
OLD CS 473: Fundamental Algorithms, Spring

2015

More Network Flow
Applications
Lecture 20
April 4, 2015

Sariel (UIUC) OLD CS473 1 Spring 2015 1 / 45



Part I

Airline Scheduling

Sariel (UIUC) OLD CS473 2 Spring 2015 2 / 45



20.1: Airline Scheduling

Sariel (UIUC) OLD CS473 3 Spring 2015 3 / 45



Lower bounds

1 The following example requires the ability to solve network flow
with lower bounds on the edges.

2 This can be reduced to regular network flow (we are not going
to show the details – they are a bit tedious).

3 The integrality property holds – if there is an integral solution
our network flow with lower bounds solver would compute
such a solution.

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 45



Lower bounds

1 The following example requires the ability to solve network flow
with lower bounds on the edges.

2 This can be reduced to regular network flow (we are not going
to show the details – they are a bit tedious).

3 The integrality property holds – if there is an integral solution
our network flow with lower bounds solver would compute
such a solution.

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 45



Lower bounds

1 The following example requires the ability to solve network flow
with lower bounds on the edges.

2 This can be reduced to regular network flow (we are not going
to show the details – they are a bit tedious).

3 The integrality property holds – if there is an integral solution
our network flow with lower bounds solver would compute
such a solution.

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 45



Lower bounds

1 The following example requires the ability to solve network flow
with lower bounds on the edges.

2 This can be reduced to regular network flow (we are not going
to show the details – they are a bit tedious).

3 The integrality property holds – if there is an integral solution
our network flow with lower bounds solver would compute
such a solution.

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 45



Airline Scheduling

Problem
Given information about flights that an airline needs to provide,
generate a profitable schedule.

1 Input: detailed information about “legs” of flight.

2 F: set of flights by

3 Purpose: find minimum # airplanes needed.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 45



Airline Scheduling

Problem
Given information about flights that an airline needs to provide,
generate a profitable schedule.

1 Input: detailed information about “legs” of flight.

2 F: set of flights by

3 Purpose: find minimum # airplanes needed.

Sariel (UIUC) OLD CS473 5 Spring 2015 5 / 45



Example
(i) a set F of flights that have to be served, and (ii) the corresponding graph G
representing these flights.

1: Boston (depart 6 A.M.) - Washing-
ton DC (arrive 7 A.M,).

2: Urbana (depart 7 A.M.) - Cham-
paign (arrive 8 A.M.)

3: Washington (depart 8 A.M.) - Los
Angeles (arrive 11 A.M.)

4: Urbana (depart 11 A.M.) - San
Francisco (arrive 2 P.M.)

5: San Francisco (depart 2:15 P.M.) -
Seattle (arrive 3:15 P.M.)

6: Las Vegas (depart 5 P.M.) - Seattle
(arrive 6 P.M.).

1

2

3

4

5

6

(i) (ii)

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 45



Flight scheduling...

1 Use same airplane for two segments i and j :
(a) destination of i is the origin of the segment j ,
(b) there is enough time in between the two flights.

2 Also, airplane can fly from dest(i) to origin(j) (assuming time
constraints are satisfied).

Example
As a concrete example, consider the flights:

Boston (depart 6 A.M.) - Washington D.C. (arrive 7 A.M,).
Washington (depart 8 A.M.) - Los Angeles (arrive 11 A.M.)
Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

This schedule can be served by a single airplane by adding the leg
“Los Angeles (depart 12 noon)- Las Vegas (1 P,M.)” to this schedule.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 45



Flight scheduling...

1 Use same airplane for two segments i and j :
(a) destination of i is the origin of the segment j ,
(b) there is enough time in between the two flights.

2 Also, airplane can fly from dest(i) to origin(j) (assuming time
constraints are satisfied).

Example
As a concrete example, consider the flights:

Boston (depart 6 A.M.) - Washington D.C. (arrive 7 A.M,).
Washington (depart 8 A.M.) - Los Angeles (arrive 11 A.M.)
Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)

This schedule can be served by a single airplane by adding the leg
“Los Angeles (depart 12 noon)- Las Vegas (1 P,M.)” to this schedule.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 45



Modeling the problem

1 model the feasibility constraints by a graph.

2 G: directed graph over flight legs.

3 For i and j (legs), (i → j) ∈ E(G) ⇐⇒ same airplane can
serve both i and j .

4 G is acyclic.

5 Q: Can required legs can be served using only k airplanes?

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Solution

1 Reduction to computation of circulation.
2 Build graph H.
3 ∀ leg i , two new vertices ui , vi ∈ VH.

s: source vertex. t: sink vertex.
4 Set demand at t to k , Demand at s to be −k .
5 Flight must be served: New edge ei = (ui → vi), for leg i .

Also ℓ(ei) = 1 and c(ei) = 1.
6 If same plane can so i and j (i.e., (i → j) ∈ E(G)) then add

edge (vi → uj) with capacity 1 to H.
7 Since any airplane can start the day with flight i : add an edge

(s → ui) with capacity 1 to H, ∀i .
8 Add edge (vj → t) with capacity 1 to G, ∀j .
9 Overflow airplanes: “overflow” edge (s → t) with capacity k .

Let H denote the resulting graph.
Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 45



Example of resulting graph
The resulting graph H for the instance of airline scheduling show before.

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

−k

s
k
t

k

1

2

3

4

5

6

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 45



Lemma

Lemma
∃ way perform all flights of F ≤ k planes ⇐⇒ ∃ circulation in H.

Proof.
1 Given feasible solution → translate into valid circulation.

2 Given feasible circulation...

3 ... extract paths from flow.

4 ... every path is a plane.

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 45



Lemma

Lemma
∃ way perform all flights of F ≤ k planes ⇐⇒ ∃ circulation in H.

Proof.
1 Given feasible solution → translate into valid circulation.

2 Given feasible circulation...

3 ... extract paths from flow.

4 ... every path is a plane.

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 45



Lemma

Lemma
∃ way perform all flights of F ≤ k planes ⇐⇒ ∃ circulation in H.

Proof.
1 Given feasible solution → translate into valid circulation.

2 Given feasible circulation...

3 ... extract paths from flow.

4 ... every path is a plane.

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 45



Lemma

Lemma
∃ way perform all flights of F ≤ k planes ⇐⇒ ∃ circulation in H.

Proof.
1 Given feasible solution → translate into valid circulation.

2 Given feasible circulation...

3 ... extract paths from flow.

4 ... every path is a plane.

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 45



Extensions and limitations

1 a lot of other considerations:
(i) airplanes have to undergo long term maintenance

treatments every once in awhile,
(ii) one needs to allocate crew to these flights,
(iii) schedule differ between days, and
(iv) ultimately we interested in maximizing revenue.

2 Network flow is used in practice, real world problems are
complicated, and network flow can capture only a few aspects.

3 ... a good starting point.

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 45



Extensions and limitations

1 a lot of other considerations:
(i) airplanes have to undergo long term maintenance

treatments every once in awhile,
(ii) one needs to allocate crew to these flights,
(iii) schedule differ between days, and
(iv) ultimately we interested in maximizing revenue.

2 Network flow is used in practice, real world problems are
complicated, and network flow can capture only a few aspects.

3 ... a good starting point.

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 45



Extensions and limitations

1 a lot of other considerations:
(i) airplanes have to undergo long term maintenance

treatments every once in awhile,
(ii) one needs to allocate crew to these flights,
(iii) schedule differ between days, and
(iv) ultimately we interested in maximizing revenue.

2 Network flow is used in practice, real world problems are
complicated, and network flow can capture only a few aspects.

3 ... a good starting point.

Sariel (UIUC) OLD CS473 12 Spring 2015 12 / 45



20.2: Baseball Pennant Race

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 45



Pennant Race

Sariel (UIUC) OLD CS473 14 Spring 2015 14 / 45



Pennant Race: Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
No, because Boston can win at most 91 games.

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 45



Pennant Race: Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 89 2

Can Boston win the pennant?
No, because Boston can win at most 91 games.

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 45



Another Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 45



Another Example

Example

Team Won Left
New York 92 2
Baltimore 91 3
Toronto 91 3
Boston 90 2

Can Boston win the pennant?
Not clear unless we know what the remaining games are!

Sariel (UIUC) OLD CS473 16 Spring 2015 16 / 45



Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 45



Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 45



Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 45



Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 45



Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 45



Refining the Example

Example

Team Won Left NY Bal Tor Bos
New York 92 2 − 1 1 0
Baltimore 91 3 1 − 1 1
Toronto 91 3 1 1 − 1
Boston 90 2 0 1 1 −

Can Boston win the pennant? Suppose Boston does

1 Boston wins both its games to get 92 wins

2 New York must lose both games; now both Baltimore and
Toronto have at least 92

3 Winner of Baltimore-Toronto game has 93 wins!

Sariel (UIUC) OLD CS473 17 Spring 2015 17 / 45



Abstracting the Problem

Given

1 A set of teams S
2 For each x ∈ S , the current number of wins wx

3 For any x, y ∈ S , the number of remaining games gxy between
x and y

4 A team z
Can z win the pennant?

Sariel (UIUC) OLD CS473 18 Spring 2015 18 / 45



Towards a Reduction

z can win the pennant if

1 z wins at least m games

2 no other team wins more than m games

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 45



Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z ’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 45



Towards a Reduction

z can win the pennant if
1 z wins at least m games

1 to maximize z ’s chances we make z win all its remaining games
and hence m = wz +

∑
x∈S gxz

2 no other team wins more than m games
1 for each x, y ∈ S the gxy games between them have to be

assigned to either x or y .
2 each team x ̸= z can win at most m − wx − gxz remaining

games

Is there an assignment of remaining games to teams such that no
team x ̸= z wins more than m − wx games?

Sariel (UIUC) OLD CS473 19 Spring 2015 19 / 45



Flow Network: The basic gadget

1 s: source
2 t: sink
3 x , y : two teams

4 gxy : number of games
remaining between x and
y .

5 wx : number of points x
has.

6 m: maximum number of
points x can win before
team of interest is
eliminated.

vx

vy

uxy
gxys

m−
w
x

m
− w

y

∞

∞
t

Sariel (UIUC) OLD CS473 20 Spring 2015 20 / 45



Flow Network: An Example
Can Boston win?

Team Won Left NY Bal Tor Bos
New York 90 11 − 1 6 4
Baltimore 88 6 1 − 1 4
Toronto 87 11 6 1 − 4

Boston 79 12 4 4 4 −

1 m = 79 + 12 = 91:
Boston can get at most
91 points.

s

BT

NB

NT

B

T

N

t

1

1

6

3

4

1

Sariel (UIUC) OLD CS473 21 Spring 2015 21 / 45



Constructing Flow Network

Notations
1 S : set of teams,

2 wx wins for each
team, and

3 gxy games left
between x and y .

4 m be the maximum
number of wins for z ,

5 and S ′ = S \ {z}.

Reduction
Construct the flow network G as
follows

1 One vertex vx for each team
x ∈ S ′, one vertex uxy for each
pair of teams x and y in S ′

2 A new source vertex s and sink t
3 Edges (uxy , vx) and (uxy , vy) of

capacity ∞
4 Edges (s, uxy) of capacity gxy

5 Edges (vx , t) of capacity equal
m − wx

Sariel (UIUC) OLD CS473 22 Spring 2015 22 / 45



Correctness of reduction

Theorem
G ′ has a maximum flow of value g∗ =

∑
x,y∈S′ gxy if and only if z

can win the most number of games (including possibly tie with other
teams).

Sariel (UIUC) OLD CS473 23 Spring 2015 23 / 45



Proof of Correctness

Proof.
Existence of g∗ flow ⇒ z wins pennant

1 An integral flow saturating edges out of s, ensures that each
remaining game between x and y is added to win total of either
x or y

2 Capacity on (vx , t) edges ensures that no team wins more than
m games

Conversely, z wins pennant ⇒ flow of value g∗

1 Scenario determines flow on edges; if x wins k of the games
against y , then flow on (uxy , vx) edge is k and on (uxy , vy)
edge is gxy − k

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 45



Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See text book for a natural interpretation of the min-cut as a
certificate.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 45



Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See text book for a natural interpretation of the min-cut as a
certificate.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 45



Proof that z cannot with the pennant

1 Suppose z cannot win the pennant since g∗ < g . How do we
prove to some one compactly that z cannot win the pennant?

2 Show them the min-cut in the reduction flow network!

3 See text book for a natural interpretation of the min-cut as a
certificate.

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 45



20.3: An Application of Min-Cut
to Project Scheduling

Sariel (UIUC) OLD CS473 26 Spring 2015 26 / 45



Project Scheduling

Problem:

1 n projects/tasks 1, 2, . . . , n
2 dependencies between projects: i depends on j implies i cannot

be done unless j is done. dependency graph is acyclic
3 each project i has a cost/profit pi

1 pi < 0 implies i requires a cost of −pi units
2 pi > 0 implies that i generates pi profit

Goal: Find projects to do so as to maximize profit.

Sariel (UIUC) OLD CS473 27 Spring 2015 27 / 45



Project selection example

4 6 2 3

−8−3−2 ∞

∞∞ ∞

∞ ∞

∞

−5

Sariel (UIUC) OLD CS473 28 Spring 2015 28 / 45



Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi . Can be negative or positive.

Goal: find valid A to maximize profit(A).

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 45



Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi . Can be negative or positive.

Goal: find valid A to maximize profit(A).

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 45



Notation

For a set A of projects:

1 A is a valid solution if A is dependency closed, that is for every
i ∈ A, all projects that i depends on are also in A.

2 profit(A) =
∑

i∈A pi . Can be negative or positive.

Goal: find valid A to maximize profit(A).

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 45



Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

1 We are interested in maximizing profit but we can solve
minimum cuts.

2 We need to convert negative profits into positive capacities.

3 Need to ensure that chosen projects is a valid set.

4 The cut value captures the profit of the chosen set of projects.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 45



Idea: Reduction to Minimum-Cut

Finding a set of projects is partitioning the projects into two sets:
those that are done and those that are not done.

Can we express this is a minimum cut problem?

Several issues:

1 We are interested in maximizing profit but we can solve
minimum cuts.

2 We need to convert negative profits into positive capacities.

3 Need to ensure that chosen projects is a valid set.

4 The cut value captures the profit of the chosen set of projects.

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 45



Reduction to Minimum-Cut

Note: We are reducing a maximization problem to a minimization
problem.

1 projects represented as nodes in a graph

2 if i depends on j then (i , j) is an edge

3 add source s and sink t
4 for each i with pi > 0 add edge (s, i) with capacity pi

5 for each i with pi < 0 add edge (i , t) with capacity −pi

6 for each dependency edge (i , j) put capacity ∞ (more on this
later)

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 45



Reduction: Flow Network Example

4 6 2 3

−8−3−2

2
3 5

8

t

s
4

6 2
3

60
6060 60

60 60

60

−5

Sariel (UIUC) OLD CS473 32 Spring 2015 32 / 45



Reduction contd

Algorithm:

1 form graph as in previous slide

2 compute s-t minimum cut (A,B)

3 output the projects in A − {s}

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 45



Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then
projects in A − {s} are a valid solution.

Proof.
If A − {s} is not a valid solution then there is a project i ∈ A and a
project j ̸∈ A such that i depends on j

Since (i , j) capacity is ∞, implies (A,B) capacity is ∞,
contradicting assumption.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 45



Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then
projects in A − {s} are a valid solution.

Proof.
If A − {s} is not a valid solution then there is a project i ∈ A and a
project j ̸∈ A such that i depends on j

Since (i , j) capacity is ∞, implies (A,B) capacity is ∞,
contradicting assumption.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 45



Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then
projects in A − {s} are a valid solution.

Proof.
If A − {s} is not a valid solution then there is a project i ∈ A and a
project j ̸∈ A such that i depends on j

Since (i , j) capacity is ∞, implies (A,B) capacity is ∞,
contradicting assumption.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 45



Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then
projects in A − {s} are a valid solution.

Proof.
If A − {s} is not a valid solution then there is a project i ∈ A and a
project j ̸∈ A such that i depends on j

Since (i , j) capacity is ∞, implies (A,B) capacity is ∞,
contradicting assumption.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 45



Understanding the Reduction

Let C =
∑

i :pi>0 pi : maximum possible profit.

Observation: The minimum s-t cut value is ≤ C . Why?

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then
projects in A − {s} are a valid solution.

Proof.
If A − {s} is not a valid solution then there is a project i ∈ A and a
project j ̸∈ A such that i depends on j

Since (i , j) capacity is ∞, implies (A,B) capacity is ∞,
contradicting assumption.

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 45



Reduction: Flow Network Example
Bad selection of projects

4 6 2 3

−8−3−2 ∞

∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3

−5

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 45



Reduction: Flow Network Example
Bad selection of projects

4 6 2 3

−8−3−2 ∞

∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3

−5

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 45



Reduction: Flow Network Example
Bad selection of projects

4 6 2 3

−8−3−2 ∞

∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3

−5

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 45



Reduction: Flow Network Example
Bad selection of projects

4 6 2 3

−8−3−2 ∞

∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3

−5

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 45



Reduction: Flow Network Example
Good selection of projects

4 6 2 3

−8−3−2 ∞

∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3

−5

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 45



Reduction: Flow Network Example
Good selection of projects

4 6 2 3

−8−3−2 ∞

∞∞ ∞

∞ ∞

∞

2
3 5

8

t

s
4

6 2
3

−5

8

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 45



Correctness of Reduction

Recall that for a set of projects X , profit(X ) =
∑

i∈X pi .

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then
c(A,B) = C − profit(A − {s}).

Proof.
Edges in (A,B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i , t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have ∞ edges

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 45



Correctness of Reduction

Recall that for a set of projects X , profit(X ) =
∑

i∈X pi .

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then
c(A,B) = C − profit(A − {s}).

Proof.
Edges in (A,B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i , t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have ∞ edges

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 45



Correctness of Reduction

Recall that for a set of projects X , profit(X ) =
∑

i∈X pi .

Lemma
Suppose (A,B) is an s-t cut of finite capacity (no ∞) edges. Then
c(A,B) = C − profit(A − {s}).

Proof.
Edges in (A,B):

1 (s, i) for i ∈ B and pi > 0: capacity is pi

2 (i , t) for i ∈ A and pi < 0: capacity is −pi

3 cannot have ∞ edges

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 45



Proof contd

For project set A let
1 cost(A) =

∑
i∈A:pi<0 −pi

2 benefit(A) =
∑

i∈A:pi>0 pi

3 profit(A) = benefit(A) − cost(A).

Proof.
Let A′ = A ∪ {s}.

c(A′,B) = cost(A) + benefit(B)

= cost(A) − benefit(A) + benefit(A) + benefit(B)

= −profit(A) + C
= C − profit(A)

Sariel (UIUC) OLD CS473 38 Spring 2015 38 / 45



Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A − {s} is a valid set of projects

2 c(A,B) = C − profit(A − {s})
Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C + 1 instead. Why does this work?

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 45



Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A − {s} is a valid set of projects

2 c(A,B) = C − profit(A − {s})
Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C + 1 instead. Why does this work?

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 45



Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A − {s} is a valid set of projects

2 c(A,B) = C − profit(A − {s})
Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C + 1 instead. Why does this work?

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 45



Correctness of Reduction contd

We have shown that if (A,B) is an s-t cut in G with finite capacity
then

1 A − {s} is a valid set of projects

2 c(A,B) = C − profit(A − {s})
Therefore a minimum s-t cut (A∗,B∗) gives a maximum profit set
of projects A∗ − {s} since C is fixed.

Question: How can we use ∞ in a real algorithm?

Set capacity of ∞ arcs to C + 1 instead. Why does this work?

Sariel (UIUC) OLD CS473 39 Spring 2015 39 / 45



20.4: Extensions to
Maximum-Flow Problem

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 45



Lower Bounds and Costs

Two generalizations:

1 flow satisfies f (e) ≤ c(e) for all e. suppose we are given lower
bounds ℓ(e) for each e. can we find a flow such that
ℓ(e) ≤ f (e) ≤ c(e) for all e?

2 suppose we are given a cost w(e) for each edge. cost of routing
flow f (e) on edge e is w(e)f (e). can we (efficiently) find a
flow (of at least some given quantity) at minimum cost?

Many applications.

Sariel (UIUC) OLD CS473 41 Spring 2015 41 / 45



Lower Bounds and Costs

Two generalizations:

1 flow satisfies f (e) ≤ c(e) for all e. suppose we are given lower
bounds ℓ(e) for each e. can we find a flow such that
ℓ(e) ≤ f (e) ≤ c(e) for all e?

2 suppose we are given a cost w(e) for each edge. cost of routing
flow f (e) on edge e is w(e)f (e). can we (efficiently) find a
flow (of at least some given quantity) at minimum cost?

Many applications.

Sariel (UIUC) OLD CS473 41 Spring 2015 41 / 45



Lower Bounds and Costs

Two generalizations:

1 flow satisfies f (e) ≤ c(e) for all e. suppose we are given lower
bounds ℓ(e) for each e. can we find a flow such that
ℓ(e) ≤ f (e) ≤ c(e) for all e?

2 suppose we are given a cost w(e) for each edge. cost of routing
flow f (e) on edge e is w(e)f (e). can we (efficiently) find a
flow (of at least some given quantity) at minimum cost?

Many applications.

Sariel (UIUC) OLD CS473 41 Spring 2015 41 / 45



Flows with Lower Bounds

Definition

A flow in a network G = (V ,E), is a function f : E → R≥0 such
that

1 Capacity Constraint: For each edge e, f (e) ≤ c(e)
2 Lower Bound Constraint: For each edge e, f (e) ≥ ℓ(e)
3 Conservation Constraint: For each vertex v∑

e into v
f (e) =

∑
e out of v

f (e)

Question: Given G and c(e) and ℓ(e) for each e, is there a flow?
As difficult as finding an s-t maximum-flow without lower bounds!

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 45



Flows with Lower Bounds

Definition

A flow in a network G = (V ,E), is a function f : E → R≥0 such
that

1 Capacity Constraint: For each edge e, f (e) ≤ c(e)
2 Lower Bound Constraint: For each edge e, f (e) ≥ ℓ(e)
3 Conservation Constraint: For each vertex v∑

e into v
f (e) =

∑
e out of v

f (e)

Question: Given G and c(e) and ℓ(e) for each e, is there a flow?
As difficult as finding an s-t maximum-flow without lower bounds!

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 45



Flows with Lower Bounds

Definition

A flow in a network G = (V ,E), is a function f : E → R≥0 such
that

1 Capacity Constraint: For each edge e, f (e) ≤ c(e)
2 Lower Bound Constraint: For each edge e, f (e) ≥ ℓ(e)
3 Conservation Constraint: For each vertex v∑

e into v
f (e) =

∑
e out of v

f (e)

Question: Given G and c(e) and ℓ(e) for each e, is there a flow?
As difficult as finding an s-t maximum-flow without lower bounds!

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 45



Regular flow via lower bounds

Given usual flow network G with source s and sink t, create
lower-bound flow network G ′ as follows:

1 set ℓ(e) = 0 for each e in G
2 add new edge (t, s) with lower bound v and upper bound ∞

Claim
There exists a flow of value v from s to t in G if and only if there
exists a feasible flow with lower bounds in G ′.

Above reduction show that lower bounds on flows are naturally
related to circulations. With lower bounds, cannot guarantee acyclic
flows from s to t.

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 45



Regular flow via lower bounds

Given usual flow network G with source s and sink t, create
lower-bound flow network G ′ as follows:

1 set ℓ(e) = 0 for each e in G
2 add new edge (t, s) with lower bound v and upper bound ∞

Claim
There exists a flow of value v from s to t in G if and only if there
exists a feasible flow with lower bounds in G ′.

Above reduction show that lower bounds on flows are naturally
related to circulations. With lower bounds, cannot guarantee acyclic
flows from s to t.

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 45



Regular flow via lower bounds

Given usual flow network G with source s and sink t, create
lower-bound flow network G ′ as follows:

1 set ℓ(e) = 0 for each e in G
2 add new edge (t, s) with lower bound v and upper bound ∞

Claim
There exists a flow of value v from s to t in G if and only if there
exists a feasible flow with lower bounds in G ′.

Above reduction show that lower bounds on flows are naturally
related to circulations. With lower bounds, cannot guarantee acyclic
flows from s to t.

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 45



Flows with Lower Bounds

1 Flows with lower bounds can be reduced to standard maximum
flow problem. See text book. Reduction goes via circulations.

2 If all bounds are integers then there is a flow that is integral.
Useful in applications.

Sariel (UIUC) OLD CS473 44 Spring 2015 44 / 45



Survey Design
Application of Flows with Lower Bounds

1 Design survey to find information about n1 products from n2

customers.

2 Can ask customer questions only about products purchased in
the past.

3 Customer can only be asked about at most c ′
i products and at

least ci products.

4 For each product need to ask at east pi consumers and at most
p′

i consumers.

Sariel (UIUC) OLD CS473 45 Spring 2015 45 / 45



Reduction to Circulation

s

i j

t

ConsumersProducts

[ci , c ′
i ] [pj , p′

j ]

[0, 1]

1 include edge (i , j) is customer i has bought product j
2 Add edge (t, s) with lower bound 0 and upper bound ∞.

1 Consumer i is asked about product j if the integral flow on edge
(i , j) is 1

Sariel (UIUC) OLD CS473 46 Spring 2015 46 / 45



Minimum Cost Flows

1 Input: Given a flow network G and also edge costs, w(e) for
edge e, and a flow requirement F .

2 Goal; Find a minimum cost flow of value F from s to t

Given flow f : E → R+, cost of flow =
∑

e∈E w(e)f (e).

Sariel (UIUC) OLD CS473 47 Spring 2015 47 / 45



Minimum Cost Flow: Facts

1 problem can be solved efficiently in polynomial time
1 O(nm logC log(nW )) time algorithm where C is maximum

edge capacity and W is maximum edge cost
2 O(m log n(m + n log n)) time strongly polynomial time

algorithm

2 for integer capacities there is always an optimum solutions in
which flow is integral

Sariel (UIUC) OLD CS473 48 Spring 2015 48 / 45



How much damage can a single path cause?

Consider the following network. All the edges have capacity 1.
Clearly the maximum flow in this network has value 4.

The network

s

t

Why removing the shortest
path might ruin everything

1 However... The shortest path
between s and t is the blue
path.

2 And if we remove the shortest
path, s and t become
disconnected, and the
maximum flow drop to 0.

Sariel (UIUC) OLD CS473 49 Spring 2015 49 / 45



Notes

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 45



Notes

Sariel (UIUC) OLD CS473 51 Spring 2015 51 / 45



Notes

Sariel (UIUC) OLD CS473 52 Spring 2015 52 / 45



Notes

Sariel (UIUC) OLD CS473 53 Spring 2015 53 / 45


	Airline Scheduling
	Airline Scheduling
	Baseball Pennant Race
	An Application of Min-Cut to Project Scheduling
	Extensions to Maximum-Flow Problem


