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Network Flow Algorithms
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Part I

Algorithm(s) for Maximum Flow
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Greedy Approach
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1 Begin with f (e) = 0 for each edge.

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P.

3 Augment flow along this path.

4 Repeat augmentation for as long as
possible.
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Greedy Approach: Issues
Issues = What is this nonsense?
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1 Begin with f (e) = 0 for each edge

2 Find a s-t path P with f (e) < c(e)
for every edge e ∈ P

3 Augment flow along this path

4 Repeat augmentation for as long as
possible.

1 Greedy can get stuck in sub-optimal flow!

2 Need to “push-back” flow along edge (u, v).
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Residual Graph
The “leftover” graph

Definition
For a network G = (V ,E) and flow f , the residual graph
Gf = (V ′,E ′) of G with respect to f is

1 V ′ = V ,

2 Forward Edges: For each edge e ∈ E with f (e) < c(e), we
add e ∈ E ′ with capacity c(e)− f (e).

3 Backward Edges: For each edge e = (u, v) ∈ E with
f (e) > 0, we add (v , u) ∈ E ′ with capacity f (e).
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Residual Graph Example
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Figure: Flow on edges is indicated in
red
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Figure: Residual Graph

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 60

Residual capacity

1 f flow f in network G.

2 c capacities on the edges.

3 The residual capacity is the leftover capacity on each edge.
Formally:

cf

(
(u, v)

)
=

{
c(u, v)− f (u, v) (u, v) ∈ E(G)

−f (v , u) (v , u) ∈ E(G)

4 ...assumed that G does not contain both (u, v) and (v , u).

5 Gf with cf is a new instance of network flow!

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 60

Residual graph properties

1 Observation: Residual graph captures the “residual” problem
exactly.

2 Flow in residual graph improves overall flow:

Lemma
Let f be a flow in G and Gf be the residual graph. If f ′ is a flow in
Gf then f + f ′ is a flow in G of value v(f ) + v(f ′).

3 If there is a bigger flow, we will find it:

Lemma
Let f and f ′ be two flows in G with v(f ′) ≥ v(f ). Then there is a
flow f ′′ of value v(f ′)− v(f ) in Gf .

4 Definition of + and - for flows is intuitive and the above lemmas
are easy in some sense but a bit messy to formally prove.
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Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

MaxFlow(G , s, t):
if the flow from s to t is 0 then

return 0
Find any flow f with v(f ) > 0 in G
Recursively compute a maximum flow f ′ in Gf
Output the flow f + f ′

Iterative algorithm for finding a maximum flow:

MaxFlow(G , s, t):
Start with flow f that is 0 on all edges

while there is a flow f ′ in Gf with v(f ′) > 0 do
f = f + f ′

Update Gf

Output f
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Residual capacity of an augmenting path

1 f current flow in Gf .

2 π: A path π in residual graph Gf .

3 cf : Residual capacities in Gf .

4 The residual capacity of π is

cf (π) = min
e∈E(π)

cf (e).

5 cf (π) = maximum amount of flow that can be pushed on π in
Gf without violating capacities (i.e., cf ).
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Ford-Fulkerson Algorithm

algFordFulkerson
for every edge e, f (e) = 0
Gf is residual graph of G with respect to f
while Gf has a simple s-t path do

let P be simple s-t path in Gf
f = augment(f ,P)
Construct new residual graph Gf .

augment(f ,P)

let b be bottleneck capacity,

i.e., min capacity of edges in P (in Gf )

for each edge (u, v) in P do
if e = (u, v) is a forward edge then

f (e) = f (e) + b
else (* (u, v) is a backward edge *)

let e = (v , u) (* (v , u) is in G *)

f (e) = f (e)− b
return f
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Properties about Augmentation: Flow

Lemma
If f is a flow and P is a simple s-t path in Gf , then
f ′ = augment(f ,P) is also a flow.

Proof.
Verify that f ′ is a flow. Let b be augmentation amount.

1 Capacity constraint: If (u, v) ∈ P is a forward edge then
f ′(e) = f (e) + b and b ≤ c(e)− f (e). If (u, v) ∈ P is a
backward edge, then letting e = (v , u), f ′(e) = f (e)− b and
b ≤ f (e). Both cases 0 ≤ f ′(e) ≤ c(e).

2 Conservation constraint: Let v be an internal node. Let e1, e2

be edges of P incident to v . Four cases based on whether e1, e2

are forward or backward edges. Check cases (see fig next
slide).
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Properties of Augmentation
Conservation Constraint
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Figure: Augmenting path P in Gf and corresponding change of flow in
G . Red edges are backward edges.

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 60

Properties of Augmentation
Integer Flow

Lemma
At every stage of the Ford-Fulkerson algorithm, the flow values on
the edges (i.e., f (e), for all edges e) and the residual capacities in
Gf are integers.

Proof.
Initial flow and residual capacities are integers. Suppose lemma holds
for j iterations. Then in (j + 1)st iteration, minimum capacity edge
b is an integer, and so flow after augmentation is an integer.
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Progress in Ford-Fulkerson

Proposition
Let f be a flow and f ′ be flow after one augmentation. Then
v(f ) < v(f ′).

Proof.
Let P be an augmenting path, i.e., P is a simple s-t path in residual
graph. We have the following.

1 First edge e in P must leave s.

2 Original network G has no incoming edges to s; hence e is a
forward edge.

3 P is simple and so never returns to s.

4 Thus, value of flow increases by the flow on edge e.
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Termination proof for integral flow

Theorem
Let C be the minimum cut value; in particular
C ≤

∑
e out of s c(e). Ford-Fulkerson algorithm terminates after

finding at most C augmenting paths.

Proof.
The value of the flow increases by at least 1 after each
augmentation. Maximum value of flow is at most C .

Running time
1 Number of iterations ≤ C .

2 Number of edges in Gf ≤ 2m.

3 Time to find augmenting path is O(n + m).

4 Running time is O(C(n + m)) (or O(mC)).
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Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be
as Ω(mC) or is our analysis weak?
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Efficiency of Ford-Fulkerson
Flip-flop 1
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Efficiency of Ford-Fulkerson
Flip-flop 2
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f0: Initial empty flow Residual graph Augmenting path Augmenting path f1: Updated flow
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Efficiency of Ford-Fulkerson
Flip-flop 3
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f1: current flow Gf1
: Residual graph Augmenting path Augmenting path f2: New flow
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Efficiency of Ford-Fulkerson
Flip-flop 4

u

1/C

0/1

1/C
1/C

1/C

v

s t

u
C − 1

1

C − 1 C − 1

1
1

C − 1

v

s

1

t
1

u
C − 1

1

C − 1 C − 1

1
1

C − 1

v

s

1

t

1

1

u
C − 1

1

C − 1 C − 1

1
1

C − 1

v

s

1

t

1

1

u

v

s t

2/C

1/1

2/C
1/C

1/C

f2: current flow Gf2
: Residual graph Augmenting path Augmenting path f3: New flow
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Efficiency of Ford-Fulkerson
Flip-flop 5
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f3: current flow Gf3
: Residual graph Augmenting path Augmenting path f4: New flow

And so it continues for 2C iterations...
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Efficiency of Ford-Fulkerson

1 Running time = O(mC) is not polynomial.

2 Can the running time be as Ω(mC) or is our analysis weak?

3 Previous example shows this is tight!.

4 Ford-Fulkerson can take Ω(C) iterations.
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Correctness of Ford-Fulkerson
Why the augmenting path approach works

1 Question: When the algorithm terminates, is the flow computed
the maximum s-t flow?

2 Proof idea: show a cut of value equal to the flow. Also shows
that maximum flow is equal to minimum cut!
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Recalling Cuts

1 Definition:

Definition
Given a flow network an s-t cut is a set of edges E ′ ⊂ E such that
removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′. Capacity of cut E ′ is

∑
e∈E ′ c(e).

2 Vertex cut: Let A ⊂ V such that
1 s ∈ A, t 6∈ A, and
2 B = V \ −A and hence t ∈ B.

3 Define (A,B) = {(u, v) ∈ E | u ∈ A, v ∈ B}

Claim
(A,B) is an s-t cut.

4 Recall: Every minimal s-t cut E ′ is a cut of the form (A,B).
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Ford-Fulkerson Correctness

Lemma
If there is no s-t path in Gf then there is some cut (A,B) such that
v(f ) = c(A,B)

Proof.
Let A be all vertices reachable from s in Gf ; B = V \ A.

s

u

v0

u0

v

t

1 s ∈ A and t ∈ B. So (A,B) is an s-t
cut in G .

2 If e = (u, v) ∈ G with u ∈ A and
v ∈ B, then f (e) = c(e) (saturated
edge) because otherwise v is reachable
from s in Gf .
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Lemma Proof Continued

Proof.

s

u

v0

u0

v

t

1 If e = (u′, v ′) ∈ G with u′ ∈ B and
v ′ ∈ A, then f (e) = 0 because
otherwise u′ is reachable from s in Gf

2 Thus,

v(f ) = f out(A)− f in(A)

= f out(A)− 0

= c(A,B)− 0

= c(A,B).
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Example
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Ford-Fulkerson Correctness

Theorem
The flow returned by the algorithm is the maximum flow.

Proof.
1 For any flow f and s-t cut (A,B), v(f ) ≤ c(A,B).

2 For flow f ∗ returned by algorithm, v(f ∗) = c(A∗,B∗) for
some s-t cut (A∗,B∗).

3 Hence, f ∗ is maximum.
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Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem
For any network G , the value of a maximum s-t flow is equal to the
capacity of the minimum s-t cut.

Proof.
Ford-Fulkerson algorithm terminates with a maximum flow of value
equal to the capacity of a (minimum) cut.
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Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem
For any network G with integer capacities, there is a maximum s-t
flow that is integer valued.

Proof.
Ford-Fulkerson algorithm produces an integer valued flow when
capacities are integers.
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Efficiency of Ford-Fulkerson

1 Running time = O(mC) is not polynomial.

2 Can the upper bound be achieved?

3 Yes - saw an example.
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Polynomial Time Algorithms

1 Question: Is there a polynomial time algorithm for max-flow?

2 Question: Is there a variant of Ford-Fulkerson that leads to a
polynomial time algorithm? Can we choose an augmenting path
in some clever way?

3 Yes! Two variants.
1 Choose the augmenting path with largest bottleneck capacity.
2 Choose the shortest augmenting path.
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Augmenting Paths with Large Bottleneck Capacity

1 Pick augmenting paths with largest bottleneck capacity in each
iteration of Ford-Fulkerson.

2 How do we find path with largest bottleneck capacity?
1 Assume we know ∆ the bottleneck capacity
2 Remove all edges with residual capacity ≤ ∆
3 Check if there is a path from s to t
4 Do binary search to find largest ∆
5 Running time: O(m log C)

3 Can we bound the number of augmentations? Can show that in
O(m log C) augmentations the algorithm reaches a max flow.
This leads to an O(m2 log2 C) time algorithm.
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Augmenting Paths with Large Bottleneck Capacity

1 How do we find path with largest bottleneck capacity?

1 Max bottleneck capacity is one of the edge capacities. Why?
2 Can do binary search on the edge capacities. First, sort the

edges by their capacities and then do binary search on that
array as before.

3 Algorithm’s running time is O(m log m).
4 Different algorithm that also leads to O(m log m) time

algorithm by adapting Prim’s algorithm.
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Removing Dependence on C
1 Dinic [1970], Edmonds and Karp [1972]

Picking augmenting paths with fewest number of edges yields a
O(m2n) algorithm, i.e., independent of C . Such an algorithm is
called a strongly polynomial time algorithm since the running
time does not depend on the numbers (assuming RAM model).
(Many implementation of Ford-Fulkerson would actually use
shortest augmenting path if they use BFS to find an s-t path).

2 Further improvements can yield algorithms running in
O(mn log n), or O(n3).
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Part II

Not for lecture: Non-termination of
Ford-Fulkerson
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Ford-Fulkerson runs in vain
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1 M : large positive integer.

2 α = (
√

5− 1)/2 ≈ 0.618.

3 α < 1,

4 1− α < α.

5 Maximum flow in this
network is: 2M + 1.
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Some algebra...

For α =

√
5− 1

2
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Some algebra...

Claim

Given: α = (
√

5− 1)/2 and α2 = 1− α.

=⇒ ∀i αi − αi+1 = αi+2

Proof.

αi − αi+1 = αi(1− α) = αiα2 = αi+2.
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The network
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Let it flow...
# Augment. path π cπ New residual network
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Let it flow II
# Augment. path π cπ New residual network
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Let it flow II
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Let it flow III
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Let it flow III
moves Residual network after
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Namely, the algorithm never terminates.
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E. A. Dinic. Algorithm for solution of a problem of maximum flow in
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J. Edmonds and R. M. Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. J. Assoc.
Comput. Mach., 19(2):248–264, 1972.
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