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19.1: Important Properties of
Flows
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Network flow, what we know...

1 G: Network flow with n vertices and m edges.

2 algFordFulkerson computes max-flow if capacities are integers.

3 If total capacity is C , running time of algFordFulkerson is
O(mC).

4 algFordFulkerson is not polynomial time.

5 algFordFulkerson might not terminate if capacities are real
numbers.

6 ...see end of the slides in previous lectures for detailed example.
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Part I

Edmonds-Karp algorithm
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Edmonds-Karp algorithm

algEdmondsKarp
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

Perform BFS in Gf
P: shortest s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

Theorem
Given a network flow G with n vertices and m edges, and capacities
that are real numbers, the algorithm algEdmondsKarp computes
the maximum flow in G.
The running time is O(m2n).
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19.2: Computing a minimum cut...
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Finding a Minimum Cut

1 Question: How do we find an actual minimum s-t cut?
2 Proof gives the algorithm!

1 Compute an s-t maximum flow f in G
2 Obtain the residual graph Gf
3 Find the nodes A reachable from s in Gf
4 Output the cut (A,B) = {(u, v) | u ∈ A, v ∈ B}. Note:

The cut is found in G while A is found in Gf

3 Running time is essentially the same as finding a maximum flow.

4 Note: Given G and a flow f there is a linear time algorithm to
check if f is a maximum flow and if it is, outputs a minimum
cut. How?
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Min cut from max-flow
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Min cut from max-flow

s t

w x

u v
15/20

10/10

5/5

20/20

15/20

5/5

10/10

5/10

20/30

s t

w x

u v

Max flow Residual network

s t

w x

u v

s t

w x

u v
15/20

10/10

5/5

20/20

15/20

5/5

10/10

5/10

20/30

A
B

Reachable vertices from s Resulting min-cut (A,B)

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 44



Network Flow: Facts to Remember

Flow network: directed graph G , capacities c , source s, sink t.
1 Maximum s-t flow can be computed:

1 Using Ford-Fulkerson algorithm in O(mC) time when capacities
are integral and C is an upper bound on the flow.

2 Using variant of algorithm, in O(m2 logC) time, when
capacities are integral. (Polynomial time.)

3 Using Edmonds-Karp algorithm, in O(m2n) time, when
capacities are rational (strongly polynomial time algorithm).
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Network Flow
Even more facts to remember

1 If capacities are integral then there is a maximum flow that is
integral and above algorithms give an integral max flow. This is
known as integrality of flow.

2 Given a flow of value v , can decompose into O(m + n) flow
paths of same total value v . Integral flow implies integral flow
on paths.

3 Maximum flow is equal to the minimum cut and minimum cut
can be found in O(m + n) time given any maximum flow.
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Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V ,E) and a flow f : E → R≥0 on the
edges, the support of f is the set of edges E ′ ⊆ E with non-zero
flow on them. That is, E ′ = {e ∈ E | f (e) > 0}.

Question:Given a flow f , can there by cycles in its support?

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 44



Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V ,E) and a flow f : E → R≥0 on the
edges, the support of f is the set of edges E ′ ⊆ E with non-zero
flow on them. That is, E ′ = {e ∈ E | f (e) > 0}.

Question:Given a flow f , can there by cycles in its support?

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/50/5

u v

10/10

5/10

30/30

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 44



Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V ,E) and a flow f : E → R≥0 on the
edges, the support of f is the set of edges E ′ ⊆ E with non-zero
flow on them. That is, E ′ = {e ∈ E | f (e) > 0}.

Question:Given a flow f , can there by cycles in its support?

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/5

u v

10/10

5/10

30/30

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 44



Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network G = (V ,E) and a flow f : E → R≥0 on the
edges, the support of f is the set of edges E ′ ⊆ E with non-zero
flow on them. That is, E ′ = {e ∈ E | f (e) > 0}.

Question:Given a flow f , can there by cycles in its support?

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/5

u v

10/10

5/10

30/30

Sariel (UIUC) OLD CS473 11 Spring 2015 11 / 44



Acyclicity of Flows

Proposition
In any flow network, if f is a flow then there is another flow f ′ such
that the support of f ′ is an acyclic graph and v(f ′) = v(f ). Further
if f is an integral flow then so is f ′.

Proof.
1 E ′ = {e ∈ E | f (e) > 0}, support of f .
2 Suppose there is a directed cycle C in E ′

3 Let e′ be the edge in C with least amount of flow

4 For each e ∈ C , reduce flow by f (e′). Remains a flow. Why?

5 Flow on e′ is reduced to 0.

6 Claim: Flow value from s to t does not change. Why?

7 Iterate until no cycles
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Flow Decomposition

Lemma

Given an edge based flow f : E → R≥0, there exists a collection of
paths P and cycles C and an assignment of flow to them
f ′ : P ∪ C → R≥0 such that:

1 |P ∪ C| ≤ m
2 for each e ∈ E ,

∑
P∈P:e∈P f ′(P) +

∑
C∈C:e∈C f ′(C) = f (e)

3 v(f ) =
∑

P∈P f ′(P).

4 if f is integral then so are f ′(P) and f ′(C) for all P and C

Proof Idea.
1 Remove all cycles as in previous proposition.

2 Next, decompose into paths as in previous lecture.

3 Exercise: verify claims.
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Example

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/50/5

u v

10/10

5/10

30/30

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

Find cycles as shown before
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Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

5

Find a source to sink path, and push max flow along it (5 unites)
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Example

s t

w x

15/20

10/10

5/5

20/20

15/20

5/10

5/5

u v
15/30

5

s t

w x
10/10

20/20

15/20

5/10

5/5

u v5

10/20 10/30 0/5

Compute remaining flow
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Example

s t

w x
10/10

20/20

15/20

5/10

5/5

u v5

10/20 10/30 0/5

s t

w x
10/10

20/20

15/20

5/10

5/5

u v5

10/20 10/30 0/5

5

Find a source to sink path, and push max flow along it (5 unites).
Edges with 0 flow on them can not be used as they are no longer in
the support of the flow.
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Example

s t

w x
10/10

20/20

15/20

5/10

5/5

u v5

10/20 10/30 0/5

5
s t

w x

u v5

5

5/20

10/10

0/10

5/30

5/5

0/5

15/20

10/20

Compute remaining flow

Sariel (UIUC) OLD CS473 15 Spring 2015 15 / 44



Example

s t

w x

u v5

5

5/20

10/10

0/10

5/30

5/5

0/5

15/20

10/20

s t

w x

u v5

5

10

5/20

10/10

0/10

5/30

5/5

0/5

15/20

10/20

Find a source to sink path, and push max flow along it (10 unites).
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Example

s t

w x

u v5

5

10

5/20

10/10

0/10

5/30

5/5

0/5

15/20

10/20

s t

w x

u v5

5

10

5/20

0/10

0/10

5/30

5/5

0/5

5/20

0/20
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5/20

0/10
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5/20
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s t

w x

u v5

5

5

10

5/20

0/10

0/10

5/30

5/5

0/5

5/20
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Example

s t

w x

u v5

5

5

10

5/20

0/10

0/10

5/30

5/5

0/5

5/20

0/20

s t

w x

u v5

5

5

10

0/20

0/10

0/10

0/30

0/5

0/5

0/20
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Example

s t

w x

15/20

10/10

5/5

20/20

15/20

10/15

5/50/5

u v

10/10

5/10

30/30

s t

w x

u v5

5

5

10

0/20

0/10

0/10

0/30

0/5

0/5

0/20

0/20

No flow remains in the graph. We fully decomposed the flow into
flow on paths. Together with the cycles, we get a decomposition of
the original flow into m flows on paths and cycles.
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Flow Decomposition

Lemma

Given an edge based flow f : E → R≥0, there exists a collection of
paths P and cycles C and an assignment of flow to them
f ′ : P ∪ C → R≥0 such that:

1 |P ∪ C| ≤ m
2 for each e ∈ E ,

∑
P∈P:e∈P f ′(P) +

∑
C∈C:e∈C f ′(C) = f (e)

3 v(f ) =
∑

P∈P f ′(P).

4 if f is integral then so are f ′(P) and f ′(C) for all P and C .

Above flow decomposition can be computed in O(m2) time.
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Part II

Network Flow Applications I
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19.3: Edge Disjoint Paths
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19.3.1: Directed Graphs
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Edge-Disjoint Paths in Directed Graphs

Definition

A set of paths is edge disjoint if no two
paths share an edge.

Problem
Given a directed graph with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Applications: Fault tolerance in routing — edges/nodes in networks
can fail. Disjoint paths allow for planning backup routes in case of
failures.
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19.3.2: Reduction to Max-Flow
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Reduction to Max-Flow

Problem
Given a directed graph G with two special vertices s and t, find the
maximum number of edge disjoint paths from s to t.

Reduction
Consider G as a flow network with edge capacities 1, and compute
max-flow.
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Correctness of Reduction

Lemma
If G has k edge disjoint paths P1,P2, . . . ,Pk then there is an s-t
flow of value k in G .

Proof.
Set f (e) = 1 if e belongs to one of the paths P1,P2, . . . ,Pk ;
other-wise set f (e) = 0. This defines a flow of value k .
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Correctness of Reduction

Lemma
If G has a flow of value k then there are k edge disjoint paths
between s and t.

Proof.
1 Capacities are all 1 and hence there is integer flow of value k ,

that is f (e) = 0 or f (e) = 1 for each e.
2 Decompose flow into paths.

3 Flow on each path is either 1 or 0.

4 Hence there are k paths P1,P2, . . . ,Pk with flow of 1 each.

5 Paths are edge-disjoint since capacities are 1.
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Running Time

Theorem
The number of edge disjoint paths in G can be found in O(mn)
time.

Proof.
1 Set capacities of edges in G to 1.

2 Run Ford-Fulkerson algorithm.

3 Maximum value of flow is n and hence run-time is O(nm).

4 Decompose flow into k paths (k ≤ n).
Takes O(k × m) = O(km) = O(mn) time.

Remark
Algorithm computes set of edge-disjoint paths realizing opt. solution.
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19.3.3: Menger’s Theorem
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Menger’s Theorem

Theorem (Menger [1927])
Let G be a directed graph. The minimum number of edges whose
removal disconnects s from t (the minimum-cut between s and t) is
equal to the maximum number of edge-disjoint paths in G between s
and t.

Proof.
Maxflow-mincut theorem and integrality of flow.

Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger’s theorem to
capacitated graphs.
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19.3.4: Undirected Graphs
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Edge Disjoint Paths in Undirected Graphs

1 The problem:

Problem
Given an undirected graph G , find the maximum number of edge
disjoint paths in G

2 Reduction:
1 create directed graph H by adding directed edges (u, v) and

(v , u) for each edge uv in G .
2 compute maximum s-t flow in H .

3 Problem: Both edges (u, v) and (v , u) may have non-zero flow!

4 Not a Problem! Can assume maximum flow in H is acyclic and
hence cannot have non-zero flow on both (u, v) and (v , u).
Reduction works. See book for more details.
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19.4: Multiple Sources and Sinks
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Multiple Sources and Sinks

1 Input:
1 A directed graph G with edge

capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

1 Maximum Flow: Send as much flow as possible from the sources
to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E ′ such
that removing E ′ disconnects every source from every sink.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44



Multiple Sources and Sinks

1 Input:
1 A directed graph G with edge

capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

1 Maximum Flow: Send as much flow as possible from the sources
to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E ′ such
that removing E ′ disconnects every source from every sink.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44



Multiple Sources and Sinks

1 Input:
1 A directed graph G with edge

capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

1 Maximum Flow: Send as much flow as possible from the sources
to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E ′ such
that removing E ′ disconnects every source from every sink.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44



Multiple Sources and Sinks

1 Input:
1 A directed graph G with edge

capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

1 Maximum Flow: Send as much flow as possible from the sources
to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E ′ such
that removing E ′ disconnects every source from every sink.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44



Multiple Sources and Sinks

1 Input:
1 A directed graph G with edge

capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

1 Maximum Flow: Send as much flow as possible from the sources
to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E ′ such
that removing E ′ disconnects every source from every sink.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44



Multiple Sources and Sinks

1 Input:
1 A directed graph G with edge

capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

1 Maximum Flow: Send as much flow as possible from the sources
to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E ′ such
that removing E ′ disconnects every source from every sink.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44



Multiple Sources and Sinks

1 Input:
1 A directed graph G with edge

capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

1 Maximum Flow: Send as much flow as possible from the sources
to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E ′ such
that removing E ′ disconnects every source from every sink.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44



Multiple Sources and Sinks

1 Input:
1 A directed graph G with edge

capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

s1

s3

t1

t2
s2

1 Maximum Flow: Send as much flow as possible from the sources
to the sinks. Sinks don’t care which source they get flow from.

2 Minimum Cut: Find a minimum capacity set of edge E ′ such
that removing E ′ disconnects every source from every sink.

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 44



Multiple Sources and Sinks: Formal Definition

1 Input:
1 A directed graph G with edge capacities c(e).
2 Source nodes s1, s2, . . . , sk .
3 Sink nodes t1, t2, . . . , tℓ.
4 Sources and sinks are disjoint.

2 A function f : E → R≥0 is a flow if:
1 For each e ∈ E , f (e) ≤ c(e), and
2 for each v which is not a source or a sink f in(v) = f out(v).

3 Goal: max
∑k

i=1(f
out(si) − f in(si)), that is, flow out of

sources.
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Reduction to Single-Source Single-Sink

1 Add a source node s and a sink node t.
2 Add edges (s, s1), (s, s2), . . . , (s, sk).

3 Add edges (t1, t), (t2, t), . . . , (tℓ, t).
4 Set the capacity of the new edges to be ∞.

s1

s3

t1

t2
s2
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Supplies and Demands

1 A further generalization:
1 source si has a supply of Si ≥ 0
2 since tj has a demand of Dj ≥ 0 units

2 Question: is there a flow from source to sinks such that supplies
are not exceeded and demands are met?

3 Formally: additional constraints that f out(si) − f in(si) ≤ Si
for each source si and f in(tj)− f out(tj) ≥ Dj for each sink tj .

s1

s3

t1

t2
s2

3

5

10

8

2

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44



Supplies and Demands

1 A further generalization:
1 source si has a supply of Si ≥ 0
2 since tj has a demand of Dj ≥ 0 units

2 Question: is there a flow from source to sinks such that supplies
are not exceeded and demands are met?

3 Formally: additional constraints that f out(si) − f in(si) ≤ Si
for each source si and f in(tj)− f out(tj) ≥ Dj for each sink tj .

s1

s3

t1

t2
s2

3

5

10

8

2 s1

s3

t1

t2
s2

s

t

10

5

3

2

8

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44



Supplies and Demands

1 A further generalization:
1 source si has a supply of Si ≥ 0
2 since tj has a demand of Dj ≥ 0 units

2 Question: is there a flow from source to sinks such that supplies
are not exceeded and demands are met?

3 Formally: additional constraints that f out(si) − f in(si) ≤ Si
for each source si and f in(tj)− f out(tj) ≥ Dj for each sink tj .

s1

s3

t1

t2
s2

3

5

10

8

2

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44



Supplies and Demands

1 A further generalization:
1 source si has a supply of Si ≥ 0
2 since tj has a demand of Dj ≥ 0 units

2 Question: is there a flow from source to sinks such that supplies
are not exceeded and demands are met?

3 Formally: additional constraints that f out(si) − f in(si) ≤ Si
for each source si and f in(tj)− f out(tj) ≥ Dj for each sink tj .

s1

s3

t1

t2
s2

3

5

10

8

2

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44



Supplies and Demands

1 A further generalization:
1 source si has a supply of Si ≥ 0
2 since tj has a demand of Dj ≥ 0 units

2 Question: is there a flow from source to sinks such that supplies
are not exceeded and demands are met?

3 Formally: additional constraints that f out(si) − f in(si) ≤ Si
for each source si and f in(tj)− f out(tj) ≥ Dj for each sink tj .

s1

s3

t1

t2
s2

3

5

10

8

2

Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 44



19.5: Bipartite Matching
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19.5.1: Definitions
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Matching

Problem (Matching)

Input: Given a (undirected) graph G = (V ,E).
Goal: Find a matching of maximum cardinality.

1 A matching is M ⊆ E such that at most one edge in M is
incident on any vertex
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Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph G = (L ∪ R,E).
Goal: Find a matching of maximum cardinality

Maximum matching has 4 edges
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19.5.2: Reduction of bipartite matching to max-flow
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Reduction of bipartite matching to max-flow

Max-Flow Construction
Given graph G = (L ∪ R,E) create flow-network G ′ = (V ′,E ′) as
follows:

1 V ′ = L ∪ R ∪ {s, t} where s
and t are the new source and
sink.

2 Direct all edges in E from L to
R, and add edges from s to all
vertices in L and from each
vertex in R to t.

3 Capacity of every edge is 1.
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Correctness: Matching to Flow

Proposition
If G has a matching of size k then G ′ has a flow of value k .

Proof.
Let M be matching of size k . Let M = {(u1, v1), . . . , (uk , vk)}.
Consider following flow f in G ′:

1 f (s, ui) = 1 and f (vi , t) = 1 for 1 ≤ i ≤ k
2 f (ui , vi) = 1 for 1 ≤ i ≤ k
3 for all other edges flow is zero.

Verify that f is a flow of value k (because M is a matching).
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Correctness: Flow to Matching

Proposition
If G ′ has a flow of value k then G has a matching of size k .

Proof.
Consider flow f of value k .

1 Can assume f is integral. Thus each edge has flow 1 or 0.
2 Consider the set M of edges from L to R that have flow 1.

1 M has k edges because value of flow is equal to the number of
non-zero flow edges crossing cut (L ∪ {s},R ∪ {t})

2 Each vertex has at most one edge in M incident upon it. Why?
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2 Each vertex has at most one edge in M incident upon it. Why?
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Correctness of Reduction

Theorem
The maximum flow value in G ′ = maximum cardinality of matching
in G .

Consequence
Thus, to find maximum cardinality matching in G , we construct G ′

and find the maximum flow in G ′. Note that the matching itself (not
just the value) can be found efficiently from the flow.
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Running Time

For graph G with n vertices and m edges G ′ has O(n + m) edges,
and O(n) vertices.

1 Generic Ford-Fulkerson: Running time is O(mC) = O(nm)
since C = n.

2 Capacity scaling: Running time is
O(m2 logC) = O(m2 log n).

Better running time is known: O(m
√

n).
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19.5.3: Perfect Matchings
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Perfect Matchings

Definition
A matching M is perfect if every vertex has one edge in M incident
upon it.

Figure: This graph does not have a perfect matching
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Characterizing Perfect Matchings

Problem
When does a bipartite graph have a perfect matching?

1 Clearly |L| = |R|
2 Are there any necessary and sufficient conditions?
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A Necessary Condition

Lemma
If G = (L ∪ R,E) has a perfect matching then for any X ⊆ L,
|N(X )| ≥ |X |, where N(X ) is the set of neighbors of vertices in X .

Proof.
Since G has a perfect matching, every vertex of X is matched to a
different neighbor, and so |N(X )| ≥ |X |.
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Hall’s Theorem

1 Frobenius-Hall theorem:

Theorem
Let G = (L ∪ R,E) be a bipartite graph with |L| = |R|. G has a
perfect matching if and only if for every X ⊆ L, |N(X )| ≥ |X |.

2 One direction is the necessary condition.
3 For the other direction we will show the following:

1 Create flow network G ′ from G .
2 If |N(X )| ≥ |X | for all X , show that minimum s-t cut in G ′ is

of capacity n = |L| = |R|.
3 Implies that G has a perfect matching.
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Proof of Sufficiency

1 Assume |N(X )| ≥ |X | for any X ⊆ L. Then show that min
s-t cut in G ′ is of capacity at least n.

2 Let (A,B) be an arbitrary s-t cut in G ′

1 Let X = A ∩ L and Y = A ∩ R.
2 Cut capacity is at least (|L| − |X |) + |Y | + |N(X ) \ Y |

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44



Proof of Sufficiency

1 Assume |N(X )| ≥ |X | for any X ⊆ L. Then show that min
s-t cut in G ′ is of capacity at least n.

2 Let (A,B) be an arbitrary s-t cut in G ′

1 Let X = A ∩ L and Y = A ∩ R.
2 Cut capacity is at least (|L| − |X |) + |Y | + |N(X ) \ Y |

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44



Proof of Sufficiency

1 Assume |N(X )| ≥ |X | for any X ⊆ L. Then show that min
s-t cut in G ′ is of capacity at least n.

2 Let (A,B) be an arbitrary s-t cut in G ′

1 Let X = A ∩ L and Y = A ∩ R.
2 Cut capacity is at least (|L| − |X |) + |Y | + |N(X ) \ Y |

Sariel (UIUC) OLD CS473 50 Spring 2015 50 / 44



Proof of Sufficiency

1 Assume |N(X )| ≥ |X | for any X ⊆ L. Then show that min
s-t cut in G ′ is of capacity at least n.

2 Let (A,B) be an arbitrary s-t cut in G ′

1 Let X = A ∩ L and Y = A ∩ R.
2 Cut capacity is at least (|L| − |X |) + |Y | + |N(X ) \ Y |

A

B

X

Y

|L| − |X|

|Y |

|N(X) \ Y |

s t

Because there are...
1 |L|− |X | edges from s to L∩B.

2 |Y | edges from Y to t.

3 there are at least |N(X ) \ Y |
edges from X to vertices on the
right side that are not in Y .
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Proof of Sufficiency
Continued...

1 By the above, cut capacity is at least
α = (|L| − |X |) + |Y | + |N(X ) \ Y |.

2 |N(X ) \ Y | ≥ |N(X )| − |Y |.
(This holds for any two sets.)

3 By assumption |N(X )| ≥ |X | and hence

|N(X ) \ Y | ≥ |N(X )| − |Y | ≥ |X | − |Y |.
4 Cut capacity is therefore at least

α = (|L| − |X |) + |Y | + |N(X ) \ Y |
≥ |L| − |X | + |Y | + |X | − |Y | ≥ |L| = n.

5 Any s-t cut capacity is at least n =⇒ max flow at least n
units =⇒ perfect matching. QED
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Hall’s Theorem: Generalization

Theorem (Frobenius-Hall)

Let G = (L ∪ R,E) be a bipartite graph with |L| ≤ |R|. G has a
matching that matches all nodes in L if and only if for every X ⊆ L,
|N(X )| ≥ |X |.

Proof is essentially the same as the previous one.
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Problem: Assigning jobs to people

Problem:

1 n jobs or tasks

2 m people.

3 for each job a set of people who can do
that job.

4 for each person j a limit on number of jobs
kj .

5 Goal: find an assignment of jobs to people
so that all jobs are assigned and no person
is overloaded.

Jobspeople
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Application: Assigning jobs to people

1 Reduce to max-flow similar to matching.

2 Arises in many settings. Using minimum-cost flows can also
handle the case when assigning a job i to person j costs cij and
goal is assign all jobs but minimize cost of assignment.
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Reduction to Maximum Flow
For assigning jobs to people

1 Create directed graph G = (V ,E) as follows
1 V = {s, t} ∪ L ∪ R: L set of n jobs, R set of m people
2 add edges (s, i) for each job i ∈ L, capacity 1
3 add edges (j , t) for each person j ∈ R, capacity kj
4 if job i can be done by person j add an edge (i , j), capacity 1

2 Compute max s-t flow. There is an assignment if and only if
flow value is n.
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Matchings in General Graphs

1 Matchings in general graphs more complicated.

2 There is a polynomial time algorithm to compute a maximum
matching in a general graph. Best known running time is
O(m

√
n).
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Notes
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K. Menger. Zur allgemeinen kruventheorie. Fund. Math., 10:96–115,
1927.
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