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Everything flows

Panta rei – everything flows (literally).
Heraclitus (535–475 BC)
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Part I

Network Flows: Introduction and
Setup
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Transportation/Road Network
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Internet Backbone Network
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Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V ,E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

7 Flow abstract term to indicate stuff (traffic/data/etc) that
flows from sources to sinks.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 33



Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V ,E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

7 Flow abstract term to indicate stuff (traffic/data/etc) that
flows from sources to sinks.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 33



Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V ,E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

7 Flow abstract term to indicate stuff (traffic/data/etc) that
flows from sources to sinks.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 33



Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V ,E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

7 Flow abstract term to indicate stuff (traffic/data/etc) that
flows from sources to sinks.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 33



Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V ,E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

7 Flow abstract term to indicate stuff (traffic/data/etc) that
flows from sources to sinks.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 33



Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V ,E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

7 Flow abstract term to indicate stuff (traffic/data/etc) that
flows from sources to sinks.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 33



Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V ,E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

7 Flow abstract term to indicate stuff (traffic/data/etc) that
flows from sources to sinks.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 33



Common Features of Flow Networks

1 Network represented by a (directed) graph G = (V ,E).

2 Each edge e has a capacity c(e) ≥ 0 that limits amount of
traffic on e.

3 Source(s) of traffic/data.

4 Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.

7 Flow abstract term to indicate stuff (traffic/data/etc) that
flows from sources to sinks.

Sariel (UIUC) OLD CS473 6 Spring 2015 6 / 33



Single Source/Single Sink Flows

Simple setting:

1 Single source s and single sink t.
2 Every other node v is an internal node.

3 Flow originates at s and terminates at t.
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c 1 Each edge e has a capacity
c(e) ≥ 0.

2 Sometimes assume:
Source s ∈ V has no incoming
edges, and sink t ∈ V has no
outgoing edges.

1 Assumptions: All capacities are integer, and every vertex has at
least one edge incident to it.
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Definition of Flow

1 Two ways to define flows...

2 edge based, or

3 path based.

4 Essentially equivalent but have different uses.

5 Edge based definition is more compact.
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Edge Based Definition of Flow

Definition

Flow in network G = (V, E), is function f : E → R≥0 s.t.
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Figure: Flow with value.

1 Capacity Constraint: For each edge
e, f (e) ≤ c(e).
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∑

e out of v
f (e)
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Flow...

Conservation of flow law is also known as Kirchhoff’s law.
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More Definitions and Notation

Notation
1 The inflow into a vertex v is f in(v) =

∑
e into v f (e) and the

outflow is f out(v) =
∑

e out of v f (e)
2 For a set of vertices A, f in(A) =

∑
e into A f (e). Outflow

f out(A) is defined analogously

Definition
For a network G = (V ,E) with source s, the value of flow f is
defined as v(f ) = f out(s) − f in(s).
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A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.

P : set of all paths from s to t. |P| can be exponential in n.

Definition (Flow by paths.)

A flow in network G = (V, E), is function f : P → R≥0 s.t.

1 Capacity Constraint: For each edge e, total flow on e is ≤ c(e).∑
p∈P:e∈p

f (p) ≤ c(e)

2 Conservation Constraint: No need! Automatic.

Value of flow:
∑

p∈P f (p).
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Example

s t

v

u

/20

/30

/20

/11

/27
P = {p1, p2, p3}
p1 : s → u → t
p2 : s → u → v → t
p3 : s → v → t

f (p1) = 10, f (p2) = 4, f (p3) = 6

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 33



Example

s t

v

u

/20

/30

/20

/11

/27
P = {p1, p2, p3}
p1 : s → u → t
p2 : s → u → v → t
p3 : s → v → t

f (p1) = 10, f (p2) = 4, f (p3) = 6

s t

p
1 : 10

v

p2
: 4

u

p
3 : 6

Sariel (UIUC) OLD CS473 13 Spring 2015 13 / 33



Path based flow implies edge based flow

Lemma

Given a path based flow f : P → R≥0 there is an edge based flow
f ′ : E → R≥0 of the same value.

Proof.
For each edge e define f ′(e) =

∑
p:e∈p f (p).

Exercise: Verify capacity and conservation constraints for f ′.
Exercise: Verify that value of f and f ′ are equal
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Example

s t

p
1 : 10

v

p2
: 4
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p
3 : 6

P = {p1, p2, p3}
p1 : s → u → t
p2 : s → u → v → t
p3 : s → v → t
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p3 : s → v → t

f (p1) = 10, f (p2) = 4, f (p3) = 6

f ′(s → u) = 14
f ′(u → v) = 4
f ′(s → v) = 6
f ′(u → t) = 10
f ′(v → t) = 10
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Flow Decomposition
Edge based flow to Path based Flow

Lemma

Given an edge based flow f1 : E → R≥0, there is a path based flow
f : P → R≥0 of same value. Moreover, f assigns non-negative flow
to at most m paths where |E | = m and |V | = n. Given f1, the
path based flow can be computed in O(mn) time.
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Flow Decomposition
Edge based flow to Path based Flow

Proof Idea.
1 Remove all edges with f1(e) = 0.

2 Find a path p from s to t.
3 Assign f (p) to be mine∈p f1(e).
4 Reduce f1(e) for all e ∈ p by f (p).
5 Repeat until no path from s to t.
6 In each iteration at least on edge has flow reduced to zero.

7 Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.
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7 Hence, at most m iterations. Can be implemented in
O(m(m + n)) time. O(mn) time requires care.
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Path flow decomposition
Do not have to be efficient...
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Edge vs Path based Definitions of Flow

1 Edge based flows:
1 compact representation, only m values to be specified, and
2 need to check flow conservation explicitly at each internal node.

2 Path flows:
1 in some applications, paths more natural,
2 not compact,
3 no need to check flow conservation constraints.

3 Equivalence shows that we can go back and forth easily.
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The Maximum-Flow Problem

1 The network flow problem:

Problem
Input A network G with capacity c and source s and sink t.
Goal Find flow of maximum value.

2 Question: Given a flow network, what is an upper bound on the
maximum flow between source and sink?
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Cuts

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges E ′ ⊂ E such that
removing E ′ disconnects s from t: in other words there is no
directed s → t path in E − E ′.
The capacity of a cut E ′ is c(E ′) =

∑
e∈E ′ c(e).

Caution:

1 Cut may leave t → s paths!

2 There might be many s-t cuts.
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s − t cuts
A death by a thousand cuts
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Minimal Cut

Definition (Minimal s-t cut.)

Given a s-t flow network G = (V, E), E′ ⊆ E is a minimal cut if for
all e ∈ E′, if E′ \ {e} is not a cut.
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Observation: given a cut E ′, can check efficiently whether E ′ is a
minimal cut or not. How?
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Cuts as Vertex Partitions

1 Let A ⊂ V such that
1 s ∈ A, t ̸∈ A, and
2 B = V \ A (hence t ∈ B).

2 The cut (A,B) is the set of
edges (A,B) =
{(u, v) ∈ E | u ∈ A, v ∈ B} .
Cut (A,B) is set of edges
leaving A.
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Claim
(A,B) is an s-t cut.

Proof.
Let P be any s → t path in G . Since t is not in A, P has to leave
A via some edge (u, v) in (A,B).
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Cuts as Vertex Partitions

Lemma
Suppose E ′ is an s-t cut. Then there is a cut (A,B) such that
(A,B) ⊆ E ′.

Proof.
E ′ is an s-t cut implies no path from s to t in (V ,E − E ′).

1 Let A be set of all nodes reachable by s in (V ,E − E ′).

2 Since E ′ is a cut, t ̸∈ A.

3 (A,B) ⊆ E ′. Why?

Corollary

Every minimal s-t cut E ′ is a cut of the form (A,B).
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Proof.
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1 Let A be set of all nodes reachable by s in (V ,E − E ′).

2 Since E ′ is a cut, t ̸∈ A.

3 (A,B) ⊆ E ′. Why?If some edge (u, v) ∈ (A,B) is not in E ′

then v will be reachable by s and should be in A, hence a
contradiction.

Corollary

Every minimal s-t cut E ′ is a cut of the form (A,B).
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Minimum Cut

Definition
Given a flow network an s-t minimum cut is a cut E ′ of smallest
capacity among all s-t cuts.
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Observation: exponential number of s-t cuts and no “easy”
algorithm to find a minimum cut.
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The Minimum-Cut Problem

Problem
Input A flow network G
Goal Find the capacity of a minimum s-t cut
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Flows and Cuts

Lemma
For any s-t cut E ′, maximum s-t flow ≤ capacity of E ′.

Proof.
1 Formal proof easier with path based definition of flow.

2 Suppose f : P → R≥0 is a max-flow.

3 Every path p ∈ P contains an edge e ∈ E ′. Why?

4 Assign each path p ∈ P to exactly one edge e ∈ E ′.

5 Let Pe be paths assigned to e ∈ E ′. Then

v(f ) =
∑
p∈P

f (p) =
∑
e∈E ′

∑
p∈Pe

f (p) ≤
∑
e∈E ′

c(e).
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Flows and Cuts

Lemma
For any s-t cut E ′, maximum s-t flow ≤ capacity of E ′.

Corollary
Maximum s-t flow ≤ minimum s-t cut.
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Max-Flow Min-Cut Theorem

Theorem
In any flow network:(

value of maximum s-t flow
)
=

(
capacity of minimum s-t cut

)
.

1 Can compute minimum-cut from maximum flow and vice-versa!

2 Proof coming shortly.
3 Many applications:

1 optimization
2 graph theory
3 combinatorics
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The Maximum-Flow Problem

Problem
Input A network G with capacity c and source s and sink t.
Goal Find flow of maximum value from s to t.

Exercise: Given G , s, t as above, show that one can remove all
edges into s and all edges out of t without affecting the flow value
between s and t.
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Sariel (UIUC) OLD CS473 34 Spring 2015 34 / 33



Notes

Sariel (UIUC) OLD CS473 35 Spring 2015 35 / 33



Notes

Sariel (UIUC) OLD CS473 36 Spring 2015 36 / 33



Notes

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 33



Dinic, E. A. (1970). Algorithm for solution of a problem of maximum
flow in a network with power estimation. Soviet Math. Doklady,
11:1277–1280.

Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in
algorithmic efficiency for network flow problems. J. Assoc.
Comput. Mach., 19(2):248–264.

Sariel (UIUC) OLD CS473 37 Spring 2015 37 / 33

http://www.acm.org/jacm/
http://www.acm.org/jacm/

	Network Flows: Introduction and Setup

