Chapter 18

Network Flow Algorithms

OLD CS 473: Fundamental Algorithms, Spring 2015 March 31, 2015

18.1 Algorithm(s) for Maximum Flow

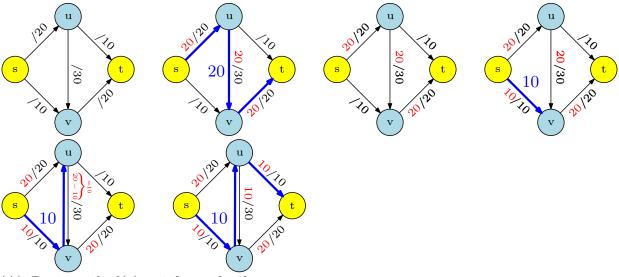
18.1.0.1 Greedy Approach



- (A) Begin with f(e) = 0 for each edge.
- (B) Find a s-t path P with f(e) < c(e) for every edge $e \in P$.
- (C) **Augment** flow along this path.
- (D) Repeat augmentation for as long as possible.

18.1.1 Greedy Approach: Issues

18.1.1.1 Issues = What is this nonsense?



- (A) Begin with f(e) = 0 for each edge
- (B) Find a s-t path P with f(e) < c(e) for every edge $e \in P$
- (C) Augment flow along this path
- (D) Repeat augmentation for as long as possible.
- (A) Greedy can get stuck in sub-optimal flow!
- (B) Need to "push-back" flow along edge (u, v).

18.2 Ford-Fulkerson Algorithm

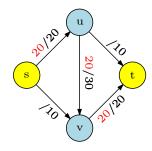
18.2.1 Residual Graph

18.2.1.1 The "leftover" graph

Definition 18.2.1. For a network G = (V, E) and flow f, the **residual graph** $G_f = (V', E')$ of G with respect to f is

- (A) V' = V,
- (B) Forward Edges: For each edge $e \in E$ with f(e) < c(e), we add $e \in E'$ with capacity c(e) f(e).
- (C) Backward Edges: For each edge $e = (u, v) \in E$ with f(e) > 0, we add $(v, u) \in E'$ with capacity f(e).

18.2.1.2 Residual Graph Example



s 20 t

Figure 18.1: Flow on edges is indicated in red

Figure 18.2: Residual Graph

18.2.1.3 Residual capacity

- (A) f flow f in network G.
- (B) c capacities on the edges.
- (C) The **residual capacity** is the leftover capacity on each edge. Formally:

$$c_f\Big((u,v)\Big) = \begin{cases} c(u,v) - f(u,v) & (u,v) \in \mathsf{E}(\mathsf{G}) \\ -f(v,u) & (v,u) \in \mathsf{E}(\mathsf{G}) \end{cases}$$

- (D) ...assumed that G does not contain both (u, v) and (v, u).
- (E) G_f with c_f is a new instance of network flow!

18.2.1.4 Residual graph properties

- (A) **Observation:** Residual graph captures the "residual" problem exactly.
- (B) Flow in residual graph improves overall flow:

Lemma 18.2.2. Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f+f' is a flow in G of value v(f)+v(f').

(C) If there is a bigger flow, we will find it:

Lemma 18.2.3. Let f and f' be two flows in G with $v(f') \geq v(f)$. Then there is a flow f'' of value v(f')-v(f) in G_f .

(D) Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

18.2.1.5 Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

 $\begin{aligned} \mathbf{MaxFlow}(G,s,t): & & \mathbf{if} \text{ the flow from } s \text{ to } t \text{ is } 0 \text{ } \mathbf{then} \\ & & \mathbf{return} \text{ } 0 \\ & & \mathbf{Find any flow } f \text{ with } v(f) > 0 \text{ in } G \\ & & \mathbf{Recursively compute a maximum flow } f' \text{ in } G_f \\ & & \mathbf{Output the flow } f + f' \end{aligned}$

Iterative algorithm for finding a maximum flow:

```
\begin{aligned} \mathbf{MaxFlow}(G,s,t): \\ & \text{Start with flow } f \text{ that is } 0 \text{ on all edges} \\ & \mathbf{while} \text{ there is a flow } f' \text{ in } G_f \text{ with } v(f') > 0 \text{ } \mathbf{do} \\ & f = f + f' \\ & \text{Update } G_f \end{aligned} Output f
```

18.2.1.6 Residual capacity of an augmenting path

- (A) f current flow in G_f .
- (B) π : A path π in residual graph G_f .
- (C) c_f : Residual capacities in G_f .
- (D) The **residual capacity** of π is

$$c_f(\pi) = \min_{\mathsf{e} \in \mathsf{E}(\pi)} c_f(\mathsf{e}).$$

(E) $c_f(\pi)$ = maximum amount of flow that can be pushed on π in G_f without violating capacities (i.e., c_f).

18.2.1.7 Ford-Fulkerson Algorithm

```
\begin{aligned} &\textbf{algFordFulkerson} \\ &\text{for every edge } e \text{, } f(e) = 0 \\ &G_f \text{ is residual graph of } G \text{ with respect to } f \\ &\textbf{while } G_f \text{ has a simple } s\text{--}t \text{ path } \textbf{do} \\ &\text{let } P \text{ be simple } s\text{--}t \text{ path in } G_f \\ &f = \mathbf{augment}(f, P) \\ &\text{Construct new residual graph } G_f \,. \end{aligned}
```

```
\begin{aligned} \mathbf{augment}(f,P) \\ \text{let } b \text{ be bottleneck capacity,} \\ \text{i.e., min capacity of edges in } P \text{ (in } G_f) \\ \text{for each edge } (u,v) \text{ in } P \text{ do} \\ \text{if } e = (u,v) \text{ is a forward edge then} \\ f(e) = f(e) + b \\ \text{else } (* (u,v) \text{ is a backward edge *)} \\ \text{let } e = (v,u) \text{ (* } (v,u) \text{ is in } G \text{ *)} \\ f(e) = f(e) - b \\ \text{return } f \end{aligned}
```

18.3 Correctness and Analysis

18.3.1 Termination

18.3.1.1 Properties about Augmentation: Flow

Lemma 18.3.1. If f is a flow and P is a simple s-t path in G_f , then $f' = \operatorname{augment}(f, P)$ is also a flow.

Proof: Verify that f' is a flow. Let b be augmentation amount.

- (A) Capacity constraint: If $(u, v) \in P$ is a forward edge then f'(e) = f(e) + b and $b \le c(e) f(e)$. If $(u, v) \in P$ is a backward edge, then letting e = (v, u), f'(e) = f(e) b and $b \le f(e)$. Both cases $0 \le f'(e) \le c(e)$.
- (B) Conservation constraint: Let v be an internal node. Let e_1, e_2 be edges of P incident to v. Four cases based on whether e_1, e_2 are forward or backward edges. Check cases (see fig next slide).

18.3.2 Properties of Augmentation

18.3.2.1 Conservation Constraint

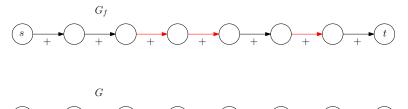


Figure 18.3: Augmenting path P in G_f and corresponding change of flow in G. Red edges are backward edges.

18.3.3 Properties of Augmentation

18.3.3.1 Integer Flow

Lemma 18.3.2. At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof: Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in (j + 1)st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an integer.

18.3.3.2 Progress in Ford-Fulkerson

Proposition 18.3.3. Let f be a flow and f' be flow after one augmentation. Then v(f) < v(f').

Proof: Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have the following.

- (A) First edge e in P must leave s.
- (B) Original network G has no incoming edges to s; hence e is a forward edge.
- (C) P is simple and so never returns to s.
- (D) Thus, value of flow increases by the flow on edge e.

5

18.3.3.3 Termination proof for integral flow

Theorem 18.3.4. Let C be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most C augmenting paths.

Proof: The value of the flow increases by at least 1 after each augmentation. Maximum value of flow is at most C.

Running time

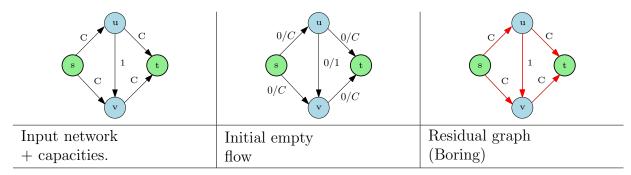
- (A) Number of iterations $\leq C$.
- (B) Number of edges in $G_f \leq 2m$.
- (C) Time to find augmenting path is O(n+m).
- (D) Running time is O(C(n+m)) (or O(mC)).

18.3.3.4 Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

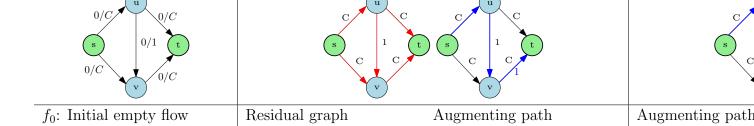
18.3.4 Efficiency of Ford-Fulkerson

18.3.4.1 Flip-flop 1



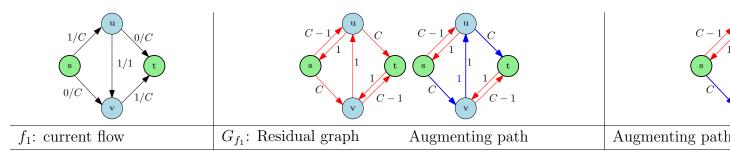
18.3.5 Efficiency of Ford-Fulkerson

18.3.5.1 Flip-flop 2



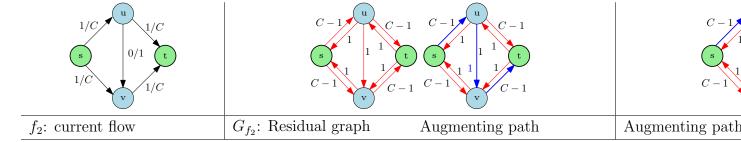
18.3.6 Efficiency of Ford-Fulkerson

18.3.6.1 Flip-flop 3



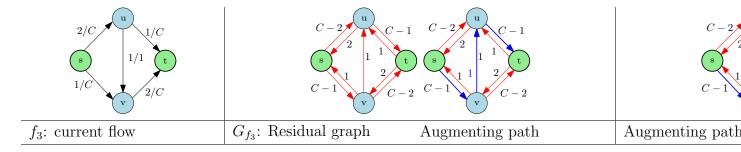
18.3.7 Efficiency of Ford-Fulkerson

18.3.7.1 Flip-flop 4



18.3.8 Efficiency of Ford-Fulkerson

18.3.8.1 Flip-flop 5



And so it continues for 2C iterations...

18.3.8.2 Efficiency of Ford-Fulkerson

- (A) Running time = O(mC) is not polynomial.
- (B) Can the running time be as $\Omega(mC)$ or is our analysis weak?
- (C) Previous example shows this is tight!.
- (D) Ford-Fulkerson can take $\Omega(C)$ iterations.

18.3.9 Correctness

18.3.10 Correctness of Ford-Fulkerson

18.3.10.1 Why the augmenting path approach works

- (A) **Question:** When the algorithm terminates, is the flow computed the maximum s-t flow?
- (B) Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

18.3.10.2 Recalling Cuts

(A) Definition:

Definition 18.3.5. Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. Capacity of cut E' is $\sum_{e \in E'} c(e)$.

(B) **Vertex cut**: Let $A \subset V$ such that

- (A) $s \in A, t \notin A$, and
- (B) $B = V \setminus -A$ and hence $t \in B$.
- (C) Define $(A, B) = \{(u, v) \in E \mid u \in A, v \in B\}$

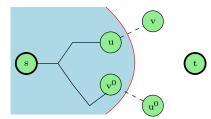
Claim 18.3.6. (A, B) is an s-t cut.

(D) Recall: Every minimal s-t cut E' is a cut of the form (A, B).

18.3.10.3 Ford-Fulkerson Correctness

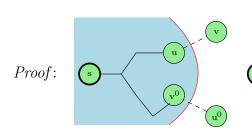
Lemma 18.3.7. If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof: Let A be all vertices reachable from s in G_f ; $B = V \setminus A$.



- (A) $s \in A$ a
- (B) If e = c c(e) (satisfies from s)

18.3.10.4 Lemma Proof Continued



- (A) If $e = (u', v') \in G$ with $u' \in B$ and $v' \in A$, then f(e) = 0 because otherwise u' is reachable from s in G_f
- (B) Thus,

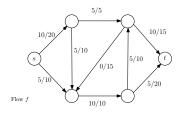
$$v(f) = f^{\text{out}}(A) - f^{\text{in}}(A)$$

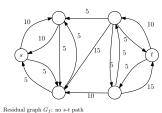
$$= f^{\text{out}}(A) - 0$$

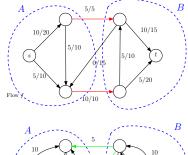
$$= c(A, B) - 0$$

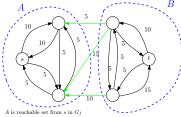
$$= c(A, B).$$

18.3.10.5 Example









18.3.10.6 Ford-Fulkerson Correctness

Theorem 18.3.8. The flow returned by the algorithm is the maximum flow.

Proof:

- (A) For any flow f and s-t cut (A, B), $v(f) \le c(A, B)$.
- (B) For flow f^* returned by algorithm, $v(f^*) = c(A^*, B^*)$ for some s-t cut (A^*, B^*) .
- (C) Hence, f^* is maximum.

18.3.10.7 Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem 18.3.9. For any network G, the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof: Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

18.3.10.8 Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem 18.3.10. For any network G with integer capacities, there is a maximum s-t flow that is integer valued.

Proof: Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

18.4 Polynomial Time Algorithms

18.4.0.9 Efficiency of Ford-Fulkerson

- (A) Running time = O(mC) is not polynomial.
- (B) Can the upper bound be achieved?
- (C) Yes saw an example.

18.4.0.10 Polynomial Time Algorithms

- (A) **Question:** Is there a polynomial time algorithm for max-flow?
- (B) Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way?
- (C) Yes! Two variants.
 - (A) Choose the augmenting path with largest bottleneck capacity.
 - (B) Choose the shortest augmenting path.

18.4.1 Capacity Scaling Algorithm

18.4.1.1 Augmenting Paths with Large Bottleneck Capacity

- (A) Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- (B) How do we find path with largest bottleneck capacity?
 - (A) Assume we know Δ the bottleneck capacity
 - (B) Remove all edges with residual capacity $\leq \Delta$
 - (C) Check if there is a path from s to t
 - (D) Do binary search to find largest Δ
 - (E) Running time: $O(m \log C)$
- (C) Can we bound the number of augmentations? Can show that in $O(m \log C)$ augmentations the algorithm reaches a max flow. This leads to an $O(m^2 \log^2 C)$ time algorithm.

18.4.1.2 Augmenting Paths with Large Bottleneck Capacity

- (A) How do we find path with largest bottleneck capacity?
 - (A) Max bottleneck capacity is one of the edge capacities. Why?
 - (B) Can do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
 - (C) Algorithm's running time is $O(m \log m)$.
 - (D) Different algorithm that also leads to $O(m \log m)$ time algorithm by adapting Prim's algorithm.

18.4.1.3 Removing Dependence on C

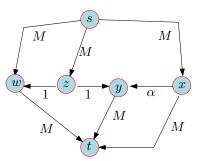
(A) Dinic [1970], Edmonds and Karp [1972]

Picking augmenting paths with fewest number of edges yields a $O(m^2n)$ algorithm, i.e., independent of C. Such an algorithm is called a **strongly polynomial** time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use **BFS** to find an s-t path).

(B) Further improvements can yield algorithms running in $O(mn \log n)$, or $O(n^3)$.

18.5 Not for lecture: Non-termination of Ford-Fulkerson

18.5.0.4 Ford-Fulkerson runs in vain



- (A) M: large positive integer.
- (B) $\alpha = (\sqrt{5} 1)/2 \approx 0.618$.
- (C) $\alpha < 1$,
- (D) $1 \alpha < \alpha$.
- (E) Maximum flow in this network is: 2M+1.

$18.5.0.5 \quad \text{Some algebra...}$

For
$$\alpha = \frac{\sqrt{5} - 1}{2}$$
:

$$\alpha^{2} = ([)] \frac{\sqrt{5} - 1^{2}}{2} = \frac{1}{4}([)] \sqrt{5} - 1^{2} = \frac{1}{4}([)] 5 - 2\sqrt{5} + 1$$

$$= 1 + \frac{1}{4}([)] 2 - 2\sqrt{5}$$

$$= 1 + \frac{1}{2}([)] 1 - \sqrt{5}$$

$$= 1 - \frac{\sqrt{5} - 1}{2}$$

$$= 1 - \alpha.$$

18.5.0.6 Some algebra...

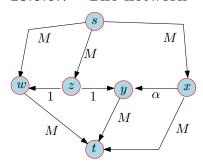
Claim 18.5.1. *Given:* $\alpha = (\sqrt{5} - 1)/2$ and $\alpha^2 = 1 - \alpha$.

$$\implies \forall i \qquad \alpha^i - \alpha^{i+1} = \alpha^{i+2}$$

Proof:

$$\alpha^i - \alpha^{i+1} = \alpha^i (1 - \alpha) = \alpha^i \alpha^2 = \alpha^{i+2}.$$

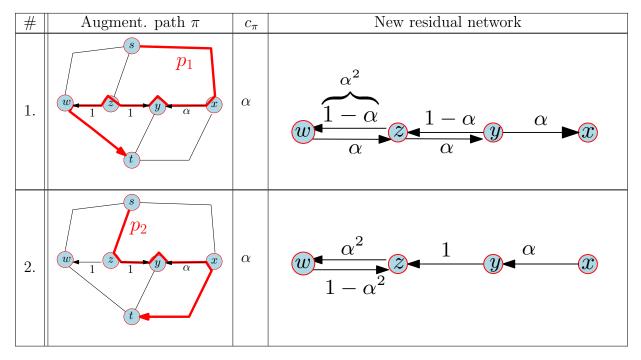
18.5.0.7 The network



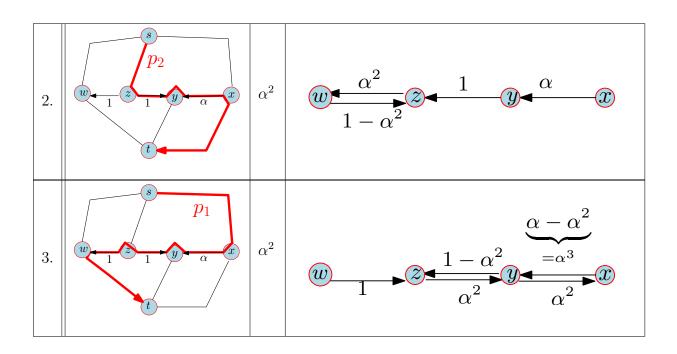
18.5.0.8 Let it flow...

#	Augment. path π	c_{π}	New residual network
0.		1	w 1 z 1 y α
1.	p_1	α	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

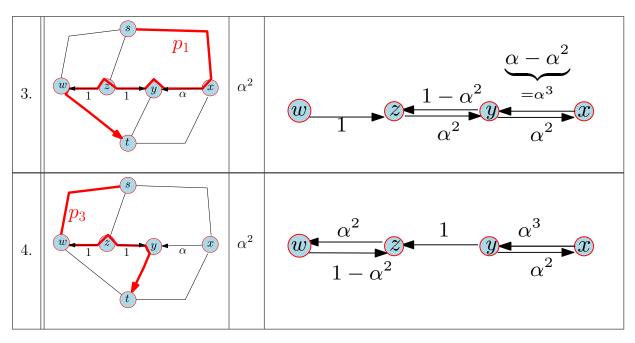
18.5.0.9 Let it flow II



18.5.0.10 Let it flow II



18.5.0.11 Let it flow III



18.5.0.12 Let it flow III

moves	Residual network after		
0			
moves $0, (1, 2, 3, 4)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
moves $0, (1, 2, 3, 4)^2$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$0.(1,2,3,4)^i$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Namely, the algorithm never terminates.

Bibliography

- E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power estimation. *Soviet Math. Doklady*, 11:1277–1280, 1970.
- J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. *J. Assoc. Comput. Mach.*, 19(2):248–264, 1972.