OLD CS 473: Fundamental Algorithms, Spring 2015

Network Flow Algorithms

Lecture 18 March 31, 2015

Residual Graph

The "leftover" graph

Definition

For a network G = (V, E) and flow f, the residual graph $G_f = (V', E')$ of G with respect to f is

- V' = V,
- **Solution** Forward Edges: For each edge $e \in E$ with f(e) < c(e), we add $e \in E'$ with capacity c(e) f(e).
- **Solution** Backward Edges: For each edge $e = (u, v) \in E$ with f(e) > 0, we add $(v, u) \in E'$ with capacity f(e).

Residual capacity

- f flow f in network G.
- **2** *c* capacities on the edges.
- The residual capacity is the leftover capacity on each edge. Formally:

$$c_f((u,v)) = \begin{cases} c(u,v) - f(u,v) & (u,v) \in E(G) \\ -f(v,u) & (v,u) \in E(G) \end{cases}$$

- ... assumed that G does not contain both (u, v) and (v, u).
- G_f with c_f is a new instance of network flow!

Residual graph properties

- **Observation:** Residual graph captures the "residual" problem exactly.
- **2** Flow in residual graph improves overall flow:

Lemma

Let f be a flow in G and G_f be the residual graph. If f' is a flow in G_f then f + f' is a flow in G of value v(f) + v(f').

• If there is a bigger flow, we will find it:

Lemma

Let f and f' be two flows in G with $v(f') \ge v(f)$. Then there is a flow f'' of value v(f') - v(f) in G_f .

Definition of + and - for flows is intuitive and the above lemmas are easy in some sense but a bit messy to formally prove.

7

Spring 2015 7 / 60

Spring 2015

8

Spring 2015 8 / 60

Residual Graph Property: Implication

Recursive algorithm for finding a maximum flow:

Iterative algorithm for finding a maximum flow:

algFordFulkerson	
for every edge e , $f(e)=0$	
${m G}_{m f}$ is residual graph of $m G$ with respect	to f
while G_f has a simple s - t path do	
let P be simple s - t path in G_f	
$f = \operatorname{augment}(f, P)$	
Construct new residual graph $m{G}_{m{f}}$.	
augment(f, P)	
let $m{b}$ be bottleneck capacity,	
i.e., min capacity of edges in $oldsymbol{P}$ (i	n G f)
for each edge (u, v) in P do	
if $e = (u, v)$ is a forward edge then	
f(e) = f(e) + b	
else (* (u , v) is a backward edge *)	
let $e = (v, u)$ (* (v, u) is in G	*)
f(e) = f(e) - b	
return f	
Sariel (UIUC) OLD CS473 11	Spring 2015

Residual capacity of an augmenting path

- f current flow in G_f .
- **2** π : A path π in residual graph G_f.
- cf: Residual capacities in Gf.
- The **residual capacity** of π is

$$c_f(\pi) = \min_{\mathbf{e}\in\mathsf{E}(\pi)} c_f(\mathbf{e}).$$

• $c_f(\pi) = \text{maximum}$ amount of flow that can be pushed on π in G_f without violating capacities (i.e., c_f).

Properties about Augmentation: Flow

Lemma

Sariel (UIUC

If f is a flow and P is a simple s-t path in G_f , then f' = augment(f, P) is also a flow.

Proof.

Verify that f' is a flow. Let b be augmentation amount.

- Capacity constraint: If (u, v) ∈ P is a forward edge then f'(e) = f(e) + b and b ≤ c(e) f(e). If (u, v) ∈ P is a backward edge, then letting e = (v, u), f'(e) = f(e) b and b ≤ f(e). Both cases 0 ≤ f'(e) ≤ c(e).
- Conservation constraint: Let v be an internal node. Let e₁, e₂ be edges of P incident to v. Four cases based on whether e₁, e₂ are forward or backward edges. Check cases (see fig next slide).

Spring 2015

10 / 60

Properties of Augmentation

Conservation Constraint

Progress in Ford-Fulkerson

Proposition

Let f be a flow and f' be flow after one augmentation. Then v(f) < v(f').

Proof.

Let P be an augmenting path, i.e., P is a simple s-t path in residual graph. We have the following.

- First edge *e* in *P* must leave *s*.
- Original network G has no incoming edges to s; hence e is a forward edge.
- **(a)** P is simple and so never returns to s.
- Thus, value of flow increases by the flow on edge *e*.

OLD CS473

Properties of Augmentation

Lemma

At every stage of the Ford-Fulkerson algorithm, the flow values on the edges (i.e., f(e), for all edges e) and the residual capacities in G_f are integers.

Proof.

Initial flow and residual capacities are integers. Suppose lemma holds for j iterations. Then in (j + 1)st iteration, minimum capacity edge b is an integer, and so flow after augmentation is an integer.

Spring 2015

Spring 2015

16 / 60

Termination proof for integral flow

Theorem

Let *C* be the minimum cut value; in particular $C \leq \sum_{e \text{ out of } s} c(e)$. Ford-Fulkerson algorithm terminates after finding at most *C* augmenting paths.

Proof.

The value of the flow increases by at least ${\bf 1}$ after each augmentation. Maximum value of flow is at most ${\bf C}.$

Running time

Sariel (UIUC)

- Number of iterations $\leq C$.
- **2** Number of edges in $G_f \leq 2m$.
- Time to find augmenting path is O(n + m).
- Running time is O(C(n + m)) (or O(mC)).

Spring 2015 15 / 6

Efficiency of Ford-Fulkerson

Running time = O(mC) is not polynomial. Can the running time be as $\Omega(mC)$ or is our analysis weak?

Efficiency of Ford-Fulkerson

- Running time = O(mC) is not polynomial.
- **2** Can the running time be as $\Omega(mC)$ or is our analysis weak?
- Orevious example shows this is tight!.
- Ford-Fulkerson can take $\Omega(C)$ iterations.

<section-header> Corectness of Ford-Fulkerson Why the augmenting path approach works Question: When the algorithm terminates, is the flow computed the maximum *s*-*t* flow? Proof idea: show a cut of value equal to the flow. Also shows that maximum flow is equal to minimum cut!

Recalling Cuts

Definition:

Definition

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. Capacity of cut E' is $\sum_{e \in E'} c(e)$.

Ford-Fulkerson Correctness

Lemma

If there is no s-t path in G_f then there is some cut (A, B) such that v(f) = c(A, B)

Proof.

Ford-Fulkerson Correctness

Theorem

The flow returned by the algorithm is the maximum flow.

Proof.

- For any flow f and s-t cut (A, B), $v(f) \leq c(A, B)$.
- For flow f* returned by algorithm, v(f*) = c(A*, B*) for some s-t cut (A*, B*).
- 3 Hence, f^* is maximum.

Sariel (UIUC) OLD CS473 29 Spring 2015 29 / 60 Max-Flow Min-Cut Theorem and Integrality of

Flows

Theorem

For any network G with integer capacities, there is a maximum s-t flow that is integer valued.

Proof.

Ford-Fulkerson algorithm produces an integer valued flow when capacities are integers.

Max-Flow Min-Cut Theorem and Integrality of Flows

Theorem

For any network G, the value of a maximum s-t flow is equal to the capacity of the minimum s-t cut.

Proof.

Ford-Fulkerson algorithm terminates with a maximum flow of value equal to the capacity of a (minimum) cut.

OLD CS47

Efficiency of Ford-Fulkerson

- Running time = O(mC) is not polynomial.
- ② Can the upper bound be achieved?
- 3 Yes saw an example.

Sariel (UIUC

OLD CS473

Spring 2015

30 / 60

Polynomial Time Algorithms

- **Question:** Is there a polynomial time algorithm for max-flow?
- Question: Is there a variant of Ford-Fulkerson that leads to a polynomial time algorithm? Can we choose an augmenting path in some clever way?
- Yes! Two variants.
 - Choose the augmenting path with largest bottleneck capacity.
 - **2** Choose the shortest augmenting path.

Augmenting Paths with Large Bottleneck Capacity

- I How do we find path with largest bottleneck capacity?
 - Max bottleneck capacity is one of the edge capacities. Why?
 - Or an do binary search on the edge capacities. First, sort the edges by their capacities and then do binary search on that array as before.
 - Solution Algorithm's running time is $O(m \log m)$.
 - O Different algorithm that also leads to O(m log m) time algorithm by adapting Prim's algorithm.

Augmenting Paths with Large Bottleneck Capacity

- Pick augmenting paths with largest bottleneck capacity in each iteration of Ford-Fulkerson.
- I How do we find path with largest bottleneck capacity?
 - ${\small \textcircled{\ }} {\small \textbf{ Assume we know } \Delta } \text{ the bottleneck capacity }$

 - **③** Check if there is a path from \boldsymbol{s} to \boldsymbol{t}
 - (a) Do binary search to find largest $\pmb{\Delta}$
 - Running time: $O(m \log C)$
- Can we bound the number of augmentations? Can show that in O(m log C) augmentations the algorithm reaches a max flow. This leads to an O(m² log² C) time algorithm.

Removing Dependence on C

Sariel (UIUC

O Dinic [1970], Edmonds and Karp [1972]

Picking augmenting paths with fewest number of edges yields a $O(m^2n)$ algorithm, i.e., independent of C. Such an algorithm is called a strongly polynomial time algorithm since the running time does not depend on the numbers (assuming RAM model). (Many implementation of Ford-Fulkerson would actually use shortest augmenting path if they use **BFS** to find an *s*-*t* path).

Solution Further improvements can yield algorithms running in $O(mn \log n)$, or $O(n^3)$.

Spring 2015

Some algebra...
For
$$\alpha = \frac{\sqrt{5} - 1}{2}$$
:
 $\alpha^2 = (1) \frac{\sqrt{5} - 1}{2} = \frac{1}{4} (1) \sqrt{5} - 1^2 = \frac{1}{4} (1) 5 - 2\sqrt{5} + 1$
 $= 1 + \frac{1}{4} (1) 2 - 2\sqrt{5}$
 $= 1 + \frac{1}{2} (1) 1 - \sqrt{5}$
 $= 1 - \frac{\sqrt{5} - 1}{2}$
 $= 1 - \alpha$.

Some algebra...
Claim
Given:
$$\alpha = (\sqrt{5} - 1)/2$$
 and $\alpha^2 = 1 - \alpha$.
 $\Rightarrow \forall i \quad \alpha^i - \alpha^{i+1} = \alpha^{i+2}$
Proof.
 $\alpha^i - \alpha^{i+1} = \alpha^i(1 - \alpha) = \alpha^i\alpha^2 = \alpha^{i+2}$.

Let it flow III

- E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power estimation. *Soviet Math. Doklady*, 11: 1277–1280, 1970.
- J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. *J. Assoc. Comput. Mach.*, 19(2):248–264, 1972.

Spring 2015

46 / 60