other words show that an algorithm for Y implies an
algorithm for X .

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 63

Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:

1 A vertex cover if every e ∈ E has at least one endpoint in S .

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 63

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer k .
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 63

Relationship between...
Vertex Cover and Independent Set

Proposition

Let G = (V ,E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u 6∈ S or v 6∈ S .
3 Thus, either u ∈ V \ S or v ∈ V \ S .
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 63

Independent Set ≤P Vertex Cover

1 G : graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover
of size ≤ n − k

3 (G , k) is an instance of Independent Set , and (G , n − k) is
an instance of Vertex Cover with the same answer.

4 Therefore, Independent Set ≤P Vertex Cover. Also Vertex
Cover ≤P Independent Set.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 63

A problem of Languages

1 Suppose you work for the United Nations. Let U be the set of
all languages spoken by people across the world. The United
Nations also has a set of translators, all of whom speak English,
and some other languages from U .

2 Due to budget cuts, you can only afford to keep k translators on
your payroll. Can you do this, while still ensuring that there is
someone who speaks every language in U?

3 More General problem: Find/Hire a small group of people who
can accomplish a large number of tasks.

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 63

The Set Cover Problem

Problem (Set Cover)

Input: Given a set U of n elements, a collection S1, S2, . . . Sm of
subsets of U , and an integer k .

Goal: Is there a collection of at most k of these sets Si whose union
is equal to U?

Example

Let U = {1, 2, 3, 4, 5, 6, 7}, k = 2 with

S1 = {3, 7} S2 = {3, 4, 5}
S3 = {1} S4 = {2, 4}
S5 = {5} S6 = {1, 2, 6, 7}

{S2, S6} is a set cover

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 63

Vertex Cover ≤P Set Cover

Given graph G = (V ,E) and integer k as instance of Vertex
Cover, construct an instance of Set Cover as follows:

1 Number k for the Set Cover instance is the same as the
number k given for the Vertex Cover instance.

2 U = E .

3 We will have one set corresponding to each vertex;
Sv = {e | e is incident on v}.

Observe that G has vertex cover of size k if and only if U, {Sv}v∈V
has a set cover of size k . (Exercise: Prove this.)

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 63

Vertex Cover ≤P Set Cover: Example

1 2

3

4

56
a

g

c

f

e

b

d

3

6

1 2

3

4

56
a

g

c

f

e

b

d

3

6

{3, 6} is a vertex cover

Let U = {a, b, c, d , e, f , g},
k = 2 with

S1 = {c, g} S2 = {b, d}
S3 = {c, d , e} S4 = {e, f }
S5 = {a} S6 = {a, b, f , g}

{S3, S6} is a set cover

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 63

Proving Reductions

To prove that X ≤P Y you need to give an algorithm A that:

1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer to
IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IX is NO if answer
to IY is NO).

3 Runs in polynomial time.

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 63

Example of incorrect reduction proof

Try proving Matching ≤P Bipartite Matching via following
reduction:

1 Given graph G = (V ,E) obtain a bipartite graph
G ′ = (V ′,E ′) as follows.

1 Let V1 = {u1 | u ∈ V} and V2 = {u2 | u ∈ V}. We set
V ′ = V1 ∪ V2 (that is, we make two copies of V)

2 E ′ =
{
u1v2

∣∣∣ u 6= v and uv ∈ E
}

2 Given G and integer k the reduction outputs G ′ and k .

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 63

Example

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 63

“Proof”

Claim
Reduction is a poly-time algorithm. If G has a matching of size k
then G ′ has a matching of size k .

Proof.
Exercise.

Claim
If G ′ has a matching of size k then G has a matching of size k .

Incorrect! Why? Vertex u ∈ V has two copies u1 and u2 in G ′. A
matching in G ′ may use both copies!

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 63

Summary

1 We looked at polynomial-time reductions.

2 Using polynomial-time reductions

1 If X ≤P Y , and we have an efficient algorithm for Y , we have
an efficient algorithm for X .

2 If X ≤P Y , and there is no efficient algorithm for X , there is
no efficient algorithm for Y .

3 We looked at some examples of reductions between
Independent Set, Clique, Vertex Cover, and Set Cover.

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 63

	Polynomial Time Reductions
	Introduction to Reductions
	Overview
	Definitions
	Optimization and Decision problems
	Examples of Reductions
	Independent Set and Clique
	NFAs/DFAs and Universality
	Independent Set and Vertex Cover
	Relationship between...
	Vertex Cover and Set Cover

