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Dictionary Data Structure

1 U : universe of keys with total order: numbers, strings, etc.

2 Data structure to store a subset S ⊆ U
3 Operations:

1 Search/lookup: given x ∈ U is x ∈ S?
2 Insert: given x ̸∈ S add x to S .
3 Delete: given x ∈ S delete x from S

4 Static structure: S given in advance or changes very
infrequently, main operations are lookups.

5 Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.
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Dictionary Data Structures

Common solutions:

1 Static:
1 Store S as a sorted array
2 Lookup: Binary search in O(log |S|) time (comparisons)

2 Dynamic:
1 Store S in a balanced binary search tree
2 Lookup, Insert, Delete in O(log |S|) time (comparisons)
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Dictionary Data Structures II

1 Question: “Should Tables be Sorted?”
(also title of famous paper by Turing award winner Andy Yao)

2 Hashing is a widely used & powerful technique for dictionaries.
3 Motivation:

1 Universe U may not be (naturally) totally ordered.
2 Keys correspond to large objects (images, graphs etc) for which

comparisons are very expensive.
3 Want to improve “average” performance of lookups to O(1)

even at cost of extra space or errors with small probability:
many applications for fast lookups in networking, security, etc.
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Hashing and Hash Tables

1 Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

2 Given S ⊆ U . How do we store S and how do we do lookups?
3 ...

Ideal situation:

1 Each element x ∈ S hashes to a distinct slot in T . Store x in slot
h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

4 Collisions unavoidable. Several different techniques to handle
them.
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Handling Collisions: Chaining

1 Collision: h(x) = h(y) for some x ̸= y .
2 Chaining to handle collisions:

1 For each slot i store all items hashed to slot i in a linked list.
T [i ] points to the linked list

2 Lookup: to find if y ∈ U is in T , check the linked list at
T [h(y)]. Time proportion to size of linked list.

3 This is also known as Open hashing.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 37



Handling Collisions: Chaining

1 Collision: h(x) = h(y) for some x ̸= y .
2 Chaining to handle collisions:

1 For each slot i store all items hashed to slot i in a linked list.
T [i ] points to the linked list

2 Lookup: to find if y ∈ U is in T , check the linked list at
T [h(y)]. Time proportion to size of linked list.

3 This is also known as Open hashing.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 37



Handling Collisions: Chaining

1 Collision: h(x) = h(y) for some x ̸= y .
2 Chaining to handle collisions:

1 For each slot i store all items hashed to slot i in a linked list.
T [i ] points to the linked list

2 Lookup: to find if y ∈ U is in T , check the linked list at
T [h(y)]. Time proportion to size of linked list.

y

s

f

This is also known as Open hashing.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 37



Handling Collisions: Chaining

31 Collision: h(x) = h(y) for some x ̸= y .
2 Chaining to handle collisions:

1 For each slot i store all items hashed to slot i in a linked list.
T [i ] points to the linked list

2 Lookup: to find if y ∈ U is in T , check the linked list at
T [h(y)]. Time proportion to size of linked list.

y

s

f

This is also known as Open hashing.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 37



Handling Collisions: Chaining

31 Collision: h(x) = h(y) for some x ̸= y .
2 Chaining to handle collisions:

1 For each slot i store all items hashed to slot i in a linked list.
T [i ] points to the linked list

2 Lookup: to find if y ∈ U is in T , check the linked list at
T [h(y)]. Time proportion to size of linked list.

y

s

f

This is also known as Open hashing.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 37



Handling Collisions: Chaining

31 Collision: h(x) = h(y) for some x ̸= y .
2 Chaining to handle collisions:

1 For each slot i store all items hashed to slot i in a linked list.
T [i ] points to the linked list

2 Lookup: to find if y ∈ U is in T , check the linked list at
T [h(y)]. Time proportion to size of linked list.

y

s

f

This is also known as Open hashing.

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 37



Handling Collisions

Several other techniques:

31 Open addressing.
Every element has a list of places it can be (in certain order).
Check in this order.

2 . . .

3 Cuckoo hashing.
Every value has two possible locations. When inserting, insert in
one of the locations, otherwise, kick stored value to its other
location. Repeat till stable. if no stability then rebuild table.

4 Others.
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Understanding Hashing

1 Does hashing give O(1) time per operation for dictionaries?
2 Questions:

1 Complexity of evaluating h on a given element?
2 Relative sizes of the universe U and the set to be stored S .
3 Size of table relative to size of S .
4 Worst-case vs average-case vs randomized (expected) time?
5 How do we choose h?
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Understanding Hashing

1 Considerations:
1 Complexity of evaluating h on a given element? Should be

small.
2 Relative sizes of the universe U and the set to be stored S :

typically |U| ≫ |S|.
3 Size of table relative to size of S . The load factor of T is the

ratio n/t where n = |S| and m = |T |. Typically n/t is a
small constant smaller than 1.
Also known as the fill factor.

2 Main and interrelated questions:
1 Worst-case vs average-case vs randomized (expected) time?
2 How do we choose h?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 37



Understanding Hashing

1 Considerations:
1 Complexity of evaluating h on a given element? Should be

small.
2 Relative sizes of the universe U and the set to be stored S :

typically |U| ≫ |S|.
3 Size of table relative to size of S . The load factor of T is the

ratio n/t where n = |S| and m = |T |. Typically n/t is a
small constant smaller than 1.
Also known as the fill factor.

2 Main and interrelated questions:
1 Worst-case vs average-case vs randomized (expected) time?
2 How do we choose h?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 37



Understanding Hashing

1 Considerations:
1 Complexity of evaluating h on a given element? Should be

small.
2 Relative sizes of the universe U and the set to be stored S :

typically |U| ≫ |S|.
3 Size of table relative to size of S . The load factor of T is the

ratio n/t where n = |S| and m = |T |. Typically n/t is a
small constant smaller than 1.
Also known as the fill factor.

2 Main and interrelated questions:
1 Worst-case vs average-case vs randomized (expected) time?
2 How do we choose h?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 37



Understanding Hashing

1 Considerations:
1 Complexity of evaluating h on a given element? Should be

small.
2 Relative sizes of the universe U and the set to be stored S :

typically |U| ≫ |S|.
3 Size of table relative to size of S . The load factor of T is the

ratio n/t where n = |S| and m = |T |. Typically n/t is a
small constant smaller than 1.
Also known as the fill factor.

2 Main and interrelated questions:
1 Worst-case vs average-case vs randomized (expected) time?
2 How do we choose h?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 37



Understanding Hashing

1 Considerations:
1 Complexity of evaluating h on a given element? Should be

small.
2 Relative sizes of the universe U and the set to be stored S :

typically |U| ≫ |S|.
3 Size of table relative to size of S . The load factor of T is the

ratio n/t where n = |S| and m = |T |. Typically n/t is a
small constant smaller than 1.
Also known as the fill factor.

2 Main and interrelated questions:
1 Worst-case vs average-case vs randomized (expected) time?
2 How do we choose h?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 37



Understanding Hashing

1 Considerations:
1 Complexity of evaluating h on a given element? Should be

small.
2 Relative sizes of the universe U and the set to be stored S :

typically |U| ≫ |S|.
3 Size of table relative to size of S . The load factor of T is the

ratio n/t where n = |S| and m = |T |. Typically n/t is a
small constant smaller than 1.
Also known as the fill factor.

2 Main and interrelated questions:
1 Worst-case vs average-case vs randomized (expected) time?
2 How do we choose h?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 37



Understanding Hashing

1 Considerations:
1 Complexity of evaluating h on a given element? Should be

small.
2 Relative sizes of the universe U and the set to be stored S :

typically |U| ≫ |S|.
3 Size of table relative to size of S . The load factor of T is the

ratio n/t where n = |S| and m = |T |. Typically n/t is a
small constant smaller than 1.
Also known as the fill factor.

2 Main and interrelated questions:
1 Worst-case vs average-case vs randomized (expected) time?
2 How do we choose h?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 37



Understanding Hashing

1 Considerations:
1 Complexity of evaluating h on a given element? Should be

small.
2 Relative sizes of the universe U and the set to be stored S :

typically |U| ≫ |S|.
3 Size of table relative to size of S . The load factor of T is the

ratio n/t where n = |S| and m = |T |. Typically n/t is a
small constant smaller than 1.
Also known as the fill factor.

2 Main and interrelated questions:
1 Worst-case vs average-case vs randomized (expected) time?
2 How do we choose h?

Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 37



Single hash function

1 U : universe (very large).

2 Assume N = |U| ≫ m where m is size of table T . In
particular assume N ≥ m2 (very conservative).

3 Fix hash function h : U → {0, . . . ,m − 1}.
4 N items hashed to m slots. By pigeon hole principle there is

some i ∈ {0, . . . ,m − 1} such that N/m ≥ m elements of
U get hashed to i (!).

5 Implies that there is a set S ⊆ U where |S| = m such that all
of S hashes to same slot. Ooops.

Lesson: For every hash function there is a very bad set. Bad set.
Bad.
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Picking a hash function

1 How to pick functions?
1 Hash function are often chosen in an ad hoc fashion. Implicit

assumption is that input behaves well.
2 Theory and sound practice suggests that a hash function should

be chosen properly with guarantees on its behavior.

2 Parameters: N = |U|, m = |T |, n = |S|
1 H is a family of hash functions: each function h ∈ H should

be efficient to evaluate (that is, to compute h(x)).
2 h is chosen randomly from H (typically uniformly at random).

Implicitly assumes that H allows an efficient sampling.
3 Randomized guarantee: should have the property that for any

fixed set S ⊆ U of size m the expected number of collisions for
a function chosen from H should be “small”. Here the
expectation is over the randomness in choice of h.
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Picking a hash function II

1 Question: Why not let H be the set of all functions from U to
{0, 1, . . . ,m − 1}?

2 1 Too many functions! A random function has high complexity!
# of functions: M = m|U|.
Bits to encode such a function ≈ logM = |U| logm.

3 Question: Are there good and compact families H?
1 Yes... But what it means for H to be good and compact.
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Uniform hashing

Question: What are good properties of H in distributing data?

1 Consider any element x ∈ U . Then if h ∈ H is picked
randomly then x should go into a random slot in T . In other
words Pr[h(x) = i ] = 1/m for every 0 ≤ i < m.

2 Consider any two distinct elements x, y ∈ U . Then if h ∈ H is
picked randomly then the probability of a collision between x
and y should be at most 1/m. In other words
Pr[h(x) = h(y)] = 1/m (cannot be smaller).

3 Second property is stronger than the first and the crucial issue.

Definition
A family hash function H is 2-universal if for all distinct x, y ∈ U ,
Pr[h(x) = h(y)] = 1/m where m is the table size.

Note: The set of all hash functions satisfies stronger properties!
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Analyzing Uniform Hashing

1 T is hash table of size m.

2 S ⊆ U is a fixed set of size ≤ m.

3 h is chosen randomly from a uniform hash family H.

4 x is a fixed element of U . Assume for simplicity that x /∈ S .

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?
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Analyzing Uniform Hashing

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

1 The time to look up x is the size of the list at T [h(x)]: same
as the number of elements in S that collide with x under h.

2 Let ℓ(x) be this number. We want E[ℓ(x)]
3 For y ∈ S let Ay be the even that x, y collide and Dy be the

corresponding indicator variable.
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Analyzing Uniform Hashing
Continued...

Number of elements colliding with x : ℓ(x) =
∑

y∈S Dy .

⇒ E[ℓ(x)] =
∑
y∈S

E[Dy ] linearity of expectation

=
∑
y∈S

Pr [h(x) = h(y)]

=
∑
y∈S

1

m
since H is a uniform hash family

= |S|/m
≤ 1 if |S| ≤ m
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Analyzing Uniform Hashing

1 Question: What is the expected time to look up x in T using
h assuming chaining used to resolve collisions?

2 Answer: O(n/m).
3 Comments:

1 O(1) expected time also holds for insertion.
2 Analysis assumes static set S but holds as long as S is a set

formed with at most O(m) insertions and deletions.
3 Worst-case: look up time can be large! How large?

Ω(log n/ log log n)
[Lower bound holds even under stronger assumptions.]
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3 Worst-case: look up time can be large! How large?

Ω(log n/ log log n)
[Lower bound holds even under stronger assumptions.]
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Rehashing, amortization and...
... making the hash table dynamic

Previous analysis assumed fixed S of size ≃ m.
Question: What happens as items are inserted and deleted?

1 If |S| grows to more than cm for some constant c then hash
table performance clearly degrades.

2 If |S| stays around ≃ m but incurs many insertions and
deletions then the initial random hash function is no longer
random enough!

Solution: Rebuild hash table periodically!

1 Choose a new table size based on current number of elements in
table.

2 Choose a new random hash function and rehash the elements.

3 Discard old table and hash function.

Question: When to rebuild? How expensive?
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Rebuilding the hash table

1 Start with table size m where m is some estimate of |S| (can
be some large constant).

2 If |S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

3 If |S| stays roughly the same but more than c|S| operations on
table for some chosen constant c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations.
Rebuilding ensures O(1) expected analysis holds even when S
changes. Hence O(1) expected look up/insert/delete time dynamic
data dictionary data structure!
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Some math required...

Lemma
Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

In other words: For every element there is a unique inverse.
=⇒ Zp = {0, 1, . . . , p − 1} when working module p is a field.
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Proof of lemma

Claim
Let p be a prime number. For any α, β, i ∈ {1, . . . , p − 1} s.t.
α ̸= β, we have that αi ̸= βi mod p.

Proof.
Assume for the sake of contradiction αi = βi mod p. Then

i(α− β) = 0 mod p
=⇒ p divides i(α− β)

=⇒ p divides α− β

=⇒ α− β = 0

=⇒ α = β.

And that is a contradiction.
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Proof of lemma...
Uniqueness.

Lemma
Let p be a prime number,
x : an integer number in {1, . . . , p − 1}.
=⇒ There exists a unique y s.t. xy = 1 mod p.

Proof.
Assume the lemma is false and there are two distinct numbers
y , z ∈ {1, . . . , p − 1} such that

xy = 1 mod p and xz = 1 mod p.

But this contradicts the above claim (set i = x , α = y and
β = z).
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Proof of lemma...
Existence

Proof.
By claim, for any α ∈ {1, . . . , p − 1} we have that
{α ∗ 1 mod p, α ∗ 2 mod p, . . . , α ∗ (p − 1) mod p} =
{1, 2, . . . , p − 1}.
=⇒ There exists a number y ∈ {1, . . . , p − 1} such that
αy = 1 mod p.

Sariel (UIUC) OLD CS473 24 Spring 2015 24 / 37



Constructing Universal Hash Families

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p ≥ N . Zp = {0, 1, . . . , p − 1} is a

field.
2 For a, b ∈ Zp, a ̸= 0, define the hash function ha,b as

ha,b(x) = ((ax + b) mod p) mod m.
3 Let H = {ha,b | a, b ∈ Zp, a ̸= 0}. Note that
|H| = p(p − 1).

Theorem
H is a 2-universal hash family.

Comments:
1 Hash family is of small size, easy to sample from.
2 Easy to store a hash function (a, b have to be stored) and

evaluate it.
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What the is going on?

ha,b(x) = ((ax + b) mod p) mod m
First map x ̸= y to r = h(x) and s = h(y).

0 1 2 3 x

(x, y)

y

This is a random uniform mapping (choosing a and b) – every cell
has the same probability to be the target, for fixed x and y .
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What the is going on?

ha,b(x) = ((ax + b) mod p) mod m
1 First part of mapping maps

(x, y) to a random location
(ha,b(x), ha,b(y)) in the
“matrix”.

2 (ha,b(x), ha,b(y)) is not on
main diagonal.

3 All blue locations are “bad” –
map by mod m to a
location of collusion.

4 But... at most 1/m fraction
of allowable locations in the
matrix are bad.
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Constructing Universal Hash Families

Theorem
H is a (2)-universal hash family.

Proof.
Fix x, y ∈ U . What is the probability they will collide if h is picked
randomly from H?

1 Let a, b be bad for x, y if ha,b(x) = ha,b(y).
2 Claim: Number of bad pairs is at most p(p − 1)/m.

3 Total number of hash functions is p(p − 1) and hence
probability of a collision is ≤ 1/m.
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Some Lemmas

Lemma
If x ̸= y then for any a, b ∈ Zp such that a ̸= 0, we have

ax + b mod p ̸= ay + b mod p.

Proof.
If ax + b mod p = ay + b mod p then a(x − y) mod p = 0
and a ̸= 0 and (x − y) ̸= 0. However, a and (x − y) cannot
divide p since p is prime and a < p and (x − y) < p.
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Some Lemmas

Lemma
If x ̸= y then for each (r , s) such that r ̸= s and
0 ≤ r , s ≤ p − 1 there is exactly one a, b such that

ax + b mod p = r and ay + b mod p = s .

Proof.
Solve the two equations:

ax + b = r mod p and ay + b = s mod p

We get a = r−s
x−y mod p and b = r − ax mod p.
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Understanding the hashing

Once we fix a and b, and we are given a value x , we compute the
hash value of x in two stages:

1 Compute: r ← (ax + b) mod p.
2 Fold: r ′ ← r mod m

Collision...
Given two values x and y they might collide because of either steps.

Lemma
# not equal pairs of Zp × Zp that are folded to the same number is
p(p − 1)/m.
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Folding numbers

Lemma
# not equal pairs of Zp × Zp that are folded to the same number is
p(p − 1)/m.

Proof.

Consider a pair (x, y) ∈ {0, 1, . . . , p − 1}2 s.t. x ̸= y . Fix x :
1 There are ⌈p/m⌉ values of y that fold into x . That is

x mod m = y mod m.

2 One of them is when x = y .
3 =⇒ # of colliding pairs (⌈p/m⌉ − 1)p ≤ (p − 1)p/m

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 37



Folding numbers

Lemma
# not equal pairs of Zp × Zp that are folded to the same number is
p(p − 1)/m.

Proof.

Consider a pair (x, y) ∈ {0, 1, . . . , p − 1}2 s.t. x ̸= y . Fix x :
1 There are ⌈p/m⌉ values of y that fold into x . That is

x mod m = y mod m.

2 One of them is when x = y .
3 =⇒ # of colliding pairs (⌈p/m⌉ − 1)p ≤ (p − 1)p/m

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 37



Folding numbers

Lemma
# not equal pairs of Zp × Zp that are folded to the same number is
p(p − 1)/m.

Proof.

Consider a pair (x, y) ∈ {0, 1, . . . , p − 1}2 s.t. x ̸= y . Fix x :
1 There are ⌈p/m⌉ values of y that fold into x . That is

x mod m = y mod m.

2 One of them is when x = y .
3 =⇒ # of colliding pairs (⌈p/m⌉ − 1)p ≤ (p − 1)p/m

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 37



Folding numbers

Lemma
# not equal pairs of Zp × Zp that are folded to the same number is
p(p − 1)/m.

Proof.

Consider a pair (x, y) ∈ {0, 1, . . . , p − 1}2 s.t. x ̸= y . Fix x :
1 There are ⌈p/m⌉ values of y that fold into x . That is

x mod m = y mod m.

2 One of them is when x = y .
3 =⇒ # of colliding pairs (⌈p/m⌉ − 1)p ≤ (p − 1)p/m

Sariel (UIUC) OLD CS473 31 Spring 2015 31 / 37



Proof of Claim
# of bad pairs is p(p− 1)/m

Proof.
Let a, b ∈ Zp such that a ̸= 0 and ha,b(x) = ha,b(y).

1 Let ax + b mod p = r and ay + b mod = s mod p.
2 Collision if and only if r = s mod m.

3 (Folding error): Number of pairs (r , s) such that r ̸= s and
0 ≤ r , s ≤ p − 1 and r = s mod m is p(p − 1)/m.

4 From previous lemma for each bad pair (a, b) there is a unique
pair (r , s) such that r = s mod m. Hence total number of
bad pairs is p(p − 1)/m.

Prob of x and y to collide: # bad pairs
#pairs

= p(p−1)/m
p(p−1)

= 1
m .
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Perfect Hashing

1 Question: Can we make look up time O(1) in worst case?

2 Yes, for static dictionaries but then space usage is O(m) only in
expectation.
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Practical Issues

Hashing used typically for integers, vectors, strings etc.

Universal hashing is defined for integers. To implement for other
objects need to map objects in some fashion to integers (via
representation)

Practical methods for various important cases such as vectors,
strings are studied extensively. See
http://en.wikipedia.org/wiki/Universal_hashing for
some pointers.

Recent important paper briding theory and practice of hashing.
“The power of simple tabulation hashing” by Mikkel Thorup and
Mihai Patrascu, 2011. See
http://en.wikipedia.org/wiki/Tabulation_hashing
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Bloom Filters

1 Hashing:
1 To insert x in dictionary store x in table in location h(x)
2 To lookup y in dictionary check contents of location h(y)

2 Bloom Filter: tradeoff space for false positives
1 Storing items in dictionary expensive in terms of memory,

especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

2 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

3 To lookup y if bit in location h(y) is 1 say yes, else no.
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Bloom Filters

1 Bloom Filter: tradeoff space for false positives
1 To insert x in dictionary set bit to 1 in location h(x) (initially

all bits are set to 0)
2 To lookup y if bit in location h(y) is 1 say yes, else no
3 No false negatives but false positives possible due to collisions

2 Reducing false positives:
1 Pick k hash functions h1, h2, . . . , hk independently
2 To insert x for 1 ≤ i ≤ k set bit in location hi (x) in table i to

1
3 To lookup y compute hi (y) for 1 ≤ i ≤ k and say yes only if

each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is α < 1 then
with k independent hash function it is αk .
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Take away points

1 Hashing is a powerful and important technique for dictionaries.
Many practical applications.

2 Randomization fundamental to understanding hashing.

3 Good and efficient hashing possible in theory and practice with
proper definitions (universal, perfect, etc).

4 Related ideas of creating a compact fingerprint/sketch for
objects is very powerful in theory and practice.

5 Many applications in practice.
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