OLD CS 473: Fundamental Algorithms, Spring

 2015
Applications of Network Flows

Lecture 19
April 2, 2015

Edmonds-Karp algorithm

```
algEdmondsKarp
    for every edge e, f(e)=0
    \mp@subsup{\boldsymbol{G}}{\boldsymbol{f}}{}}\mathrm{ is residual graph of }\boldsymbol{G}\mathrm{ with respect to }\boldsymbol{f
    while G}\mp@subsup{G}{f}{}\mathrm{ has a simple s-t path do
        Perform BFS in Gf
            P: shortest s-t path in G
            f= augment(f,P)
            Construct new residual graph G}\mp@subsup{\boldsymbol{G}}{\boldsymbol{f}}{
```


Theorem

Given a network flow G with \boldsymbol{n} vertices and \boldsymbol{m} edges, and capacities that are real numbers, the algorithm algEdmondsKarp computes the maximum flow in G.
The running time is $O\left(m^{2} n\right)$.

Finding a Minimum Cut

(1) Question: How do we find an actual minimum s-t cut?
(2) Proof gives the algorithm!
(1) Compute an s-t maximum flow \boldsymbol{f} in \boldsymbol{G}
(2) Obtain the residual graph $\boldsymbol{G}_{\boldsymbol{f}}$
(3) Find the nodes \boldsymbol{A} reachable from \boldsymbol{s} in $\boldsymbol{G}_{\boldsymbol{f}}$
(1) Output the $\operatorname{cut}(\boldsymbol{A}, \boldsymbol{B})=\{(\boldsymbol{u}, \boldsymbol{v}) \mid \boldsymbol{u} \in \boldsymbol{A}, \boldsymbol{v} \in \boldsymbol{B}\}$. Note: The cut is found in \boldsymbol{G} while \boldsymbol{A} is found in $\boldsymbol{G}_{\boldsymbol{f}}$
(3) Running time is essentially the same as finding a maximum flow.
(4) Note: Given \boldsymbol{G} and a flow \boldsymbol{f} there is a linear time algorithm to check if f is a maximum flow and if it is, outputs a minimum cut. How?

Network Flow

(1) If capacities are integral then there is a maximum flow that is integral and above algorithms give an integral max flow. This is known as integrality of flow.
(2) Given a flow of value v, can decompose into $O(m+n)$ flow paths of same total value \boldsymbol{v}. Integral flow implies integral flow on paths.
(3) Maximum flow is equal to the minimum cut and minimum cut can be found in $O(m+n)$ time given any maximum flow.

Paths, Cycles and Acyclicity of Flows

Definition

Given a flow network $G=(V, E)$ and a flow $f: E \rightarrow \mathbb{R}^{\geq 0}$ on the edges, the support of \boldsymbol{f} is the set of edges $\boldsymbol{E}^{\prime} \subseteq E$ with non-zero flow on them. That is, $E^{\prime}=\{e \in E \mid f(e)>0\}$.

Question:Given a flow \boldsymbol{f}, can there by cycles in its support?

Sariel (UIUC) OLD CS473

Acyclicity of Flows

Proposition

In any flow network, if f is a flow then there is another flow f^{\prime} such that the support of f^{\prime} is an acyclic graph and $v\left(f^{\prime}\right)=v(f)$. Further if \boldsymbol{f} is an integral flow then so is \boldsymbol{f}^{\prime}.

Proof.

(1) $E^{\prime}=\{e \in E \mid f(e)>0\}$, support of f.
(2) Suppose there is a directed cycle C in E^{\prime}
(3) Let \boldsymbol{e}^{\prime} be the edge in C with least amount of flow
(1) For each $e \in C$, reduce flow by $f\left(e^{\prime}\right)$. Remains a flow. Why?
(0) Flow on \boldsymbol{e}^{\prime} is reduced to $\mathbf{0}$.
(Claim: Flow value from s to t does not change. Why?
(3) Iterate until no cycles

Example

Part II

Network Flow Applications I

Flow Decomposition

Lemma

Given an edge based flow $\boldsymbol{f}: E \rightarrow \mathbb{R}^{\geq 0}$, there exists a collection of paths \mathcal{P} and cycles \mathcal{C} and an assignment of flow to them
$f^{\prime}: \mathcal{P} \cup \mathcal{C} \rightarrow \mathbb{R}^{\geq 0}$ such that:
(1) $|\mathcal{P} \cup \mathcal{C}| \leq m$
(2) for each $e \in E, \sum_{P \in \mathcal{P}: e \in P} f^{\prime}(P)+\sum_{c \in \mathcal{C}: e \in C} f^{\prime}(C)=f(e)$
() $v(f)=\sum_{P \in \mathcal{P}} f^{\prime}(P)$.

- if f is integral then so are $f^{\prime}(P)$ and $f^{\prime}(C)$ for all P and C. Above flow decomposition can be computed in $O\left(m^{2}\right)$ time.

Edge-Disjoint Paths in Directed Graphs

Definition

A set of paths is edge disjoint if no two paths share an edge.

Problem

Given a directed graph with two special vertices s and t, find the maximum number of edge disjoint paths from s to t.

Applications: Fault tolerance in routing - edges/nodes in networks can fail. Disjoint paths allow for planning backup routes in case of failures.

Reduction to Max-Flow

Problem

Given a directed graph G with two special vertices s and t, find the maximum number of edge disjoint paths from \boldsymbol{s} to \boldsymbol{t}.

Reduction

Consider \boldsymbol{G} as a flow network with edge capacities $\mathbf{1}$, and compute max-flow.

Correctness of Reduction

Lemma

If \boldsymbol{G} has a flow of value \boldsymbol{k} then there are \boldsymbol{k} edge disjoint paths between \boldsymbol{s} and \boldsymbol{t}.

Proof.

(1) Capacities are all $\mathbf{1}$ and hence there is integer flow of value \boldsymbol{k}, that is $f(e)=\mathbf{0}$ or $f(e)=\mathbf{1}$ for each e.
(2) Decompose flow into paths.
(3) Flow on each path is either $\mathbf{1}$ or $\mathbf{0}$.
(9) Hence there are k paths $P_{1}, P_{2}, \ldots, P_{k}$ with flow of $\mathbf{1}$ each.
(0) Paths are edge-disjoint since capacities are 1 .

Correctness of Reduction

Lemma

If G has k edge disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ then there is an \boldsymbol{s} - t flow of value k in G.

Proof.

Set $f(e)=\mathbf{1}$ if \boldsymbol{e} belongs to one of the paths $P_{1}, P_{2}, \ldots, P_{k}$; other-wise set $\boldsymbol{f}(\boldsymbol{e})=\mathbf{0}$. This defines a flow of value \boldsymbol{k}.

Running Time

Theorem

The number of edge disjoint paths in G can be found in $O(m n)$ time.

Proof.

(1) Set capacities of edges in \mathbf{G} to $\mathbf{1}$.
(2) Run Ford-Fulkerson algorithm.
(3) Maximum value of flow is n and hence run-time is $O(n m)$.
(1) Decompose flow into k paths $(k \leq n)$.

Takes $O(k \times m)=O(k m)=\bar{O}(m n)$ time.

Remark

Algorithm computes set of edge-disjoint paths realizing opt. solution.

Menger's Theorem

Theorem

Let G be a directed graph. The minimum number of edges whose removal disconnects s from \boldsymbol{t} (the minimum-cut between \boldsymbol{s} and \boldsymbol{t}) is equal to the maximum number of edge-disjoint paths in G between s and t.

Proof.

Maxflow-mincut theorem and integrality of flow.
Menger proved his theorem before Maxflow-Mincut theorem!
Maxflow-Mincut theorem is a generalization of Menger's theorem to capacitated graphs.

Multiple Sources and Sinks

(1) Input:

- A directed graph \boldsymbol{G} with edge capacities $c(e)$.
(3) Source nodes $s_{1}, s_{2}, \ldots, s_{k}$.
- Sink nodes $\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\ell}$.
- Sources and sinks are disjoint.

(1) Maximum Flow: Send as much flow as possible from the sources to the sinks. Sinks don't care which source they get flow from.
(2) Minimum Cut: Find a minimum capacity set of edge E^{\prime} such that removing E^{\prime} disconnects every source from every sink.

Edge Disjoint Paths in Undirected Graphs

(1) The problem:

Problem

Given an undirected graph \boldsymbol{G}, find the maximum number of edge disjoint paths in G
(2) Reduction:
(1) create directed graph \boldsymbol{H} by adding directed edges $(\boldsymbol{u}, \boldsymbol{v})$ and $(\boldsymbol{v}, \boldsymbol{u})$ for each edge $\boldsymbol{u} \boldsymbol{v}$ in \boldsymbol{G}.
(2) compute maximum s-t flow in \boldsymbol{H}
(3) Problem: Both edges $(\boldsymbol{u}, \boldsymbol{v})$ and $(\boldsymbol{v}, \boldsymbol{u})$ may have non-zero flow!
(9) Not a Problem! Can assume maximum flow in \boldsymbol{H} is acyclic and hence cannot have non-zero flow on both $(\boldsymbol{u}, \boldsymbol{v})$ and $(\boldsymbol{v}, \boldsymbol{u})$. Reduction works. See book for more details.

Multiple Sources and Sinks: Formal Definition

(1) Input:
(1) A directed graph \boldsymbol{G} with edge capacities $\boldsymbol{c}(\boldsymbol{e})$.
(2) Source nodes $s_{1}, s_{2}, \ldots, s_{k}$
(3) Sink nodes $\boldsymbol{t}_{1}, \boldsymbol{t}_{2}, \ldots, \boldsymbol{t}_{\ell}$.
(9) Sources and sinks are disjoint.
(2) A function $f: E \rightarrow \mathbb{R}^{\geq 0}$ is a flow if:
(1) For each $e \in E, f(e) \leq \boldsymbol{c}(\boldsymbol{e})$, and
(2) for each v which is not a source or a sink $f^{\text {in }}(v)=f^{\text {out }}(v)$.
(3) Goal: $\max \sum_{i=1}^{k}\left(f^{\text {out }}\left(s_{i}\right)-f^{\text {in }}\left(s_{i}\right)\right)$, that is, flow out of sources.

Reduction to Single-Source Single-Sink

(1) Add a source node s and a sink node t.
(2) Add edges $\left(s, s_{1}\right),\left(s, s_{2}\right), \ldots,\left(s, s_{k}\right)$.
(3) Add edges $\left(t_{1}, t\right),\left(t_{2}, t\right), \ldots,\left(t_{\ell}, t\right)$.
(4) Set the capacity of the new edges to be ∞.

Matching

Problem (Matching)

Input: Given a (undirected) graph $G=(V, E)$.
Goal: Find a matching of maximum cardinality.

- A matching is $M \subseteq E$ such that at most one edge in M is incident on any vertex

Supplies and Demands

(1) A further generalization:
(1) source s_{i} has a supply of $S_{i} \geq 0$
(0) since $\boldsymbol{t}_{\boldsymbol{j}}$ has a demand of $\boldsymbol{D}_{\boldsymbol{j}} \geq \mathbf{0}$ units
(2) Question: is there a flow from source to sinks such that supplies are not exceeded and demands are met?
(3) Formally: additional constraints that $f^{\text {out }}\left(s_{i}\right)-f^{\text {in }}\left(s_{i}\right) \leq S_{i}$ for each source s_{i} and $\boldsymbol{f}^{\text {in }}\left(t_{j}\right)-f^{\text {out }}\left(t_{j}\right) \geq D_{j}$ for each sink t_{j}.

Bipartite Matching

Problem (Bipartite matching)

Input: Given a bipartite graph $G=(L \cup R, E)$.
Goal: Find a matching of maximum cardinality

Reduction of bipartite matching to max-flow

Max-Flow Construction

Given graph $G=(L \cup R, E)$ create flow-network $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ as follows:
(1) $V^{\prime}=L \cup R \cup\{s, t\}$ where s and t are the new source and sink.
(2) Direct all edges in E from L to \boldsymbol{R}, and add edges from s to all vertices in L and from each vertex in R to t.
Capacity of every edge is $\mathbf{1}$.

Correctness: Flow to Matching

Proposition

If \boldsymbol{G}^{\prime} has a flow of value \boldsymbol{k} then \boldsymbol{G} has a matching of size \boldsymbol{k}.

Proof.

Consider flow \boldsymbol{f} of value \boldsymbol{k}.
(1) Can assume \boldsymbol{f} is integral. Thus each edge has flow $\mathbf{1}$ or $\mathbf{0}$.
(2) Consider the set M of edges from L to R that have flow 1 .

- M has k edges because value of flow is equal to the number of non-zero flow edges crossing cut ($L \cup\{s\}, R \cup\{t\}$)
(2) Each vertex has at most one edge in \boldsymbol{M} incident upon it. Why?

Correctness: Matching to Flow

Proposition

If \boldsymbol{G} has a matching of size \boldsymbol{k} then \boldsymbol{G}^{\prime} has a flow of value \boldsymbol{k}.

Proof.

Let M be matching of size \boldsymbol{k}. Let $M=\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)\right\}$. Consider following flow f in G^{\prime} :
(1) $f\left(s, u_{i}\right)=1$ and $f\left(v_{i}, t\right)=1$ for $1 \leq i \leq k$
(2) $f\left(u_{i}, v_{i}\right)=1$ for $1 \leq i \leq k$
(3) for all other edges flow is zero.

Verify that \boldsymbol{f} is a flow of value \boldsymbol{k} (because \boldsymbol{M} is a matching).

Correctness of Reduction

Theorem

The maximum flow value in $G^{\prime}=$ maximum cardinality of matching in G.

Consequence

Thus, to find maximum cardinality matching in G, we construct G^{\prime} and find the maximum flow in G^{\prime}. Note that the matching itself (not just the value) can be found efficiently from the flow.

Running Time

For graph G with n vertices and m edges G^{\prime} has $O(n+m)$ edges, and $O(n)$ vertices.
(1) Generic Ford-Fulkerson: Running time is $O(m C)=O(n m)$ since $C=n$.
(2) Capacity scaling: Running time is $O\left(m^{2} \log C\right)=O\left(m^{2} \log n\right)$.
Better running time is known: $O(m \sqrt{n})$.

Characterizing Perfect Matchings

Problem

When does a bipartite graph have a perfect matching?
(1) Clearly $|L|=|R|$
(2) Are there any necessary and sufficient conditions?

Perfect Matchings

Definition

A matching M is perfect if every vertex has one edge in M incident upon it.

Figure: This graph does not have a perfect matching

A Necessary Condition

Lemma

If $G=(L \cup R, E)$ has a perfect matching then for any $X \subseteq L$, $|N(X)| \geq|X|$, where $N(X)$ is the set of neighbors of vertices in X.

Proof.

Since G has a perfect matching, every vertex of \boldsymbol{X} is matched to a different neighbor, and so $|N(X)| \geq|X|$.

Hall's Theorem

(1) Frobenius-Hall theorem:

Theorem

Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=|R| . G$ has a perfect matching if and only if for every $X \subseteq L,|N(X)| \geq|X|$.
(2) One direction is the necessary condition.
(3) For the other direction we will show the following:
(1) Create flow network \boldsymbol{G}^{\prime} from \boldsymbol{G}
(2) If $|\boldsymbol{N}(\boldsymbol{X})| \geq|\boldsymbol{X}|$ for all \boldsymbol{X}, show that minimum \boldsymbol{s} - \boldsymbol{t} cut in \boldsymbol{G}^{\prime} is of capacity $n=|\boldsymbol{L}|=|\boldsymbol{R}|$.
(3) Implies that \boldsymbol{G} has a perfect matching.

Hall's Theorem: Generalization

Theorem (Frobenius-Hall)

Let $G=(L \cup R, E)$ be a bipartite graph with $|L| \leq|R| . G$ has a matching that matches all nodes in L if and only if for every $X \subseteq L$, $|N(X)| \geq|X|$.

Proof is essentially the same as the previous one.

Problem: Assigning jobs to people

Problem:

(1) n jobs or tasks
(2) m people.
(3) for each job a set of people who can do that job.
(0) for each person \boldsymbol{j} a limit on number of jobs k_{j}.
(0) Goal: find an assignment of jobs to people so that all jobs are assigned and no person is overloaded.

Application: Assigning jobs to people

(1) Reduce to max-flow similar to matching.
(2) Arises in many settings. Using minimum-cost flows can also handle the case when assigning a job i to person j costs $c_{i j}$ and goal is assign all jobs but minimize cost of assignment.

Reduction to Maximum Flow

Matchings in General Graphs

(1) Matchings in general graphs more complicated.
(2) There is a polynomial time algorithm to compute a maximum matching in a general graph. Best known running time is $O(m \sqrt{n})$.
K. Menger. Zur allgemeinen kruventheorie. Fund. Math., 10:96-115, 1927.
\square

