
Chapter 15

Randomized Algorithms: QuickSort
and QuickSelect

OLD CS 473: Fundamental Algorithms, Spring 2015
March 12, 2015

15.1 Slick analysis of QuickSort
15.1.0.1 A Slick Analysis of QuickSort

(A) Let Q(A) be number of comparisons done on input array A:
(A) Rij: event that rank i element is compared with rank j element, for 1 ≤ i < j ≤ n.
(B) Xij is the indicator random variable for Rij. That is, Xij = 1 if rank i is compared

with rank j element, otherwise 0.
(B) Q(A) =

∑
1≤i<j≤n Xij.

(C) By linearity of expectation,

E
[
Q(A)

]
= E

[∑
1≤i<j≤n

Xij

]
=

∑
1≤i<j≤n

E
[
Xij

]

=
∑

1≤i<j≤n

Pr
[
Rij

]
.

15.1.0.2 A Slick Analysis of QuickSort

Rij = rank i element is compared with rank j element.

Question: What is Pr[Rij]?

7 5 9 1 3 4 8 6 With ranks:

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5 to 8 is Pr[R4,7].

1

(A) If pivot too small (say 3 [rank 2]). Partition and call recursively:

7 5 9 1 3 4 8 6
=⇒ 7 5 93 4 8 61

Decision if to compare 5 to 8 is moved to subproblem.
(B) If pivot too large (say 9 [rank 8]):

7 5 9 1 3 4 8 67 5 9 1 3 4 8 6
=⇒

7 5 1 3 4 8 6 9

Decision if to compare 5 to 8 moved to subproblem.

15.1.1 A Slick Analysis of QuickSort

15.1.1.1 Question: What is Pr[Ri,j]?

7 5 9 1 3 4 8 6
1 2 34 56 78

As such, probability of comparing 5
to 8 is Pr[R4,7].

(A) If pivot is 5 (rank 4). Bingo!

7 5 9 1 3 4 8 6
=⇒ 1 3 4 5 7 9 8 6

(B) If pivot is 8 (rank 7). Bingo!

7 5 9 1 3 4 8 6
=⇒ 7 5 91 3 4 6 8

(C) If pivot in between the two numbers (say 6 [rank 5]):

7 5 9 1 3 4 8 6
=⇒ 75 91 3 4 6 8

5 and 8 will never be compared to each other.

15.1.2 A Slick Analysis of QuickSort

15.1.2.1 Question: What is Pr[Ri,j]?

Conclusion:

Ri,j happens ⇐⇒ :

ith or jth ranked element is the first pivot out of the elements of rank
i, i+ 1, i+ 2, . . . , j

How to analyze this? Thinking acrobatics!

(A) Assign every element in array random priority (say in [0, 1]).
(B) Choose pivot to be element with lowest priority in subproblem.
(C) Equivalent to picking pivot uniformly at random

(as QuickSort do).

2

15.1.3 A Slick Analysis of QuickSort

15.1.3.1 Question: What is Pr[Ri,j]?

(A) Choosing a pivot using priorities
(A) Assign every element in array is a random priority (in [0, 1]).
(B) pivot = the element with lowest priority in subproblem.

(B) =⇒ Ri,j happens if either i or j have lowest priority out of elements in rank i . . . j,
(C) There are k = j − i+ 1 relevant elements.

(D) Pr
[
Ri,j

]
=

2

k
=

2

j − i+ 1
.

15.1.3.2 A Slick Analysis of QuickSort

Question: What is Pr[Rij]?

Lemma 15.1.1. Pr
[
Rij

]
= 2

j−i+1
.

Proof
(A) a1, . . . , ai, . . . , aj, . . . , an: elements of A in sorted order. Let S = {ai, ai+1, . . . , aj}
(B) Observation: If pivot is chosen outside S then all of S either in left or right recursive

subproblem.
(C) Observation: ai and aj separated when a pivot is chosen from S for the first time.

Once separated never to meet again. =⇒ ai and aj will not be compared.

15.1.4 A Slick Analysis of QuickSort

15.1.4.1 Continued...

Lemma 15.1.2. Pr
[
Rij

]
= 2

j−i+1
.

Proof :
(A) Let a1, . . . , ai, . . . , aj, . . . , an be sort of A.
(B) Let S = {ai, ai+1, . . . , aj}
(C) Observation: ai is compared with aj ⇐⇒ either ai or aj is chosen as a pivot from S

at separation.
(D) Observation: Given: Pivot chosen from S.

The probability that it is ai or aj is exactly
2/|S| = 2/(j − i+ 1) since the pivot is chosen uniformly at random from the array.

15.1.5 A Slick Analysis of QuickSort

15.1.5.1 Continued...

E
[
Q(A)

]
=

∑
1≤i<j≤n

E[Xij] =
∑

1≤i<j≤n

Pr[Rij] .

3

Lemma 15.1.3. Pr[Rij] =
2

j−i+1
.

E
[
Q(A)

]
=

∑
1≤i<j≤n

Pr
[
Rij

]
=

∑
1≤i<j≤n

2

j − i+ 1

=
n−1∑
i=1

n∑
j=i+1

2

j − i+ 1
= 2

n−1∑
i=1

n∑
i<j

1

j − i+ 1
≤ 2

n−1∑
i=1

n−i+1∑
∆=2

1

∆

≤ 2

n−1∑
i=1

(Hn−i+1 − 1) ≤ 2
∑

1≤i<n

Hn

≤ 2nHn = O(n log n)

15.2 Quick sort with high probability

15.2.1 Yet another analysis of QuickSort

15.2.1.1 You should never trust a man who has only one way to spell a word

(A) Consider element e in the array.
(B) S1, S2, . . . , Sk: subproblems e participates in during QuickSort execution:

(C)
Definition

e is lucky in the jth iteration if |Sj | ≤ (3/4) |Sj−1|.
(D) Key observation: The event that e is lucky in jth iteration...
(E) ... is independent of the event that e is lucky in kth iteration,

(If j ̸= k)
(F) Xj = 1 ⇐⇒ e is lucky in the jth iteration.

15.2.2 Yet another analysis of QuickSort

15.2.2.1 Continued...

Claim

Pr[Xj = 1] = 1/2.

Proof :

(A) Xj determined by j recursive subproblem.
(B) Subproblem has nj−1 = |Xj−1| elements.
(C) jth pivot rank ∈ [nj−1/4, (3/4)nj−1] =⇒ e lucky in jth iter.
(D) Prob. e is lucky ≥ |[nj−1/4, (3/4)nj−1]| /nj−1 = 1/2.

4

Observation

If X1 +X2 + . . . Xk = ⌈log4/3 n⌉ then e subproblem is of size one. Done!

15.2.3 Yet another analysis of QuickSort

15.2.3.1 Continued...

Observation

Probability e participates in ≥ k = 40⌈log4/3 n⌉ subproblems. Is equal to

Pr
[
X1 +X2 + . . .+Xk ≤ ⌈log4/3 n⌉

]
≤ Pr[X1 +X2 + . . .+Xk ≤ k/4]

≤ 2 · 0.68k/4 ≤ 1/n5.

Conclusion

QuickSort takes O(n log n) time with high probability.

15.3 Randomized Selection
15.3.0.2 Randomized Quick Selection

Input Unsorted array A of n integers

Goal Find the jth smallest number in A (rank j number)

Randomized Quick Selection

(A) Pick a pivot element uniformly at random from the array
(B) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot

itself.
(C) Return pivot if rank of pivot is j.
(D) Otherwise recurse on one of the arrays depending on j and their sizes.

15.3.0.3 Algorithm for Randomized Selection

Assume for simplicity thatA has distinct elements.

QuickSelect(A, j):
Pick pivot x uniformly at random from A
Partition A into Aless, x, and Agreater using x as pivot

if (|Aless| = j − 1) then
return x

if (|Aless| ≥ j) then
return QuickSelect(Aless, j)

else
return QuickSelect(Agreater, j − |Aless| − 1)

5

15.3.0.4 QuickSelect analysis

(A) S1, S2, . . . , Sk be the subproblems considered by the algorithm.
Here |S1| = n.

(B) Si would be successful if |Si| ≤ (3/4) |Si−1|
(C) Y1 = number of recursive calls till first successful iteration.

Clearly, total work till this happens is O(Y1n).
(D) ni = size of the subproblem immediately after the (i− 1)th successful iteration.
(E) Yi = number of recursive calls after the (i−1)th successful call, till the ith successful iteration.
(F) Running time is O(

∑
i niYi).

15.3.0.5 QuickSelect analysis

Example

Si = subarray used in ith recursive call

|Si| = size of this subarray

Red indicates successful iteration.

Inst’ S1 S2 S3 S4 S5 S6 S7 S8 S9

|Si| 100 70 60 50 40 30 25 5 2

Succ’ Y1 = 2 Y2 = 4 Y3 = 2 Y4 = 1

ni = n1 = 100 n2 = 60 n3 = 25 n4 = 2

(A) All the subproblems after (i − 1)th successful iteration till ith successful iteration have size
≤ ni.

(B) Total work: O(
∑

i niYi).

15.3.0.6 QuickSelect analysis

(A) Total work: O(
∑

i niYi).
(B) ni ≤ (3/4)ni−1 ≤ (3/4)i−1n.
(C) Yi is a random variable with geometric distribution

Probability of Yi = k is 1/2i.
(D) E[Yi] = 2.
(E) As such, expected work is proportional to

E

[∑
i

niYi

]
=

∑
i

E
[
niYi

]
≤

∑
i

E
[
(3/4)i−1nYi

]
= n

∑
i

(3/4)i−1
E
[
Yi

]
= n

∑
i=1

(3/4)i−12 ≤ 8n.

15.3.0.7 QuickSelect analysis

Theorem 15.3.1. The expected running time of QuickSelect is O(n).

6

15.3.1 QuickSelect analysis via recurrence

15.3.1.1 Analysis via Recurrence

(A) Given array A of size n let Q(A) be number of comparisons of randomized selection on A for
selecting rank j element.

(B) Note that Q(A) is a random variable
(C) Let Ai

less and Ai
greater be the left and right arrays obtained if pivot is rank i element of A.

(D) Algorithm recurses on Ai
less if j < i and recurses on Ai

greater if j > i and terminates if j = i.

Q(A) = n+

j−1∑
i=1

Pr[pivot has rank i]Q(Ai
greater)

+

n∑
i=j+1

Pr[pivot has rank i]Q(Ai
less)

15.3.1.2 Analyzing the Recurrence

As in QuickSort we obtain the following recurrence where T (n) is the worst-case expected time.

T (n) ≤ n+
1

n
(

j−1∑
i=1

T (n− i) +
n∑

i=j

T (i− 1)).

Theorem 15.3.2. T (n) = O(n).

Proof : (Guess and) Verify by induction (see next slide).

15.3.1.3 Analyzing the recurrence

Theorem 15.3.3. T (n) = O(n).

Prove by induction that T (n) ≤ αn for some constant α ≥ 1 to be fixed later.
Base case: n = 1, we have T (1) = 0 since no comparisons needed and hence T (1) ≤ α.
Induction step: Assume T (k) ≤ αk for 1 ≤ k < n and prove it for T (n). We have by the
recurrence:

T (n) ≤ n+
1

n
(

j−1∑
i=1

T (n− i) +
∑
i=jn

T (i− 1))

≤ n+
α

n
(

j−1∑
i=1

(n− i) +

n∑
i=j

(i− 1)) by applying induction

7

15.3.1.4 Analyzing the recurrence

T (n) ≤ n+
α

n
(

j−1∑
i=1

(n− i) +

n∑
i=j

(i− 1))

≤ n+
α

n
((j − 1)(2n− j)/2 + (n− j + 1)(n+ j − 2)/2)

≤ n+
α

2n
(n2 + 2nj − 2j2 − 3n+ 4j − 2)

above expression maximized when j = (n+ 1)/2: calculus

≤ n+
α

2n
(3n2/2− n) substituting (n+ 1)/2 for j

≤ n+ 3αn/4

≤ αn for any constant α ≥ 4

15.3.1.5 Comments on analyzing the recurrence

(A) Algebra looks messy but intuition suggest that the median is the hardest case and hence can
plug j = n/2 to simplify without calculus

(B) Analyzing recurrences comes with practice and after a while one can see things more intuitively
John Von Neumann:
Young man, in mathematics you don’t understand things. You just get used to them.

8

http://en.wikipedia.org/wiki/John_von_Neumann

	Slick analysis of QuickSort
	Quick sort with high probability
	Randomized selection
	Randomized Selection

