OLD CS 473: Fundamental Algorithms, Spring 2015

Network Flows

Lecture 17
March 19, 2015

Everything flows

Panta rei - everything flows (literally).
Heraclitus (535-475 BC)

Part I

Network Flows: Introduction and Setup

Transportation/Road Network

Internet Backbone Network

Common Features of Flow Networks

${ }^{1}$ Network represented by a (directed) graph $G=(V, E)$.
2. Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on e.
(3) Source(s) of traffic/data.
(4) Sink(s) of traffic/data.
5. Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.
(7) Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Common Features of Flow Networks

(1) Network represented by a (directed) graph $G=(V, E)$.

2 Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on e.
(3) Source(s) of traffic/data.
(4) Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.
6 Traffic is switched/interchanged at nodes.
7 Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Common Features of Flow Networks

(1) Network represented by a (directed) graph $G=(V, E)$.
(2) Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on \boldsymbol{e}.
(3) Source(s) of traffic/data.
(4) Sink(s) of traffic/data.

5 Traffic flows from sources to sinks.
6 Traffic is switched/interchanged at nodes.
7 Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Common Features of Flow Networks

(1) Network represented by a (directed) graph $G=(V, E)$.
(2) Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on \boldsymbol{e}.
(3) Source(s) of traffic/data.
4. Sink(s) of traffic/data.
5. Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.
7. Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Common Features of Flow Networks

(1) Network represented by a (directed) graph $G=(V, E)$.
(2) Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on \boldsymbol{e}.
(3) Source(s) of traffic/data.
(4) Sink(s) of traffic/data.
5. Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.
(7) Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Common Features of Flow Networks

(1) Network represented by a (directed) graph $G=(V, E)$.
(2) Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on \boldsymbol{e}.
(3) Source(s) of traffic/data.
(4) Sink(s) of traffic/data.
(9) Traffic flows from sources to sinks.

6 Traffic is switched/interchanged at nodes.
7. Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Common Features of Flow Networks

(1) Network represented by a (directed) graph $G=(V, E)$.
(2) Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on \boldsymbol{e}.
(3) Source(s) of traffic/data.
(4) Sink(s) of traffic/data.
(9) Traffic flows from sources to sinks.

- Traffic is switched/interchanged at nodes.
(7) Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Common Features of Flow Networks

(1) Network represented by a (directed) graph $G=(V, E)$.
(2) Each edge e has a capacity $c(e) \geq 0$ that limits amount of traffic on \boldsymbol{e}.
(3) Source(s) of traffic/data.
(4) Sink(s) of traffic/data.
(3) Traffic flows from sources to sinks.
(0) Traffic is switched/interchanged at nodes.
(1) Flow abstract term to indicate stuff (traffic/data/etc) that flows from sources to sinks.

Single Source/Single Sink Flows

Simple setting:
(1) Single source s and single sink t.

2 Every other node v is an internal node.
(3) Flow originates at s and terminates at t.

(1) Each edge e has a capacity $c(e) \geq 0$.

Sometimes assume:
Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.
(1) Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Single Source/Single Sink Flows

Simple setting:
(1) Single source \boldsymbol{s} and single sink \boldsymbol{t}.
(2) Every other node v is an internal node.
(3) Flow originates at s and terminates at t.

1 Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Single Source/Single Sink Flows

Simple setting:
(1) Single source s and single sink t.
(2) Every other node v is an internal node.
(3) Flow originates at s and terminates at t

Single Source/Single Sink Flows

Simple setting:
(1) Single source s and single sink t.
(2) Every other node v is an internal node.
(3) Flow originates at s and terminates at \boldsymbol{t}.

Single Source/Single Sink Flows

Simple setting:
(1) Single source s and single sink t.
(2) Every other node v is an internal node.
(3) Flow originates at s and terminates at \boldsymbol{t}.

(1) Each edge \boldsymbol{e} has a capacity $c(e) \geq 0$.
${ }^{2}$ Sometimes assume:
Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Single Source/Single Sink Flows

Simple setting:
(1) Single source s and single sink t.
(2) Every other node v is an internal node.
(3) Flow originates at s and terminates at \boldsymbol{t}.

(1) Each edge \boldsymbol{e} has a capacity $c(e) \geq 0$.
(2) Sometimes assume:

Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.

Single Source/Single Sink Flows

Simple setting:
(1) Single source s and single sink t.
(2) Every other node v is an internal node.
(3) Flow originates at s and terminates at \boldsymbol{t}.

(1) Each edge \boldsymbol{e} has a capacity $c(e) \geq 0$.
(2) Sometimes assume:

Source $s \in V$ has no incoming edges, and sink $t \in V$ has no outgoing edges.
(1) Assumptions: All capacities are integer, and every vertex has at least one edge incident to it.

Definition of Flow

(1) Two ways to define flows...

2 edge based, or
3 path based.
4 Essentially equivalent but have different uses.
5 Edge based definition is more compact.

Definition of Flow

(1) Two ways to define flows...

2 edge based, or
3 path based.
4 Essentially equivalent but have different uses.
5 Edge based definition is more compact.

Definition of Flow

(1) Two ways to define flows...
(2) edge based, or

3 path based.
(4) Essentially equivalent but have different uses.

5 Edge based definition is more compact.

Definition of Flow

(1) Two ways to define flows...
(2) edge based, or
(3) path based.
(4) Essentially equivalent but have different uses.

5 Edge based definition is more compact.

Definition of Flow

(1) Two ways to define flows...
(2) edge based, or
(3) path based.
(4) Essentially equivalent but have different uses.

5 Edge based definition is more compact.

Definition of Flow

(1) Two ways to define flows...
(2) edge based, or
(3) path based.
(44) Essentially equivalent but have different uses.
(5) Edge based definition is more compact.

Edge Based Definition of Flow

Definition

Flow in network $G=(V, E)$, is function $f: E \rightarrow \mathbb{R}^{\geq 0}$ s.t.

For each edge $e, f(e) \leq c(e)$.

Figure: Flow with value.

Edge Based Definition of Flow

Definition

Flow in network $G=(V, E)$, is function $f: E \rightarrow \mathbb{R}^{\geq 0}$ s.t.

For each edge $e, f(e) \leq c(e)$.

Figure: Flow with value.

Edge Based Definition of Flow

Definition

Flow in network $G=(V, E)$, is function $f: E \rightarrow \mathbb{R}^{\geq 0}$ s.t.

(1) Capacity Constraint: For each edge $e, f(e) \leq c(e)$.
Conservation Constraint: For each vertex $v \neq s, t$.

Figure: Flow with value.

Edge Based Definition of Flow

Definition

Flow in network $G=(V, E)$, is function $f: E \rightarrow \mathbb{R}^{\geq 0}$ s.t.

(1) Capacity Constraint: For each edge $e, f(e) \leq c(e)$
(2) Conservation Constraint: For each vertex $v \neq s, t$.

$$
\sum_{e \text { into } v} f(e)=\sum_{e \text { out of } v} f(e)
$$

(3) Value of flow= (total flow out of

Figure: Flow with value.

Edge Based Definition of Flow

Definition

Flow in network $G=(V, E)$, is function $f: E \rightarrow \mathbb{R}^{\geq 0}$ s.t.

(1) Capacity Constraint: For each edge $e, f(e) \leq c(e)$
(2) Conservation Constraint: For each vertex $v \neq s, t$.

$$
\sum_{e \text { into } v} f(e)=\sum_{e \text { out of } v} f(e)
$$

(3) Value of flow= (total flow out of

Figure: Flow with value. source) - (total flow in to source).

Flow...

Conservation of flow law is also known as Kirchhoff's law.

More Definitions and Notation

Notation

(1) The inflow into a vertex v is $f^{\text {in }}(v)=\sum e$ into $v f(e)$ and the outflow is $f^{\text {out }}(v)=\sum e$ out of $v f(e)$
2. For a set of vertices $A, f^{\text {in }}(A)=\sum e$ into $A f(e)$. Outflow $f^{\text {out }}(A)$ is defined analogously

Definition

For a network $G=(V, E)$ with source s, the value of flow f is defined as $v(f)=f^{\text {out }}(s)-f^{\text {in }}(s)$.

More Definitions and Notation

Notation

(1) The inflow into a vertex v is $f^{\text {in }}(v)=\sum_{e}$ into $v f(e)$ and the outflow is $f^{\text {out }}(v)=\sum_{e}$ out of $v f(e)$
2. For a set of vertices $A, f^{\text {in }}(A)=\sum e$ into $A^{f}(e)$. Outflow $f^{\text {out }}(A)$ is defined analogously

Definition

For a network $G=(V, E)$ with source s, the value of flow f is defined as $v(f)=f^{\text {out }}(s)-f^{\text {in }}(s)$

More Definitions and Notation

Notation

(1) The inflow into a vertex v is $f^{\mathrm{in}}(v)=\sum_{e}$ into $v f(e)$ and the outflow is $f^{\text {out }}(v)=\sum_{e}$ out of $v f(e)$
(2) For a set of vertices $A, f^{\mathrm{in}}(A)=\sum_{e}$ into $A^{f(e) \text {. Outflow }}$ $f^{\text {out }}(A)$ is defined analogously

Definition

For a network $G=(V, E)$ with source s, the value of flow f is defined as $v(f)=f^{\text {out }}(s)-f^{\text {in }}(s)$.

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.
\mathcal{P} : set of all paths from s to $t .|\mathcal{P}|$ can be exponential in \boldsymbol{n}.

Definition (Flow by paths.)

A flow in network $G=(V, E)$, is function $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ s.t. ${ }^{1}$ Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$

2 Conservation Constraint: No need! Automatic.
\square

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.
\mathcal{P} : set of all paths from s to $t .|\mathcal{P}|$ can be exponential in \boldsymbol{n}.

Definition (Flow by paths.)

A flow in network $G=(V, E)$, is function $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ s.t. (1) Capacity Constraint: For each edge \boldsymbol{e}, total flow on \boldsymbol{e} is $\leq \boldsymbol{c}(\boldsymbol{e})$.

> 2) Conservation Constraint: No need! Automatic.
\square

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.
\mathcal{P} : set of all paths from s to $t .|\mathcal{P}|$ can be exponential in \boldsymbol{n}.

Definition (Flow by paths.)

A flow in network $G=(V, E)$, is function $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ s.t.
(1) Capacity Constraint: For each edge \boldsymbol{e}, total flow on \boldsymbol{e} is $\leq \boldsymbol{c}(\boldsymbol{e})$.

$$
\sum_{p \in \mathcal{P}: e \in p} f(p) \leq c(e)
$$

2 Conservation Constraint: No need! Automatic.
\square

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.
\mathcal{P} : set of all paths from s to $t .|\mathcal{P}|$ can be exponential in \boldsymbol{n}.

Definition (Flow by paths.)

A flow in network $G=(V, E)$, is function $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ s.t.
(1) Capacity Constraint: For each edge \boldsymbol{e}, total flow on \boldsymbol{e} is $\leq \boldsymbol{c}(\boldsymbol{e})$.

$$
\sum_{p \in \mathcal{P}: e \in p} f(p) \leq c(e)
$$

2 Conservation Constraint: No need! Automatic.
\square

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.
\mathcal{P} : set of all paths from s to $t .|\mathcal{P}|$ can be exponential in \boldsymbol{n}.

Definition (Flow by paths.)

A flow in network $G=(V, E)$, is function $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ s.t.
(1) Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$
\sum_{p \in \mathcal{P}: e \in p} f(p) \leq c(e)
$$

(2) Conservation Constraint: No need! Automatic.
\square

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.
\mathcal{P} : set of all paths from s to $t .|\mathcal{P}|$ can be exponential in \boldsymbol{n}.

Definition (Flow by paths.)

A flow in network $G=(V, E)$, is function $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ s.t.
(1) Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$
\sum_{p \in \mathcal{P}: e \in p} f(p) \leq c(e)
$$

(2) Conservation Constraint: No need! Automatic.
\square

A Path Based Definition of Flow

Intuition: Flow goes from source s to sink t along a path.
\mathcal{P} : set of all paths from \boldsymbol{s} to $\boldsymbol{t} .|\mathcal{P}|$ can be exponential in \boldsymbol{n}.

Definition (Flow by paths.)

A flow in network $G=(V, E)$, is function $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ s.t.
(1) Capacity Constraint: For each edge e, total flow on e is $\leq c(e)$.

$$
\sum_{p \in \mathcal{P}: e \in p} f(p) \leq c(e)
$$

(2) Conservation Constraint: No need! Automatic.

Value of flow: $\sum_{p \in \mathcal{P}} f(p)$.

Example

$$
\begin{aligned}
& \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\} \\
& p_{1}: s \rightarrow u \rightarrow t \\
& p_{2}: s \rightarrow u \rightarrow v \rightarrow t \\
& p_{3}: s \rightarrow v \rightarrow t \\
& f\left(p_{1}\right)=10, f\left(p_{2}\right)=4, f\left(p_{3}\right)=6
\end{aligned}
$$

Example

Path based flow implies edge based flow

Lemma

Given a path based flow $\boldsymbol{f}: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ there is an edge based flow $f^{\prime}: E \rightarrow \mathbb{R} \geq 0$ of the same value.

Proof.

For each edge e define $f^{\prime}(e)=\sum_{p: e \in p} f(p)$
Exercise: Verify capacity and conservation constraints for f^{\prime}
Exercise: Verify that value of f and f^{\prime} are equal

Path based flow implies edge based flow

Lemma

Given a path based flow $\boldsymbol{f}: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ there is an edge based flow $f^{\prime}: E \rightarrow \mathbb{R} \geq 0$ of the same value.

Proof.

For each edge e define $f^{\prime}(e)=\sum_{p: e \in p} f(p)$.
Exercise: Verify capacity and conservation constraints for f^{\prime}.
Exercise: Verify that value of f and \boldsymbol{f}^{\prime} are equal

Example

$$
\begin{aligned}
& \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\} \\
& p_{1}: s \rightarrow u \rightarrow t \\
& p_{2}: s \rightarrow u \rightarrow v \rightarrow t \\
& p_{3}: s \rightarrow v \rightarrow t \\
& f\left(p_{1}\right)=10, f\left(p_{2}\right)=4, f\left(p_{3}\right)=6
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathcal{P}=\left\{p_{1}, p_{2}, p_{3}\right\} \\
& p_{1}: s \rightarrow u \rightarrow t \\
& p_{2}: s \rightarrow u \rightarrow v \rightarrow t \\
& p_{3}: s \rightarrow v \rightarrow t
\end{aligned}
$$

$$
f\left(p_{1}\right)=10, f\left(p_{2}\right)=4, f\left(p_{3}\right)=6
$$

$f^{\prime}(s \rightarrow u)=14$
$f^{\prime}(u \rightarrow v)=4$
$f^{\prime}(s \rightarrow v)=6$
$f^{\prime}(u \rightarrow t)=10$
$f^{\prime}(v \rightarrow t)=10$

Flow Decomposition

Edge based flow to Path based Flow

Lemma

Given an edge based flow $f_{1}: E \rightarrow \mathbb{R}^{\geq 0}$, there is a path based flow $\boldsymbol{f}: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ of same value. Moreover, \boldsymbol{f} assigns non-negative flow to at most m paths where $|E|=m$ and $|\boldsymbol{V}|=n$. Given f_{1}, the path based flow can be computed in $O(m n)$ time.

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

1 Remove all edges with $f_{1}(e)=0$.
2 Find a path p from s to t.
3 Assign $f(p)$ to be min $\operatorname{mep} f_{1}(e)$
4 Reduce $f_{1}(e)$ for all $e \in p$ by $f(p)$.
5 Repeat until no path from s to t.
6 In each iteration at least on edge has flow reduced to zero.
7 Hence, at most m iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

(1) Remove all edges with $f_{1}(e)=0$.

2 Find a path p from s to t.
${ }^{3}$ Assign $f(p)$ to be $\min _{e \in p} f_{1}(e)$
4. Reduce $f_{1}(e)$ for all $e \in p$ by $f(p)$.

5 Repeat until no path from s to t
6 In each iteration at least on edge has flow reduced to zero.
7 Hence, at most m iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care.

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

(1) Remove all edges with $f_{1}(e)=0$.
(2) Find a path \boldsymbol{p} from \boldsymbol{s} to \boldsymbol{t}.
${ }^{3}$ Assign $f(p)$ to be $\min _{e \in p} f_{1}(e)$
4. Reduce $f_{1}(e)$ for all $e \in p$ by $f(p)$

5 Repeat until no path from s to t
6 In each iteration at least on edge has flow reduced to zero
7 Hence, at most m iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

(1) Remove all edges with $f_{1}(e)=0$.
(2) Find a path p from s to t.

3 Assign $f(p)$ to be $\boldsymbol{m i n}_{e \in p} f_{1}(e)$.
4. Reduce $f_{1}(e)$ for all $e \in p$ by $f(p)$

5 Repeat until no path from s to t
6 In each iteration at least on edge has flow reduced to zero
7 Hence, at most m iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

(1) Remove all edges with $f_{1}(e)=0$.
(2) Find a path p from s to t.
(3) Assign $f(p)$ to be $\boldsymbol{m i n}_{e \in p} f_{1}(e)$.
(1) Reduce $f_{1}(e)$ for all $e \in p$ by $f(p)$.

5 Repeat until no path from s to t.
6 In each iteration at least on edge has flow reduced to zero
7 Hence, at most m iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

(1) Remove all edges with $f_{1}(e)=0$.
(2) Find a path p from s to t.
(3) Assign $f(p)$ to be $\boldsymbol{\operatorname { m i n }}_{\boldsymbol{e} \in \boldsymbol{p}} f_{1}(e)$.
(1) Reduce $f_{1}(e)$ for all $e \in p$ by $f(p)$.
(3) Repeat until no path from s to t.

6 In each iteration at least on edge has flow reduced to zero
7 Hence, at most m iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

(1) Remove all edges with $f_{1}(e)=0$.
(2) Find a path p from s to t.
(3) Assign $f(p)$ to be $\boldsymbol{\operatorname { m i n }}_{\boldsymbol{e} \in \boldsymbol{p}} f_{1}(e)$.
(1) Reduce $f_{1}(e)$ for all $e \in p$ by $f(p)$.
(0) Repeat until no path from s to t.
(0) In each iteration at least on edge has flow reduced to zero.

7 Hence, at most m iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care

Flow Decomposition

Edge based flow to Path based Flow

Proof Idea.

(1) Remove all edges with $f_{1}(e)=0$.
(2) Find a path p from s to t.
(3) Assign $f(p)$ to be $\boldsymbol{m i n}_{e \in p} f_{1}(e)$.
(4) Reduce $f_{1}(e)$ for all $e \in p$ by $f(p)$.
(0) Repeat until no path from s to t.
(0) In each iteration at least on edge has flow reduced to zero.
(3) Hence, at most \boldsymbol{m} iterations. Can be implemented in $O(m(m+n))$ time. $O(m n)$ time requires care.

Example

Example

(1)
(4)

Example

(1)
(4)

Example

(1)
(4)

Example

(1)
(4)

Example

(4)

Example

(3) (6)

Example

Path flow decomposition

Do not have to be efficient...

Path flow decomposition

Do not have to be efficient...

Path flow decomposition

Do not have to be efficient...

Edge vs Path based Definitions of Flow

1 Edge based flows:
1 compact representation, only m values to be specified, and
2 need to check flow conservation explicitly at each internal node.
2 Path flows:
${ }^{1}$ in some applications, paths more natural,
2 not compact,
3 no need to check flow conservation constraints.
(3) Equivalence shows that we can go back and forth easily.

Edge vs Path based Definitions of Flow

(1) Edge based flows:

1 compact representation, only m values to be specified, and
2 need to check flow conservation explicitly at each internal node.
2 Path flows:
${ }^{1}$ in some applications, paths more natural,
2 not compact,
3 no need to check flow conservation constraints.
3 Equivalence shows that we can go back and forth easily.

Edge vs Path based Definitions of Flow

(1) Edge based flows:
(1) compact representation, only \boldsymbol{m} values to be specified, and

2 need to check flow conservation explicitly at each internal node.
2 Path flows:
(1) in some applications, paths more natural,

2 not compact,
3 no need to check flow conservation constraints.
(3) Equivalence shows that we can go back and forth easily.

Edge vs Path based Definitions of Flow

(1) Edge based flows:
(1) compact representation, only \boldsymbol{m} values to be specified, and
(2) need to check flow conservation explicitly at each internal node.

2 Path flows:
1 in some applications, paths more natural,
2 not compact,
3 no need to check flow conservation constraints.
(3) Equivalence shows that we can go back and forth easily.

Edge vs Path based Definitions of Flow

(1) Edge based flows:
(1) compact representation, only \boldsymbol{m} values to be specified, and
(2) need to check flow conservation explicitly at each internal node.
(2) Path flows:
${ }^{1}$ in some applications, paths more natural,
2 not compact,
3 no need to check flow conservation constraints.
(3) Equivalence shows that we can go back and forth easily.

Edge vs Path based Definitions of Flow

(1) Edge based flows:
(1) compact representation, only \boldsymbol{m} values to be specified, and
(2) need to check flow conservation explicitly at each internal node.
(2) Path flows:
(1) in some applications, paths more natural,

2 not compact,
(3) no need to check flow conservation constraints.
(3) Equivalence shows that we can go back and forth easily.

Edge vs Path based Definitions of Flow

(1) Edge based flows:
(1) compact representation, only \boldsymbol{m} values to be specified, and
(2) need to check flow conservation explicitly at each internal node.
(2) Path flows:
(1) in some applications, paths more natural,
(2) not compact,

3 no need to check flow conservation constraints.
(3) Equivalence shows that we can go back and forth easily.

Edge vs Path based Definitions of Flow

(1) Edge based flows:
(1) compact representation, only \boldsymbol{m} values to be specified, and
(2) need to check flow conservation explicitly at each internal node.
(2) Path flows:
(1) in some applications, paths more natural,
(2) not compact,
(3) no need to check flow conservation constraints.

3 Equivalence shows that we can go back and forth easily.

Edge vs Path based Definitions of Flow

(1) Edge based flows:
(1) compact representation, only \boldsymbol{m} values to be specified, and
(2) need to check flow conservation explicitly at each internal node.
(2) Path flows:
(1) in some applications, paths more natural,
(2) not compact,
(3) no need to check flow conservation constraints.
(3) Equivalence shows that we can go back and forth easily.

The Maximum-Flow Problem

1 The network flow problem:

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of maximum value.

2 Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

The Maximum-Flow Problem

(1) The network flow problem:

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of maximum value.

2 Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

The Maximum-Flow Problem

(1) The network flow problem:

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of maximum value.

2 Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

The Maximum-Flow Problem

(1) The network flow problem:

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of maximum value.

2 Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

The Maximum-Flow Problem

(1) The network flow problem:

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of maximum value.
(2) Question: Given a flow network, what is an upper bound on the maximum flow between source and sink?

Cuts

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E^{\prime} \subset E$ such that removing E^{\prime} disconnects s from t : in other words there is no directed $s \rightarrow t$ path in $E-E^{\prime}$.
The capacity of a cut E^{\prime} is $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$.
(1) Cut may leave $t \rightarrow s$ paths!

2 There might be many $s-t$ cuts.

Cuts

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E^{\prime} \subset E$ such that removing E^{\prime} disconnects s from t : in other words there is no directed $s \rightarrow t$ path in $E-E^{\prime}$.
The capacity of a cut E^{\prime} is $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$.

Caution:
(1) Cut may leave $t \rightarrow s$ paths!

2 There might be many $s-t$ cuts.

Cuts

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E^{\prime} \subset E$ such that removing E^{\prime} disconnects s from t : in other words there is no directed $s \rightarrow t$ path in $E-E^{\prime}$.
The capacity of a cut E^{\prime} is $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$.

Caution:
(1) Cut may leave $t \rightarrow s$ paths!

2 There might be many $s-t$ cuts.

Cuts

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E^{\prime} \subset E$ such that removing E^{\prime} disconnects s from t : in other words there is no directed $s \rightarrow t$ path in $E-E^{\prime}$.
The capacity of a cut E^{\prime} is $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$.

Caution:

(1) Cut may leave $t \rightarrow s$ paths!
${ }^{2}$ There might be many $s-t$ cuts.

Cuts

Definition (s-t cut)

Given a flow network an s-t cut is a set of edges $E^{\prime} \subset E$ such that removing E^{\prime} disconnects s from t : in other words there is no directed $s \rightarrow t$ path in $E-E^{\prime}$.
The capacity of a cut E^{\prime} is $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$.

Caution:

(1) Cut may leave $t \rightarrow s$ paths!
(2) There might be many s - \boldsymbol{t} cuts.

s - t cuts

A death by a thousand cuts

Minimal Cut

Definition (Minimal s-t cut.)

Given a s-t flow network $G=(\mathrm{V}, \mathrm{E}), \mathrm{E}^{\prime} \subseteq \mathrm{E}$ is a minimal cut if for all $e \in \mathrm{E}^{\prime}$, if $\mathrm{E}^{\prime} \backslash\{e\}$ is not a cut.

Observation: given a cut E^{\prime}, can check efficiently whether E^{\prime} is a minimal cut or not. How?

Minimal Cut

Definition (Minimal s-t cut.)

Given a s-t flow network $G=(\mathrm{V}, \mathrm{E}), \mathrm{E}^{\prime} \subseteq \mathrm{E}$ is a minimal cut if for all $e \in \mathrm{E}^{\prime}$, if $\mathrm{E}^{\prime} \backslash\{e\}$ is not a cut.

Observation: given a cut E^{\prime}, can check efficiently whether E^{\prime} is a minimal cut or not. How?

Cuts as Vertex Partitions

1 Let $A \subset V$ such that

$$
\begin{array}{ll}
1 & s \in A, t \notin A, \text { and } \\
2 & B=V \backslash A(\text { hence } t \in B)
\end{array}
$$

2 The cut (A, B) is the set of edges $(A, B)=$ $\{(u, v) \in E \mid u \in A, v \in B\}$. Cut (A, B) is set of edges leaving \boldsymbol{A}.

Claim

$(\boldsymbol{\Lambda}, \boldsymbol{B})$ is an $s-t$ cut.

Proof.

Let \boldsymbol{P} be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Cuts as Vertex Partitions

(1) Let $\boldsymbol{A} \subset V$ such that
1
$2 \quad B \in A, t \notin A$, and
$2 \quad B \backslash A$ (hence $t \in B)$

2 The cut (A, B) is the set of edges $(A, B)=$ $\{(u, v) \in E \mid u \in A, v \in B\}$. Cut (A, B) is set of edges leaving A.

Claim
 $(\boldsymbol{A}, \boldsymbol{B})$ is an s-t cut.

Proof.

Let P be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Cuts as Vertex Partitions

(1) Let $A \subset V$ such that
(1) $\boldsymbol{s} \in \boldsymbol{A}, \boldsymbol{t} \notin \boldsymbol{A}$, and

2 $B=V \backslash A$ (hence $t \in B$)
(2 The cut (A, B) is the set of edges $(A, B)=$ $\{(u, v) \in E \mid u \in A, v \in B\}$. Cut (A, B) is set of edges leaving A.

Claim

$(\boldsymbol{A}, \boldsymbol{B})$ is an s-t cut.

Proof.

Let P be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Cuts as Vertex Partitions

(1) Let $A \subset V$ such that
(1) $s \in A, t \notin A$, and
(2) $B=V \backslash A$ (hence $t \in B$).

2 The cut (A, B) is the set of edges $(A, B)=$ $\{(u, v) \in E \mid u \in A, v \in B\}$ Cut (A, B) is set of edges leaving A.

Claim
 $(\boldsymbol{A}, \boldsymbol{B})$ is an s-t cut

Proof.

Let P be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Cuts as Vertex Partitions

(1) Let $A \subset V$ such that
(1) $s \in A, t \notin A$, and
(2) $B=V \backslash A$ (hence $t \in B$).
(2) The cut (A, B) is the set of edges $(A, B)=$ $\{(u, v) \in E \mid u \in A, v \in B\}$. Cut (A, B) is set of edges leaving A.

Claim
 $(\boldsymbol{A}, \boldsymbol{B})$ is an s-t cut.

\square A via some edge

Cuts as Vertex Partitions

(1) Let $\boldsymbol{A} \subset V$ such that
(1) $s \in A, t \notin A$, and
(2) $B=V \backslash A$ (hence $t \in B$).
(2) The cut (A, B) is the set of edges $(\boldsymbol{A}, \boldsymbol{B})=$ $\{(u, v) \in E \mid u \in A, v \in B\}$. Cut (A, B) is set of edges leaving \boldsymbol{A}.

Claim

(A, B) is an s-t cut.

Proof.

Let P be any $s \rightarrow t$ path in G. Since t is not in A, P has to leave A via some edge (u, v) in (A, B).

Cuts as Vertex Partitions

Lemma

Suppose E^{\prime} is an s-t cut. Then there is a cut $(\boldsymbol{A}, \boldsymbol{B})$ such that $(A, B) \subseteq E^{\prime}$.

Proof.
 E^{\prime} is an s-t cut implies no path from s to t in $\left(V, E-E^{\prime}\right)$
 (1) Let A be set of all nodes reachable by s in $\left(V, E-E^{\prime}\right)$.
 (2) Since E^{\prime} is a cut, $t \notin A$.
 ${ }^{3}(A, B) \subseteq E^{\prime}$. Why?

Corollary
Every minimal s-t cut E^{\prime} is a cut of the form (A, B)

Cuts as Vertex Partitions

Lemma

Suppose E^{\prime} is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E^{\prime}$.

Proof.

E^{\prime} is an s - t cut implies no path from s to t in $\left(V, E-E^{\prime}\right)$. 1 Let A be set of all nodes reachable by s in (V, $\left.E-E^{\prime}\right)$

2 Since E^{\prime} is a cut, $t \notin A$
3

Corollary
Every minimal s-t cut E^{\prime} is a cut of the form (A, B)

Cuts as Vertex Partitions

Lemma

Suppose E^{\prime} is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E^{\prime}$.

Proof.

E^{\prime} is an s - t cut implies no path from s to t in $\left(V, E-E^{\prime}\right)$.
(1) Let A be set of all nodes reachable by s in $\left(V, E-E^{\prime}\right)$.
2) Since E^{\prime} is a cut, $t \notin A$
${ }^{3}(A, B) \subseteq E^{\prime}$. Why? If some edge $(u, v) \in(A, B)$ is not in E^{\prime} then v will be reachable by s and should be in A, hence a contradiction

Corolary

Every minimal s-t cut E^{\prime} is a cut of the form (A, B)

Cuts as Vertex Partitions

Lemma

Suppose E^{\prime} is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E^{\prime}$.

Proof.

E^{\prime} is an s - t cut implies no path from s to t in $\left(V, E-E^{\prime}\right)$.
(1) Let A be set of all nodes reachable by s in $\left(V, E-E^{\prime}\right)$.
(2) Since E^{\prime} is a cut, $t \notin A$.
${ }^{3}(A, B) \subseteq E^{\prime}$. Why?lf some edge $(u, v) \in(A, B)$ is not in E^{\prime} then v will be reachable by s and should be in A, hence a contradiction

Corollary

Every minimal s-t cut E^{\prime} is a cut of the form (A, B)

Cuts as Vertex Partitions

Lemma

Suppose E^{\prime} is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E^{\prime}$.

Proof.

E^{\prime} is an s - t cut implies no path from s to t in $\left(V, E-E^{\prime}\right)$.
(1) Let A be set of all nodes reachable by s in $\left(V, E-E^{\prime}\right)$.
(2) Since E^{\prime} is a cut, $t \notin A$.
(3) $(\boldsymbol{A}, \boldsymbol{B}) \subseteq \boldsymbol{E}^{\prime}$. Why? ! f some edge $(u, v) \in(A, B)$ is not in E^{\prime} then v will be reachable by s and should be in A, hence a contradiction

Corollary

Every minimal s-t cut E^{\prime} is a cut of the form (A, B)

Cuts as Vertex Partitions

Lemma

Suppose E^{\prime} is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E^{\prime}$.

Proof.

E^{\prime} is an s - t cut implies no path from s to t in $\left(V, E-E^{\prime}\right)$.
(1) Let \boldsymbol{A} be set of all nodes reachable by s in $\left(V, E-E^{\prime}\right)$.
(2) Since E^{\prime} is a cut, $t \notin \boldsymbol{A}$.
(3) $(A, B) \subseteq E^{\prime}$. Why? If some edge $(u, v) \in(A, B)$ is not in E^{\prime} then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Every minimal s-t cut E^{\prime} is a cut of the form (A, B)

Cuts as Vertex Partitions

Lemma

Suppose E^{\prime} is an s-t cut. Then there is a cut (A, B) such that $(A, B) \subseteq E^{\prime}$.

Proof.

E^{\prime} is an s - t cut implies no path from s to t in $\left(V, E-E^{\prime}\right)$.
(1) Let \boldsymbol{A} be set of all nodes reachable by s in $\left(V, E-E^{\prime}\right)$.
(2) Since E^{\prime} is a cut, $t \notin A$.
(3) $(A, B) \subseteq E^{\prime}$. Why? ?f some edge $(u, v) \in(A, B)$ is not in E^{\prime} then v will be reachable by s and should be in A, hence a contradiction.

Corollary

Every minimal s-t cut E^{\prime} is a cut of the form (A, B).

Minimum Cut

Definition

Given a flow network an \boldsymbol{s} - \boldsymbol{t} minimum cut is a cut E^{\prime} of smallest capacity among all s-t cuts.

Observation: exponential number of \boldsymbol{s} - \boldsymbol{t} cuts and no "easy"
algorithm to find a minimum cut.

Minimum Cut

Definition

Given a flow network an s-t minimum cut is a cut E^{\prime} of smallest capacity among all s-t cuts.

Observation: exponential number of \boldsymbol{s} - \boldsymbol{t} cuts and no "easy" algorithm to find a minimum cut.

The Minimum-Cut Problem

Problem

Input A flow network G
Goal Find the capacity of a minimum s-t cut

The Minimum-Cut Problem

Problem

Input A flow network G
Goal Find the capacity of a minimum s-t cut

The Minimum-Cut Problem

Problem

Input A flow network G
Goal Find the capacity of a minimum s-t cut

Flows and Cuts

Lemma

For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Proof.

1 Formal proof easier with path based definition of flow.
2 Suppose $f: \mathcal{P} \rightarrow \mathbb{R} \geq 0$ is a max-flow.
3 Every path $p \in \mathcal{P}$ contains an edge $e \in E^{\prime}$. Why?
4 Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E^{\prime}$
5 Let \mathcal{P}_{e} be paths assigned to $e \in E^{\prime}$. Then

Flows and Cuts

Lemma

For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Proof.

(1) Formal proof easier with path based definition of flow.
${ }^{2}$ Suppose $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ is a max-flow.
(3) Every path $p \in \mathcal{P}$ contains an edge $e \in E^{\prime}$. Why?
(4) Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E^{\prime}$
${ }^{5}$ Let \mathcal{P}_{e} be paths assigned to $e \in E^{\prime}$. Then

Flows and Cuts

Lemma

For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Proof.

(1) Formal proof easier with path based definition of flow.
(2) Suppose $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ is a max-flow.
${ }^{3}$ Every path $p \in \mathcal{P}$ contains an edge $e \in E^{\prime}$. Why?
(4) Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E^{\prime}$

5 Let \mathcal{P}_{e} be paths assigned to $e \in E^{\prime}$. Then

Flows and Cuts

Lemma

For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Proof.

(1) Formal proof easier with path based definition of flow.
(2) Suppose $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ is a max-flow.
(3) Every path $p \in \mathcal{P}$ contains an edge $e \in E^{\prime}$. Why?

4 Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E^{\prime}$
5 Let \mathcal{P}_{e} be paths assigned to $e \in E^{\prime}$. Then

Flows and Cuts

Lemma

For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Proof.

(1) Formal proof easier with path based definition of flow.
(2) Suppose $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ is a max-flow.
(3) Every path $p \in \mathcal{P}$ contains an edge $e \in E^{\prime}$. Why?
(1) Assign each path $p \in \mathcal{P}$ to exactly one edge $e \in E^{\prime}$.

5 Let \mathcal{P}_{e} be paths assigned to $e \in E^{\prime}$. Then

Flows and Cuts

Lemma

For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Proof.

(1) Formal proof easier with path based definition of flow.
(2) Suppose $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ is a max-flow.
(3) Every path $p \in \mathcal{P}$ contains an edge $e \in E^{\prime}$. Why?
(1) Assign each path $\boldsymbol{p} \in \mathcal{P}$ to exactly one edge $e \in E^{\prime}$.
(9) Let $\mathcal{P}_{\boldsymbol{e}}$ be paths assigned to $\boldsymbol{e} \in \boldsymbol{E}^{\prime}$. Then

Flows and Cuts

Lemma

For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Proof.

(1) Formal proof easier with path based definition of flow.
(2) Suppose $f: \mathcal{P} \rightarrow \mathbb{R}^{\geq 0}$ is a max-flow.
(3) Every path $p \in \mathcal{P}$ contains an edge $e \in E^{\prime}$. Why?
(1) Assign each path $\boldsymbol{p} \in \mathcal{P}$ to exactly one edge $e \in E^{\prime}$.
(9) Let \mathcal{P}_{e} be paths assigned to $e \in E^{\prime}$. Then

$$
v(f)=\sum_{p \in \mathcal{P}} f(p)=\sum_{e \in E^{\prime}} \sum_{p \in \mathcal{P}_{e}} f(p) \leq \sum_{e \in E^{\prime}} c(e)
$$

Flows and Cuts

Lemma

For any s-t cut E^{\prime}, maximum s-t flow \leq capacity of E^{\prime}.

Corollary
 Maximum s-t flow \leq minimum s-t cut.

Max-Flow Min-Cut Theorem

Theorem

In any flow network:
(value of maximum s-t flow $)=($ capacity of minimum s-t cut $)$.

1. Can compute minimum-cut from maximum flow and vice-versa!

2 Proof coming shortly.
(3) Many applications:
(1) optimization

2 graph theory
3 combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network:
(value of maximum s-t flow $)=($ capacity of minimum s-t cut $)$.
(1) Can compute minimum-cut from maximum flow and vice-versa!

2 Proof coming shortly.
3 Many applications:
1 optimization
2 graph theory
3 combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network:
(value of maximum s-t flow $)=($ capacity of minimum s-t cut $)$.
(1) Can compute minimum-cut from maximum flow and vice-versa!
(2) Proof coming shortly.

3 Many applications:
1 optimization
2 graph theory
3 combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network:
(value of maximum s-t flow $)=($ capacity of minimum s-t cut $)$.
(1) Can compute minimum-cut from maximum flow and vice-versa!

2 Proof coming shortly.
(3) Many applications:
(1) optimization

2 graph theory
3 combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network:
(value of maximum s-t flow $)=($ capacity of minimum s-t cut $)$.
(1) Can compute minimum-cut from maximum flow and vice-versa!
(2) Proof coming shortly.
(3) Many applications:
(1) optimization

2 graph theory
3 combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network:
(value of maximum s-t flow $)=($ capacity of minimum s-t cut $)$.
(1) Can compute minimum-cut from maximum flow and vice-versa!
(2) Proof coming shortly.
(3) Many applications:
(1) optimization
(2) graph theory

3 combinatorics

Max-Flow Min-Cut Theorem

Theorem

In any flow network:
(value of maximum s-t flow $)=($ capacity of minimum s-t cut $)$.
(1) Can compute minimum-cut from maximum flow and vice-versa!
(2) Proof coming shortly.
(3) Many applications:
(1) optimization
(2) graph theory
(3) combinatorics

The Maximum-Flow Problem

Problem

Input A network G with capacity C and source s and sink t. Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.

The Maximum-Flow Problem

Problem

Input A network G with capacity \boldsymbol{c} and source \boldsymbol{s} and sink t. Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t

The Maximum-Flow Problem

Problem

Input A network G with capacity c and source s and sink t. Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t

The Maximum-Flow Problem

Problem

> Input A network G with capacity c and source s and sink t. Goal Find flow of maximum value from s to t.

Exercise: Given G, s, t as above, show that one can remove all edges into s and all edges out of t without affecting the flow value between s and t.

Notes

Notes

Notes

Notes

Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Math. Doklady, 11:1277-1280.
Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. J. Assoc. Comput. Mach., 19(2):248-264.

