OLD CS 473: Fundamental Algorithms, Spring 2015

Network Flows

Lecture 17 March 19, 2015

Everything flows

Panta rei – everything flows (literally). Heraclitus (535–475 BC)

Part I

Network Flows: Introduction and Setup

Transportation/Road Network

Internet Backbone Network

- **1** Network represented by a (directed) graph G = (V, E).
- 2 Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- 3 *Source(s)* of traffic/data.
- Sink(s) of traffic/data.
- 5 Traffic *flows* from sources to sinks.
- Traffic is *switched/interchanged* at nodes.
- Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

1 Network represented by a (directed) graph G = (V, E).

- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- 3 *Source(s)* of traffic/data.
- Sink(s) of traffic/data.
- 5 Traffic *flows* from sources to sinks.
- Traffic is *switched/interchanged* at nodes.
- Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

- **1** Network represented by a (directed) graph G = (V, E).
- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- 3 *Source(s)* of traffic/data.
- Sink(s) of traffic/data.
- 5 Traffic *flows* from sources to sinks.
- Traffic is *switched/interchanged* at nodes.
- Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

- **1** Network represented by a (directed) graph G = (V, E).
- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- 5 Traffic *flows* from sources to sinks.
- Traffic is *switched/interchanged* at nodes.
- Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

- **1** Network represented by a (directed) graph G = (V, E).
- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- 5 Traffic *flows* from sources to sinks.
- Traffic is *switched/interchanged* at nodes.
- Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

- **1** Network represented by a (directed) graph G = (V, E).
- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- Traffic flows from sources to sinks.
- Traffic is switched/interchanged at nodes.
- Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

- **1** Network represented by a (directed) graph G = (V, E).
- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- Traffic flows from sources to sinks.
- Traffic is switched/interchanged at nodes.
- Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

- **1** Network represented by a (directed) graph G = (V, E).
- Each edge e has a capacity c(e) ≥ 0 that limits amount of traffic on e.
- Source(s) of traffic/data.
- Sink(s) of traffic/data.
- Traffic flows from sources to sinks.
- Traffic is switched/interchanged at nodes.
- Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Simple setting:

- 1 Single source *s* and single sink *t*.
- 2 Every other node v is an internal node.
- 3 Flow originates at *s* and terminates at *t*.

Each edge e has a capacity $c(e) \ge 0$.

Sometimes assume: Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Simple setting:

- Single source s and single sink t.
- 2 Every other node v is an internal node.
- **3** Flow originates at *s* and terminates at *t*.

Each edge e has a capacity $c(e) \ge 0$.

Sometimes assume: Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Simple setting:

- Single source s and single sink t.
- ② Every other node v is an internal node.
- **3** Flow originates at *s* and terminates at *t*.

Each edge e has a capacity $c(e) \ge 0$.

Sometimes assume: Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Simple setting:

- Single source s and single sink t.
- 2 Every other node v is an internal node.
- Is Flow originates at s and terminates at t.

Each edge e has a capacity $c(e) \ge 0$.

Sometimes assume: Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Simple setting:

- Single source s and single sink t.
- 2 Every other node v is an internal node.
- I Flow originates at s and terminates at t.

Each edge e has a capacity $c(e) \ge 0$.

Sometimes assume: Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Simple setting:

- Single source s and single sink t.
- 2 Every other node v is an internal node.
- Icon States at s and terminates at t.

Each edge e has a capacity $c(e) \ge 0$. Sometimes assume: Source $s \in V$ has no incoming

edges, and sink $t \in V$ has no outgoing edges.

Simple setting:

- Single source s and single sink t.
- 2 Every other node v is an internal node.
- Icon States at s and terminates at t.

Each edge e has a capacity $c(e) \ge 0$.

Sometimes assume: Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Sariel (UIUC)

- 1 Two ways to define flows...
- 2 edge based, or
- 3 path based.
- Essentially equivalent but have different uses.
- **5** Edge based definition is more compact.

- Two ways to define flows...
- edge based, or
- 3 path based.
- Essentially equivalent but have different uses.
- **5** Edge based definition is more compact.

- Two ways to define flows...
- edge based, or
- **3** path based.
- Essentially equivalent but have different uses.
- **5** Edge based definition is more compact.

- Two ways to define flows...
- edge based, or
- ath based.
- Essentially equivalent but have different uses.
- Edge based definition is more compact.

- Two ways to define flows...
- edge based, or
- 9 path based.
- Ssentially equivalent but have different uses.
- **5** Edge based definition is more compact.

- Two ways to define flows...
- edge based, or
- 9 path based.
- ④ Essentially equivalent but have different uses.
- 6 Edge based definition is more compact.

Definition

Figure: Flow with value.

Definition

Figure: Flow with value.

Definition

Definition

Flow in network G = (V, E), is function $f : E \to \mathbb{R}^{\geq 0}$ s.t. 3 9/9 6 Capacity Constraint: For each edge e, $f(e) \leq c(e)$. Conservation Constraint: For each vertex $v \neq s, t$. $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Figure: Flow with value.

3 Value of flow= (total flow out of source) - (total flow in to source).

Definition

Flow in network G = (V, E), is function $f : E \to \mathbb{R}^{\geq 0}$ s.t. 3 9/9 6 Capacity Constraint: For each edge e, $f(e) \leq c(e)$. Conservation Constraint: For each vertex $v \neq s, t$. $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Figure: Flow with value.

Value of flow= (total flow out of source) - (total flow in to source).

Conservation of flow law is also known as Kirchhoff's law.

More Definitions and Notation

Notation

- The inflow into a vertex v is $f^{in}(v) = \sum_{e \text{ into } v} f(e)$ and the outflow is $f^{out}(v) = \sum_{e \text{ out of } v} f(e)$
- 2 For a set of vertices A, $f^{in}(A) = \sum_{e \text{ into } A} f(e)$. Outflow $f^{out}(A)$ is defined analogously

Definition

For a network G = (V, E) with source s, the **value** of flow f is defined as $v(f) = f^{out}(s) - f^{in}(s)$.

More Definitions and Notation

Notation

(a) The inflow into a vertex v is $f^{\text{in}}(v) = \sum_{e \text{ into } v} f(e)$ and the outflow is $f^{\text{out}}(v) = \sum_{e \text{ out of } v} f(e)$

2 For a set of vertices A, $f^{in}(A) = \sum_{e \text{ into } A} f(e)$. Outflow $f^{out}(A)$ is defined analogously

Definition

For a network G = (V, E) with source s, the **value** of flow f is defined as $v(f) = f^{out}(s) - f^{in}(s)$.

More Definitions and Notation

Notation

- The inflow into a vertex v is fⁱⁿ(v) = ∑_e into v f(e) and the outflow is f^{out}(v) = ∑_e out of v f(e)
 For a set of vertices A, fⁱⁿ(A) = ∑_e into A f(e). Outflow
 - $f^{\text{out}}(A)$ is defined analogously

Definition

For a network G = (V, E) with source s, the value of flow f is defined as $v(f) = f^{out}(s) - f^{in}(s)$.

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

2 Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - **(a)** Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

2 Conservation Constraint: No need! Automatic.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - **Q** Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

2 Conservation Constraint: No need! Automatic.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - **Q** Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

2 Conservation Constraint: No need! Automatic.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - **(1)** Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

Onservation Constraint: No need! Automatic.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - **Q** Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

Onservation Constraint: No need! Automatic.

Intuition: Flow goes from source s to sink t along a path.

 \mathcal{P} : set of all paths from s to t. $|\mathcal{P}|$ can be exponential in n.

Definition (Flow by paths.)

- A flow in network G = (V, E), is function $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ s.t.
 - **Q** Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

 $\sum_{p\in\mathcal{P}:e\in p}f(p)\leq c(e)$

Onservation Constraint: No need! Automatic.

$$\mathcal{P} = \{p_1, p_2, p_3\}$$

$$p_1 : s \to u \to t$$

$$p_2 : s \to u \to v \to t$$

$$p_3 : s \to v \to t$$

$$f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$$

Sariel (UIUC)

Path based flow implies edge based flow

Lemma

Given a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge e define $f'(e) = \sum_{p:e \in p} f(p)$. **Exercise:** Verify capacity and conservation constraints for f'. **Exercise:** Verify that value of f and f' are equal

14

Path based flow implies edge based flow

Lemma

Given a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ there is an edge based flow $f' : E \to \mathbb{R}^{\geq 0}$ of the same value.

Proof.

For each edge e define $f'(e) = \sum_{p:e \in p} f(p)$. **Exercise:** Verify capacity and conservation constraints for f'. **Exercise:** Verify that value of f and f' are equal

14

$$\mathcal{P} = \{p_1, p_2, p_3\}$$

$$p_1 : s \to u \to t$$

$$p_2 : s \to u \to v \to t$$

$$p_3 : s \to v \to t$$

 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$

$$\mathcal{P} = \{p_1, p_2, p_3\}$$

$$p_1 : s \to u \to t$$

$$p_2 : s \to u \to v \to t$$

$$p_3 : s \to v \to t$$

 $f(p_1) = 10, f(p_2) = 4, f(p_3) = 6$

$$f'(s \rightarrow u) = 14$$

$$f'(u \rightarrow v) = 4$$

$$f'(s \rightarrow v) = 6$$

$$f'(u \rightarrow t) = 10$$

$$f'(v \rightarrow t) = 10$$

Lemma

Given an edge based flow $f_1 : E \to \mathbb{R}^{\geq 0}$, there is a path based flow $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ of same value. Moreover, f assigns non-negative flow to at most m paths where |E| = m and |V| = n. Given f_1 , the path based flow can be computed in O(mn) time.

- 1 Remove all edges with $f_1(e) = 0$.
- 2 Find a path *p* from *s* to *t*.
- 3 Assign f(p) to be $\min_{e \in p} f_1(e)$.
- Reduce $f_1(e)$ for all $e \in p$ by f(p).
- 5 Repeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

- **(1)** Remove all edges with $f_1(e) = 0$.
- 2 Find a path *p* from *s* to *t*.
- 3 Assign f(p) to be $\min_{e \in p} f_1(e)$.
- Reduce $f_1(e)$ for all $e \in p$ by f(p).
- 5 Repeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

- **(1)** Remove all edges with $f_1(e) = 0$.
- Pind a path p from s to t.
- 3 Assign f(p) to be $\min_{e \in p} f_1(e)$.
- Reduce $f_1(e)$ for all $e \in p$ by f(p).
- 5 Repeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

- **(1)** Remove all edges with $f_1(e) = 0$.
- Pind a path p from s to t.
- 3 Assign f(p) to be $\min_{e \in p} f_1(e)$.
- Reduce $f_1(e)$ for all $e \in p$ by f(p).
- 5 Repeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

- **(1)** Remove all edges with $f_1(e) = 0$.
- Find a path p from s to t.
- 3 Assign f(p) to be $\min_{e \in p} f_1(e)$.
- **a** Reduce $f_1(e)$ for all $e \in p$ by f(p).
- 5 Repeat until no path from *s* to *t*.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

- **(1)** Remove all edges with $f_1(e) = 0$.
- Find a path p from s to t.
- 3 Assign f(p) to be $\min_{e \in p} f_1(e)$.
- **a** Reduce $f_1(e)$ for all $e \in p$ by f(p).
- Sepeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

- **(1)** Remove all edges with $f_1(e) = 0$.
- Find a path p from s to t.
- 3 Assign f(p) to be $\min_{e \in p} f_1(e)$.
- **a** Reduce $f_1(e)$ for all $e \in p$ by f(p).
- Sepeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most m iterations. Can be implemented in O(m(m + n)) time. O(mn) time requires care.

- **(1)** Remove all edges with $f_1(e) = 0$.
- Find a path p from s to t.
- 3 Assign f(p) to be $\min_{e \in p} f_1(e)$.
- **a** Reduce $f_1(e)$ for all $e \in p$ by f(p).
- Sepeat until no path from s to t.
- In each iteration at least on edge has flow reduced to zero.
- Hence, at most *m* iterations. Can be implemented in O(m(m+n)) time. O(mn) time requires care.

Sariel (UIUC)

19

Sariel (UIUC)

4

Sariel (UIUC)

1 4

Sariel (UIUC)

Path flow decomposition

Do not have to be efficient...

Path flow decomposition

Do not have to be efficient...

Path flow decomposition

Do not have to be efficient...

- **compact** representation, only **m** values to be specified, and
- 2 need to check flow conservation explicitly at each internal node.
- 2 Path flows:
 - 1 in some applications, paths more natural,
 - not compact,
 - no need to check flow conservation constraints.
- 3 Equivalence shows that we can go back and forth easily.

- **compact** representation, only **m** values to be specified, and
- 2 need to check flow conservation explicitly at each internal node.
- 2 Path flows:
 - 1 in some applications, paths more natural,
 - not compact,
 - no need to check flow conservation constraints.
- 3 Equivalence shows that we can go back and forth easily.

- **o** compact representation, only *m* values to be specified, and
- need to check flow conservation explicitly at each internal node.
- 2 Path flows:
 - 1 in some applications, paths more natural,
 - not compact,
 - no need to check flow conservation constraints.
- 3 Equivalence shows that we can go back and forth easily.

- compact representation, only *m* values to be specified, and
- oneed to check flow conservation explicitly at each internal node.
- 2 Path flows:
 - 1 in some applications, paths more natural,
 - not compact,
 - no need to check flow conservation constraints.
- 3 Equivalence shows that we can go back and forth easily.

Edge based flows:

- compact representation, only *m* values to be specified, and
- need to check flow conservation explicitly at each internal node.

2 Path flows:

- in some applications, paths more natural,
- not compact,
- no need to check flow conservation constraints.
- 3 Equivalence shows that we can go back and forth easily.

- compact representation, only *m* values to be specified, and
- oneed to check flow conservation explicitly at each internal node.
- 2 Path flows:
 - in some applications, paths more natural,
 - not compact,
 - no need to check flow conservation constraints.
- 3 Equivalence shows that we can go back and forth easily.

- compact representation, only *m* values to be specified, and
- oneed to check flow conservation explicitly at each internal node.
- 2 Path flows:
 - in some applications, paths more natural,
 - ont compact,
 - no need to check flow conservation constraints.
- 3 Equivalence shows that we can go back and forth easily.

- compact representation, only *m* values to be specified, and
- oneed to check flow conservation explicitly at each internal node.
- 2 Path flows:
 - in some applications, paths more natural,
 - ont compact,
 - on need to check flow conservation constraints.
- 3 Equivalence shows that we can go back and forth easily.

- Edge based flows:
 - **o** compact representation, only **m** values to be specified, and
 - oneed to check flow conservation explicitly at each internal node.
- Path flows:
 - in some applications, paths more natural,
 - ont compact,
 - on need to check flow conservation constraints.
- Equivalence shows that we can go back and forth easily.

1 The network flow problem:

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value.

2 Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

The network flow problem:

Problem

Input A network *G* with capacity *c* and source *s* and sink *t*. Goal Find flow of **maximum** value.

2 Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

22 / 33

The network flow problem:

Problem

Input A network G with capacity c and source s and sink t.

Goal Find flow of maximum value.

Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

The network flow problem:

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value.

2 Question: Given a flow network, what is an *upper bound* on the maximum flow between source and sink?

The network flow problem:

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value.

Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:

- 1 Cut may leave $t \rightarrow s$ paths!
- 2 There might be many *s*-*t* cuts.

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:

- 1 Cut may leave $t \rightarrow s$ paths!
- 2 There might be many *s*-*t* cuts.

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:

- 1 Cut may leave $t \rightarrow s$ paths!
- 2 There might be many *s*-*t* cuts.

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:

2 There might be many *s*-*t* cuts.

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E' \subset E$ such that removing E' disconnects s from t: in other words there is no directed $s \to t$ path in E - E'. The capacity of a cut E' is $c(E') = \sum_{e \in E'} c(e)$.

Caution:

- (1) Cut may leave $t \rightarrow s$ paths!
- There might be many s-t cuts.

${f s}-{f t}$ cuts A death by a thousand cuts

Minimal Cut

Definition (Minimal s-t cut.)

Given a *s*-*t* flow network G = (V, E), $E' \subseteq E$ is a minimal cut if for all $e \in E'$, if $E' \setminus \{e\}$ is not a cut.

Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?

Minimal Cut

Definition (Minimal s-t cut.)

Given a *s*-*t* flow network G = (V, E), $E' \subseteq E$ is a minimal cut if for all $e \in E'$, if $E' \setminus \{e\}$ is not a cut.

Observation: given a cut E', can check efficiently whether E' is a minimal cut or not. How?

- Let $A \subset V$ such that • $s \in A, t \notin A$, and • $B = V \setminus A$ (hence $t \in B$).
- The cut (A, B) is the set of edges (A, B) = $\{(u, v) \in E \mid u \in A, v \in B\}$. Cut (A, B) is set of edges leaving A.

Claim

(A, B) is an s-t cut.

Proof.

Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Sariel (UIUC)

OLD CS473

(1) Let $A \subset V$ such that

- $s \in A, t \notin A$, and • $B = V \setminus A$ (hence $t \in B$).
- 2 The cut (A, B) is the set of edges (A, B) =
 {(u, v) ∈ E | u ∈ A, v ∈ B}.
 Cut (A, B) is set of edges
 leaving A.

Claim

(A, B) is an s-t cut.

Proof.

Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Sariel (UIUC)

OLD CS473

2 The cut (A, B) is the set of edges (A, B) =
 {(u, v) ∈ E | u ∈ A, v ∈ B}.
 Cut (A, B) is set of edges
 leaving A.

Claim

(A, B) is an s-t cut.

Proof.

Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Sariel (UIUC)

OLD CS473

• Let $A \subset V$ such that • $s \in A, t \notin A$, and • $B = V \setminus A$ (hence $t \in B$).

2 The cut (A, B) is the set of edges (A, B) =
 {(u, v) ∈ E | u ∈ A, v ∈ B}.
 Cut (A, B) is set of edges
 leaving A.

Claim

(A, B) is an s-t cut.

Proof.

Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Sariel (UIUC)

OLD CS473

Claim

(A, B) is an s-t cut.

Proof.

Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Sariel (UIUC)

OLD CS473

Claim

(A, B) is an s-t cut.

Proof.

Let P be any $s \to t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Sariel (UIUC)

OLD CS473

26

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an *s*-*t* cut implies no path from *s* to *t* in (V, E - E').

- 1 Let A be set of all nodes reachable by s in (V, E E').
- 2 Since E' is a cut, $t \not\in A$.
- 3 $(A, B) \subseteq E'$. Why?

Corollary

Every minimal s-t cut E' is a cut of the form (A, B).

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- Let A be set of all nodes reachable by s in (V, E E').
- 2 Since E' is a cut, $t \not\in A$.
- 3 $(A, B) \subseteq E'$. Why?

Corollary

Every minimal s-t cut E' is a cut of the form (A, B).

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

- E' is an s-t cut implies no path from s to t in (V, E E').
 - **(1)** Let A be set of all nodes reachable by s in (V, E E').
 - 2 Since E' is a cut, $t \not\in A$.
 - (A, B) ⊆ E'. Why?If some edge (u, v) ∈ (A, B) is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Every minimal *s*-*t* cut *E*′ is a cut of the form (A, B).

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

- E' is an s-t cut implies no path from s to t in (V, E E').
 - **(1)** Let A be set of all nodes reachable by s in (V, E E').
 - 2 Since E' is a cut, $t \not\in A$.

(A, B) ⊆ E'. Why?If some edge (u, v) ∈ (A, B) is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Every minimal s-t cut E' is a cut of the form (A, B).

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- **(1)** Let A be set of all nodes reachable by s in (V, E E').
- 2 Since E' is a cut, $t \not\in A$.

(A, B) ⊆ E'. Why?If some edge (u, v) ∈ (A, B) is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Every minimal **s-t** cut **E'** is a cut of the form (A, B).

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- **(1)** Let A be set of all nodes reachable by s in (V, E E').
- 2 Since E' is a cut, $t \not\in A$.
- (A, B) ⊆ E'. Why?If some edge (u, v) ∈ (A, B) is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Every minimal s-t cut E' is a cut of the form (A,B).

Lemma

Suppose E' is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E'$.

Proof.

E' is an s-t cut implies no path from s to t in (V, E - E').

- **(1)** Let A be set of all nodes reachable by s in (V, E E').
- 2 Since E' is a cut, $t \not\in A$.
- (A, B) ⊆ E'. Why?If some edge (u, v) ∈ (A, B) is not in E' then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Every minimal s-t cut E' is a cut of the form (A, B).

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E' of smallest capacity among all s-t cuts.

Observation: exponential number of s-t cuts and no "easy" algorithm to find a minimum cut.

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E' of smallest capacity among all s-t cuts.

Observation: exponential number of s-t cuts and no "easy" algorithm to find a minimum cut.

The Minimum-Cut Problem

Problem

Input A flow network **G** Goal Find the capacity of a *minimum* **s**-**t** cu

The Minimum-Cut Problem

Problem

Input A flow network G

Goal Find the capacity of a minimum s-t cut

The Minimum-Cut Problem

Problem

Input A flow network GGoal Find the capacity of a *minimum* s-t cut

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

- Formal proof easier with path based definition of flow.
- 2 Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.
- (3) Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?
- Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$.
- 5 Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

- Is Formal proof easier with path based definition of flow.
- 2 Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.
- 3 Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?
- Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$.
- 5 Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

- Isomal proof easier with path based definition of flow.
- **2** Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.
- 3 Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?
- Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$.
- 5 Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

- Isomal proof easier with path based definition of flow.
- **2** Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.
- 3 Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?
- Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$.
- **5** Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

- Isomal proof easier with path based definition of flow.
- **2** Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.
- 3 Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?
- **4** Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$.
- **5** Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Proof.

- Isomal proof easier with path based definition of flow.
- **2** Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.
- 3 Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?
- **4** Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$.
- **(5)** Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

- Isomal proof easier with path based definition of flow.
- **2** Suppose $f : \mathcal{P} \to \mathbb{R}^{\geq 0}$ is a max-flow.
- 3 Every path $p \in \mathcal{P}$ contains an edge $e \in E'$. Why?
- **a** Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E'$.
- **(a)** Let \mathcal{P}_e be paths assigned to $e \in E'$. Then

$$v(f) = \sum_{p \in \mathcal{P}} f(p) = \sum_{e \in E'} \sum_{p \in \mathcal{P}_e} f(p) \leq \sum_{e \in E'} c(e).$$

Lemma

For any s-t cut E', maximum s-t flow \leq capacity of E'.

Corollary

Maximum s-t flow \leq minimum s-t cut.

Theorem

In any flow network:

$$\left(value \text{ of maximum } s\text{-}t \text{ flow } \right) = \left(capacity \text{ of minimum } s\text{-}t \text{ cut} \right).$$

- 1 Can compute minimum-cut from maximum flow and vice-versa!
- Proof coming shortly.
- Many applications:
 - optimization
 - 2 graph theory
 - 3 combinatorics

Theorem

In any flow network:

$$\left(value \text{ of maximum } s-t \text{ flow} \right) = \left(capacity \text{ of minimum } s-t \text{ cut} \right).$$

- Proof coming shortly.
- Many applications:
 - optimization
 - 2 graph theory
 - 3 combinatorics

Theorem

In any flow network:

$$\left(value \text{ of maximum } s-t \text{ flow } \right) = \left(capacity \text{ of minimum } s-t \text{ cut} \right).$$

- Proof coming shortly.
- Many applications:
 - optimization
 - 2 graph theory
 - 3 combinatorics

Theorem

In any flow network:

$$\left(value \text{ of maximum } s-t \text{ flow } \right) = \left(capacity \text{ of minimum } s-t \text{ cut} \right).$$

- Proof coming shortly.
- Many applications:
 - optimization
 - 2 graph theory
 - 3 combinatorics

Theorem

In any flow network:

$$\left(value \text{ of maximum } s-t \text{ flow } \right) = \left(capacity \text{ of minimum } s-t \text{ cut} \right).$$

- Proof coming shortly.
- Many applications:
 - optimization
 - 2 graph theory
 - 3 combinatorics

Theorem

In any flow network:

$$\left(value \text{ of maximum } s-t \text{ flow } \right) = \left(capacity \text{ of minimum } s-t \text{ cut} \right).$$

Output is a set of the set of

- Proof coming shortly.
- Many applications:
 - optimization
 - graph theory
 - 3 combinatorics

Theorem

In any flow network:

$$\left(value \text{ of maximum } s-t \text{ flow } \right) = \left(capacity \text{ of minimum } s-t \text{ cut} \right).$$

Output is a set of the set of

- Proof coming shortly.
- Many applications:
 - optimization
 - graph theory
 - 3 combinatorics

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value from s to t.

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of maximum value from s to t.

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value from s to t.

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of **maximum** value from s to t.

- Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network with power estimation. *Soviet Math. Doklady*, 11:1277–1280.
- Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. *J. Assoc. Comput. Mach.*, 19(2):248–264.