OLD CS 473: Fundamental Algorithms, Spring 2015

Randomized Algorithms: QuickSort and QuickSelect

Lecture 15 March 12, 2015

Part I

Slick analysis of QuickSort

- Let Q(A) be number of comparisons done on input array A:
 - *R_{ij}*: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* ≤ *n*.
 - X_{ij} is the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank i is compared with rank j element, otherwise 0.
- $Q(A) = \sum_{1 \le i < j \le n} X_{ij}.$

By linearity of expectation,

$$\mathbf{E}\left[\mathbf{Q}(\mathbf{A})\right] = \mathbf{E}\left[\sum_{1 \leq i < j \leq n} X_{ij}\right] = \sum_{1 \leq i < j \leq n} \mathbf{E}\left[X_{ij}\right]$$

$$=\sum_{1\leq i< j\leq n}\Pr\Big[R_{ij}\Big]\,.$$

Let Q(A) be number of comparisons done on input array A:

- *R_{ij}*: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* ≤ *n*.
- X_{ij} is the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank i is compared with rank j element, otherwise 0.
- 2 $Q(A) = \sum_{1 \leq i < j \leq n} X_{ij}$

By linearity of expectation,

$$\mathsf{E}\Big[Q(A)\Big] = \mathsf{E}\left[\sum_{1 \leq i < j \leq n} X_{ij}\right] = \sum_{1 \leq i < j \leq n} \mathsf{E}\Big[X_{ij}\Big]$$

$$=\sum_{1\leq i< j\leq n}\Pr\Big[R_{ij}\Big]\,.$$

(1) Let Q(A) be number of comparisons done on input array A:

- *R_{ij}*: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* ≤ *n*.
- X_{ij} is the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank i is compared with rank j element, otherwise 0.
- $Q(A) = \sum_{1 \le i < j \le n} X_{ij}.$

By linearity of expectation,

$$\mathsf{E}\Big[Q(\mathsf{A})\Big] = \mathsf{E}\left[\sum_{1 \leq i < j \leq n} X_{ij}\right] = \sum_{1 \leq i < j \leq n} \mathsf{E}\Big[X_{ij}\Big]$$

$$=\sum_{1\leq i< j\leq n}\Pr\Big[R_{ij}\Big]\,.$$

- **(1)** Let Q(A) be number of comparisons done on input array A:
 - *R_{ij}*: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* ≤ *n*.
 - X_{ij} is the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank i is compared with rank j element, otherwise 0.
- $Q(A) = \sum_{1 \le i < j \le n} X_{ij}.$

3 By linearity of expectation,

 $\mathbf{E}[Q(A)] = \mathbf{E}\left|\sum_{1 \leq i < j \leq n} X_{ij}\right| = \sum_{1 \leq i < j \leq n} \mathbf{E}[X_{ij}]$

(1) Let Q(A) be number of comparisons done on input array A:

- *R_{ij}*: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* ≤ *n*.
- X_{ij} is the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank i is compared with rank j element, otherwise 0.
- $Q(A) = \sum_{1 \le i < j \le n} X_{ij}.$

3 By linearity of expectation,

 $\mathbf{E}[Q(A)] = \mathbf{E}\left|\sum_{1 \leq i < j \leq n} X_{ij}\right| = \sum_{1 \leq i < j \leq n} \mathbf{E}[X_{ij}]$

 $= \sum_{i=1}^{n} \Pr[R_{ij}].$

(1) Let Q(A) be number of comparisons done on input array A:

- *R_{ij}*: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* ≤ *n*.
- X_{ij} is the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank i is compared with rank j element, otherwise 0.
- $Q(A) = \sum_{1 \le i < j \le n} X_{ij}.$

By linearity of expectation,

$$\mathsf{E}\Big[Q(A)\Big] = \mathsf{E}\left[\sum_{1 \le i < j \le n} X_{ij}\right] = \sum_{1 \le i < j \le n} \mathsf{E}\Big[X_{ij}\Big]$$
$$= \sum_{1 \le i < j \le n} \mathsf{Pr}\Big[R_{ij}\Big].$$

(1) Let Q(A) be number of comparisons done on input array A:

- *R_{ij}*: event that rank *i* element is compared with rank *j* element, for 1 ≤ *i* < *j* ≤ *n*.
- X_{ij} is the indicator random variable for R_{ij}. That is, X_{ij} = 1 if rank i is compared with rank j element, otherwise 0.
- $Q(A) = \sum_{1 \le i < j \le n} X_{ij}.$

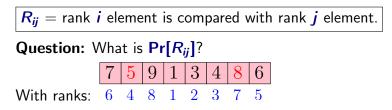
By linearity of expectation,

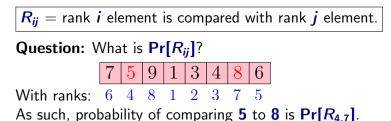
$$E[Q(A)] = E\left[\sum_{1 \le i < j \le n} X_{ij}\right] = \sum_{1 \le i < j \le n} E[X_{ij}]$$
$$= \sum_{1 \le i < j \le n} \Pr[R_{ij}].$$

 R_{ij} = rank *i* element is compared with rank *j* element.

Question: What is Pr[R_{ij}]?

7 5 9 1 3 4 8 6





Question: What is **Pr**[*R*_{*ij*}]?

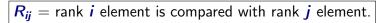
9

1 3 4 8 6

With ranks: $6 \ 4 \ 8 \ 1 \ 2 \ 3 \ 7 \ 5$

If pivot too small (say 3 [rank 2]). Partition and call recursively:

Decision if to compare **5** to **8** is moved to subproblem.



Question: What is **Pr**[*R*_{*ij*}]?

9

With ranks: $6 \ 4 \ 8 \ 1 \ 2 \ 3 \ 7 \ 5$

() If pivot too small (say **3** [rank 2]). Partition and call recursively:

Decision if to compare 5 to 8 is moved to subproblem.

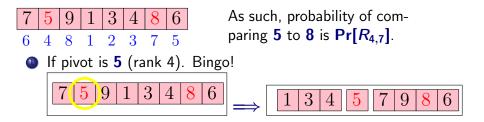
If pivot too large (say 9 [rank 8]):

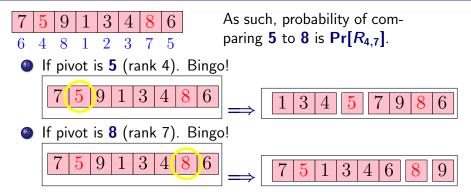
 7
 5
 9
 1
 3
 4
 8
 6

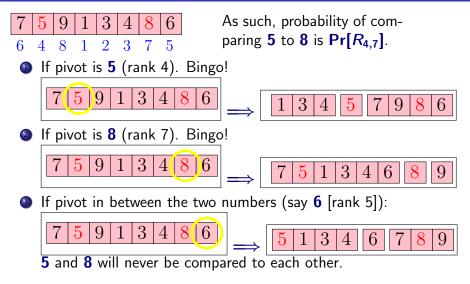
1 3 4 8 6

Decision if to compare 5 to 8 moved to subproblem.

4







Conclusion:

 $R_{i,j}$ happens \iff :

 $\boldsymbol{i} \text{th}$ or $\boldsymbol{j} \text{th}$ ranked element is the first pivot out of the elements of rank

 $i, i+1, i+2, \ldots, j$

How to analyze this? Thinking acrobatics!

- Assign every element in array random priority (say in [0,1]).
- Choose pivot to be element with lowest priority in subproblem.
- Equivalent to picking pivot uniformly at random (as QuickSort do).

Conclusion:

 $R_{i,j}$ happens \iff :

 $\boldsymbol{i} \text{th}$ or $\boldsymbol{j} \text{th}$ ranked element is the first pivot out of the elements of rank

 $i, i+1, i+2, \ldots, j$

How to analyze this? Thinking acrobatics!

- Assign every element in array random priority (say in [0, 1]).
- 2 Choose pivot to be element with lowest priority in subproblem.
- Equivalent to picking pivot uniformly at random (as QuickSort do).

Conclusion:

 $R_{i,j}$ happens \iff :

 $\boldsymbol{i} \text{th}$ or $\boldsymbol{j} \text{th}$ ranked element is the first pivot out of the elements of rank

 $i, i+1, i+2, \ldots, j$

How to analyze this? Thinking acrobatics!

- Assign every element in array random priority (say in [0, 1]).
- 2 Choose pivot to be element with lowest priority in subproblem.
- Equivalent to picking pivot uniformly at random (as QuickSort do).

Conclusion:

 $R_{i,j}$ happens \iff :

 $\boldsymbol{i} \text{th}$ or $\boldsymbol{j} \text{th}$ ranked element is the first pivot out of the elements of rank

 $i, i+1, i+2, \ldots, j$

How to analyze this? Thinking acrobatics!

- Assign every element in array random priority (say in [0, 1]).
- 2 Choose pivot to be element with lowest priority in subproblem.
- Equivalent to picking pivot uniformly at random (as QuickSort do).

- **(1)** Assign every element in array is a random priority (in **[0, 1]**).
- pivot = the element with lowest priority in subproblem.
- 2 ⇒ R_{i,j} happens if either i or j have lowest priority out of elements in rank i...j,
- 3 There are k = j i + 1 relevant elements.

•
$$\Pr\left[R_{i,j}\right] = \frac{2}{k} = \frac{2}{j-i+1}.$$

- **(1)** Assign every element in array is a random priority (in **[0, 1]**).
- pivot = the element with lowest priority in subproblem.
- $\implies R_{i,j} \text{ happens if either } i \text{ or } j \text{ have lowest priority out of elements in rank } i \dots j,$
- **3** There are k = j i + 1 relevant elements.

•
$$\Pr\left[R_{i,j}\right] = \frac{2}{k} = \frac{2}{j-i+1}.$$

- **(**) Assign every element in array is a random priority (in [0, 1]).
- pivot = the element with lowest priority in subproblem.
- $\implies R_{i,j} \text{ happens if either } i \text{ or } j \text{ have lowest priority out of elements in rank } i \dots j,$
- **3** There are k = j i + 1 relevant elements.

•
$$\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{i-i+1}.$$

- **(1)** Assign every element in array is a random priority (in **[0, 1]**).
- pivot = the element with lowest priority in subproblem.
- $\implies R_{i,j} \text{ happens if either } i \text{ or } j \text{ have lowest priority out of elements in rank } i \dots j,$
- **3** There are k = j i + 1 relevant elements.

4
$$\Pr[R_{i,j}] = \frac{2}{k} = \frac{2}{j-i+1}.$$

Question: What is **Pr**[*R*_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof

- $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$: elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- Observation: If pivot is chosen outside S then all of S either in left or right recursive subproblem.
- Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. a_i and a_j will not be compared.

Question: What is Pr[R_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof

- $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$: elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- Observation: If pivot is chosen outside S then all of S either in left or right recursive subproblem.
- Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. a_i and a_j will not be compared.

Question: What is Pr[R_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof

- $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$: elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- Observation: If pivot is chosen outside S then all of S either in left or right recursive subproblem.
- Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. a_i and a_j will not be compared.

Question: What is **Pr**[*R*_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof

• $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$: elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$

- Observation: If pivot is chosen outside S then all of S either in left or right recursive subproblem.
- Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. a_i and a_j will not be compared.

Question: What is **Pr**[*R*_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof

- **a**₁,..., a_i ,..., a_j ,..., a_n : elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- Observation: If pivot is chosen outside S then all of S either in left or right recursive subproblem.
- Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. a_i and a_j will not be compared.

Question: What is Pr[R_{ij}]?

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof

- **a**₁,..., a_i ,..., a_j ,..., a_n : elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- Observation: If pivot is chosen outside S then all of S either in left or right recursive subproblem.
- Observation: a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. a_i and a_j will not be compared.

Continued...

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

- 1 Let $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$ be sort of A.
- **2** Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- Observation: a_i is compared with a_j imes either a_i or a_j is chosen as a pivot from S at separation.
- Observation: Given: Pivot chosen from S. The probability that it is a_i or a_j is exactly
 2/|S| = 2/(j - i + 1) since the pivot is chosen uniformly at random from the array.

Continued...

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

- $Itet a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n te sort of A.$
- **2** Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- **3 Observation:** a_i is compared with $a_j \iff$ either a_i or a_j is chosen as a pivot from S at separation.
- Observation: Given: Pivot chosen from S. The probability that it is a_i or a_j is exactly
 2/|S| = 2/(j - i + 1) since the pivot is chosen uniformly at random from the array.

Continued...

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

- $Itet a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n te sort of A.$
- **2** Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- **3 Observation:** a_i is compared with $a_j \iff$ either a_i or a_j is chosen as a pivot from S at separation.
- Observation: Given: Pivot chosen from S. The probability that it is a; or a; is exactly 2/|S| = 2/(j - i + 1) since the pivot is chosen uniformly at random from the array.

Continued...

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

- $Itet a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n te sort of A.$
- **2** Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- **3 Observation:** a_i is compared with $a_j \iff$ either a_i or a_j is chosen as a pivot from S at separation.
- Observation: Given: Pivot chosen from S. The probability that it is a_i or a_j is exactly 2/|S| = 2/(j - i + 1) since the pivot is chosen uniformly at random from the array.

Continued...

Lemma

$$\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}.$$

Proof.

- $Itet a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n te sort of A.$
- **2** Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- **3 Observation:** a_i is compared with $a_j \iff$ either a_i or a_j is chosen as a pivot from S at separation.
- Observation: Given: Pivot chosen from S. The probability that it is a_i or a_j is exactly 2/|S| = 2/(j - i + 1) since the pivot is chosen uniformly at random from the array.

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \leq i < j \leq n} \mathsf{E}[X_{ij}] = \sum_{1 \leq i < j \leq n} \mathsf{Pr}[R_{ij}].$$

Lemma

$$\mathsf{E}\Big[Q(\mathsf{A})\Big] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1}$$

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \mathsf{Pr}\Big[R_{ij}\Big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$

Lemma

$$\Pr[R_{ij}] = \frac{2}{j-i+1}.$$

$$\mathsf{E}\Big[Q(\mathsf{A})\Big] = \sum_{1 \leq i < j \leq n} \frac{2}{j-i+1}$$

Lemma

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \frac{2}{j-i+1}$$
$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Lemma

$$E[Q(A)] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Lemma

$$E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i$$

Lemma

$$E[Q(A)] = 2 \sum_{i=1}^{n-1} \sum_{i$$

Lemma

$$\mathsf{E}\Big[Q(A)\Big] = 2\sum_{i=1}^{n-1}\sum_{i< j}^{n}\frac{1}{j-i+1} \le 2\sum_{i=1}^{n-1} \sum_{\Delta=2}^{n-i+1}\frac{1}{\Delta}$$

Lemma

$$\mathsf{E}\Big[Q(A)\Big] = 2\sum_{i=1}^{n-1}\sum_{i< j}^{n}\frac{1}{j-i+1} \le 2\sum_{i=1}^{n-1}\sum_{\Delta=2}^{n-i+1}\frac{1}{\Delta} \le 2\sum_{i=1}^{n-1}(H_{n-i+1}-1) \le 2\sum_{1\le i< n}H_n$$

Lemma

$$E[Q(A)] = 2\sum_{i=1}^{n-1}\sum_{i
$$\le 2\sum_{i=1}^{n-1}(H_{n-i+1}-1) \le 2\sum_{1\le i< n}H_n$$
$$\le 2nH_n = O(n\log n)$$$$

Part II

Quick sort with high probability

You should never trust a man who has only one way to spell a word

Consider element e in the array.

 S₁, S₂,..., S_k: subproblems e participates in during QuickSort execution:

3 Definition

- Key observation: The event that *e* is lucky in *j*th iteration...
- ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
- $X_j = 1 \iff e$ is lucky in the *j*th iteration.

You should never trust a man who has only one way to spell a word

- Consider element e in the array.
- S₁, S₂,..., S_k: subproblems *e* participates in during QuickSort execution:

Definition

3

- Key observation: The event that *e* is lucky in *j*th iteration...
- ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
- $X_j = 1 \iff e$ is lucky in the *j*th iteration.

You should never trust a man who has only one way to spell a word

- Consider element e in the array.
- S₁, S₂,..., S_k: subproblems *e* participates in during QuickSort execution:

Definition

- Key observation: The event that e is lucky in jth iteration...
- ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
- $X_j = 1 \iff e$ is lucky in the *j*th iteration.

You should never trust a man who has only one way to spell a word

- Consider element e in the array.
- S₁, S₂,..., S_k: subproblems *e* participates in during QuickSort execution:

Definition

- **Wey observation**: The event that **e** is lucky in **j**th iteration...
- ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
- $X_j = 1 \iff e$ is lucky in the *j*th iteration.

You should never trust a man who has only one way to spell a word

- Consider element e in the array.
- S₁, S₂,..., S_k: subproblems *e* participates in during QuickSort execution:

Definition

- **Wey observation**: The event that *e* is lucky in *j*th iteration...
- ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
- $X_j = 1 \iff e$ is lucky in the *j*th iteration.

You should never trust a man who has only one way to spell a word

- Consider element e in the array.
- S₁, S₂,..., S_k: subproblems *e* participates in during QuickSort execution:

Definition

- **Wey observation**: The event that **e** is lucky in **j**th iteration...
- ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
- $X_j = 1 \iff e$ is lucky in the *j*th iteration.

Claim

$\Pr[X_j = 1] = 1/2.$

Proof.

- **1** X_j determined by j recursive subproblem.
- 2 Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- (1) jth pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e$ lucky in jth iter.
- Prob. e is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]|/n_{j-1} = 1/2.$

Observation

If $X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil$ then *e* subproblem is of size one. Done!

Claim

$\Pr[X_j = 1] = 1/2.$

Proof.

- **(1)** X_j determined by j recursive subproblem.
- ² Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- (1) *j*th pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e$ lucky in *j*th iter.
- Prob. e is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]|/n_{j-1} = 1/2.$

Observation

If $X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil$ then *e* subproblem is of size one. Done!

Claim

$$\Pr[X_j = 1] = 1/2.$$

Proof.

- **(1)** X_j determined by j recursive subproblem.
- **2** Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- jth pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e$ lucky in jth iter.
- Prob. *e* is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]|/n_{j-1} = 1/2$.

Observation

If $X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil$ then *e* subproblem is of size one. Done!

Claim

$$\Pr[X_j = 1] = 1/2.$$

Proof.

- **(1)** X_j determined by j recursive subproblem.
- **2** Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- 3 jth pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e$ lucky in jth iter.
- Prob. *e* is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]|/n_{j-1} = 1/2$.

Observation

If $X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil$ then *e* subproblem is of size one. Done!

Claim

$$\Pr[X_j = 1] = 1/2.$$

Proof.

- **(1)** X_j determined by j recursive subproblem.
- **2** Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- 3 *j*th pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e$ lucky in *j*th iter.
- Prob. *e* is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]| / n_{j-1} = 1/2.$

Observation

If $X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil$ then *e* subproblem is of size one. Done!

Claim

$$\Pr[X_j = 1] = 1/2.$$

Proof.

- **(1)** X_j determined by j recursive subproblem.
- **2** Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- 3 *j*th pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e$ lucky in *j*th iter.
- **④** Prob. *e* is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]|/n_{j-1} = 1/2$.

Observation

If $X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil$ then *e* subproblem is of size one. Done!

Claim

$$\Pr[X_j = 1] = 1/2.$$

Proof.

- **(1)** X_j determined by j recursive subproblem.
- **2** Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- 3 *j*th pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e$ lucky in *j*th iter.
- **④** Prob. e is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]|/n_{j-1} = 1/2$.

Observation

If $X_1 + X_2 + \ldots X_k = \lceil \log_{4/3} n \rceil$ then *e* subproblem is of size one. Done!

Observation

Probability e participates in $\geq k = 40 \lceil \log_{4/3} n \rceil$ subproblems. Is equal to

$$\Pr\left[X_1 + X_2 + \ldots + X_k \le \lceil \log_{4/3} n \rceil\right]$$

$$\le \Pr[X_1 + X_2 + \ldots + X_k \le k/4]$$

$$\le 2 \cdot 0.68^{k/4} \le 1/n^5.$$

Conclusion

QuickSort takes $O(n \log n)$ time with high probability.

Theorem

Let X_n be the number heads when flipping a coin independently n times. Then

$$\Pr\left[X_n \leq \frac{n}{4}\right] \leq 2 \cdot 0.68^{n/4} \text{ and } \Pr\left[X_n \geq \frac{3n}{4}\right] \leq 2 \cdot 0.68^{n/4}$$

Part III

Randomized selection

Input Unsorted array **A** of **n** integers Goal Find the **j**th smallest number in **A** (*rank* **j** number)

Randomized Quick Selection

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- ③ Return pivot if rank of pivot is j.
- Otherwise recurse on one of the arrays depending on j and their sizes.

Algorithm for Randomized Selection

Assume for simplicity that **A** has distinct elements.

```
 \begin{array}{l} \textbf{QuickSelect}(\textbf{A}, \textbf{j}): \\ \text{Pick pivot } \textbf{x} \text{ uniformly at random from } \textbf{A} \\ \text{Partition } \textbf{A} \text{ into } \textbf{A}_{\text{less}}, \textbf{x}, \text{ and } \textbf{A}_{\text{greater}} \text{ using } \textbf{x} \text{ as pivot} \\ \text{if } (|\textbf{A}_{\text{less}}| = \textbf{j} - 1) \text{ then} \\ \text{return } \textbf{x} \\ \text{if } (|\textbf{A}_{\text{less}}| \geq \textbf{j}) \text{ then} \\ \text{return QuickSelect}(\textbf{A}_{\text{less}}, \textbf{j}) \\ \text{else} \\ \text{return QuickSelect}(\textbf{A}_{\text{greater}}, \textbf{j} - |\textbf{A}_{\text{less}}| - 1) \end{array}
```

- S₁, S₂,..., S_k be the subproblems considered by the algorithm. Here |S₁| = n.
- **2** S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$
- 3 Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- n_i = size of the subproblem immediately after the (i 1)th successful iteration.
- Y_i = number of recursive calls after the (i 1)th successful call, till the *i*th successful iteration.
- Running time is $O(\sum_i n_i Y_i)$.

- S₁, S₂,..., S_k be the subproblems considered by the algorithm. Here |S₁| = n.
- **2** S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$
- 3 Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- n_i = size of the subproblem immediately after the (i 1)th successful iteration.
- Y_i = number of recursive calls after the (i 1)th successful call, till the *i*th successful iteration.
- Running time is $O(\sum_i n_i Y_i)$.

- S₁, S₂,..., S_k be the subproblems considered by the algorithm. Here |S₁| = n.
- **2** S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$
- 3 Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- n_i = size of the subproblem immediately after the (i 1)th successful iteration.
- Y_i = number of recursive calls after the (i 1)th successful call, till the *i*th successful iteration.
- Running time is $O(\sum_i n_i Y_i)$.

19

- S₁, S₂,..., S_k be the subproblems considered by the algorithm. Here |S₁| = n.
- **2** S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$
- 3 Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- n_i = size of the subproblem immediately after the (i 1)th successful iteration.
- Y_i = number of recursive calls after the (i 1)th successful call, till the *i*th successful iteration.
- Running time is $O(\sum_i n_i Y_i)$.

- S₁, S₂,..., S_k be the subproblems considered by the algorithm. Here |S₁| = n.
- **2** S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$
- 3 Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- n_i = size of the subproblem immediately after the (i 1)th successful iteration.
- Y_i = number of recursive calls after the (i 1)th successful call, till the *i*th successful iteration.
- Running time is $O(\sum_i n_i Y_i)$.

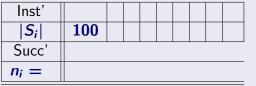
- S₁, S₂,..., S_k be the subproblems considered by the algorithm. Here |S₁| = n.
- **2** S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$
- 3 Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- n_i = size of the subproblem immediately after the (i 1)th successful iteration.
- Y_i = number of recursive calls after the (i 1)th successful call, till the *i*th successful iteration.
- **(a)** Running time is $O(\sum_i n_i Y_i)$.

Example

 S_i = subarray used in *i*th recursive call

 $|S_i| =$ size of this subarray

Red indicates successful iteration.



Example

 S_i = subarray used in *i*th recursive call

 $|S_i| =$ size of this subarray

Inst'	S ₁					
$ S_i $	100	70				
Succ'						
$n_i =$						

Example

 S_i = subarray used in *i*th recursive call

 $|S_i| =$ size of this subarray

Inst'	S ₁	<i>S</i> ₂				
$ S_i $	100	70	60			
Succ'						
$n_i =$						

Example

 S_i = subarray used in *i*th recursive call

 $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂				
$ S_i $	100	70	60			
Succ'	Y ₁	= 2				
$n_i =$	$n_1 =$	100				

Example

 S_i = subarray used in *i*th recursive call

 $|S_i| =$ size of this subarray

Inst'	<i>S</i> ₁	S_2	<i>S</i> ₃				
$ S_i $	100	70	60	50			
Succ'	Y ₁	= 2					
$n_i =$	$n_1 =$	100					

Example

 S_i = subarray used in *i*th recursive call

 $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	<i>S</i> ₃	<i>S</i> ₄			
$ S_i $	100	70	60	50	40		
Succ'	Y ₁	= 2					
$n_i =$	$n_1 =$	100					

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	S ₃	<i>S</i> ₄	S_5		
$ S_i $	100	70	60	50	40	30	
Succ'	Y ₁	= 2					
$n_i =$	$n_1 =$	100					

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	S ₃	<i>S</i> ₄	S_5	<i>S</i> ₆			
$ S_i $	100	70	60	50	40	30	25		
Succ'	Y ₁	= 2						·	
$n_i =$	$n_1 =$	100							

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	S ₃	<i>S</i> ₄	<i>S</i> ₅	S 6		
$ S_i $	100	70	60	50	40	30	25	
Succ'	Y ₁	= 2						
$n_i =$	$n_1 =$	100		$n_2 =$	60			

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	S ₃	<i>S</i> ₄	<i>S</i> ₅	S 6	<i>S</i> ₇		
$ S_i $	100	70	60	50	40	30	25	5	
Succ'	Y ₁	= 2		Y ₂	= 4				
$n_i =$	$n_1 =$	100		$n_2 =$	60				

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	S ₃	<i>S</i> ₄	<i>S</i> ₅	S_6	<i>S</i> ₇	<i>S</i> ₈	
$ S_i $	100	70	60	50	40	30	25	5	2
Succ'	Y ₁	= 2		Y ₂	= 4				
$n_i =$	$n_1 =$: 100		$n_2 =$	60				

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	S ₃	<i>S</i> ₄	<i>S</i> ₅	S 6	<i>S</i> ₇	8	
$ S_i $	100	70	60	50	40	30	25	5	2
Succ'	Y ₁	= 2		Y ₂	= 4		Y ₃	= 2	
$n_i =$	$n_1 =$	100		<i>n</i> ₂ =	= 60		<i>n</i> ₃ =	= 25	

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	S ₃	<i>S</i> ₄	<i>S</i> ₅	S 6	<i>S</i> ₇	S 8	<i>S</i> ₉	
$ S_i $	100	70	60	50	40	30	25	5	2	
Succ'	Y ₁	= 2		Y ₂	$Y_2 = 4$			= 2		
$n_i =$	$n_1 =$	100		$n_2 = 60$				= 25		_

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	S ₃	<i>S</i> ₄	<i>S</i> ₅	S 6	<i>S</i> ₇	S ₈	S_9
$ S_i $	100	70	60	50	40	30	25	5	2
Succ'	Y ₁	= 2	$Y_2 = 4$				$Y_3 = 2$		$Y_4 = 1$
$n_i =$	$n_1 =$	100	$n_2 = 60$				<i>n</i> ₃ =	= 25	$n_4 = 2$

Example

 $|S_i| =$ size of this subarray

Red indicates successful iteration.

Inst'	S ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄	<i>S</i> ₅	S 6	<i>S</i> ₇	S 8	S_9
$ S_i $	100	70	60	50	40	30	25	5	2
Succ'	Y ₁	= 2	$Y_2 = 4$				$Y_3 = 2$		$Y_4 = 1$
$n_i =$	$n_1 =$	100	$n_2 = 60$				$n_3 = 25$		$n_4 = 2$

• All the subproblems after (i - 1)th successful iteration till *i*th successful iteration have size $\leq n_i$.

Example

$S_i =$	subarray	used	in	i th	recursive call	
---------	----------	------	----	-------------	----------------	--

 $|S_i| =$ size of this subarray

Inst'	S ₁	S ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅	S 6	<i>S</i> ₇	S 8	<i>S</i> ₉
$ S_i $	100	70	60	50	40	30	25	5	2
Succ'	Y ₁	= 2	$Y_2 = 4$				$Y_3 = 2$		$Y_4 = 1$
$n_i =$	$n_1 =$	100	$n_2 = 60$				$n_3 = 25$		$n_4 = 2$

- All the subproblems after (i 1)th successful iteration till *i*th successful iteration have size $\leq n_i$.
- **2** Total work: $O(\sum_i n_i Y_i)$.

- **1** Total work: $O(\sum_i n_i Y_i)$.
- 2 $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- 3 Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- $E[Y_i] = 2.$
- 5 As such, expected work is proportional to

$$\mathbf{E}\left[\sum_{i}n_{i}Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- 3 Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- $\bullet \ \mathsf{E}[Y_i] = 2.$
- S As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i}n_{i}Y_{i}\right]$$

- 1) Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- 3 Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- $E[Y_i] = 2.$
- S As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i}n_{i}Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- $\bullet \ \mathsf{E}[Y_i] = 2.$
- 5 As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i}n_{i}Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- 5 As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i}n_{i}Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- S As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i}n_{i}Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- S As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i}n_{i}Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.

S As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i} n_{i} Y_{i}\right] = \sum_{i} \mathsf{E}\left[n_{i} Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- 6 As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i} n_{i} Y_{i}\right] = \sum_{i} \mathsf{E}\left[n_{i} Y_{i}\right] \leq \sum_{i} \mathsf{E}\left[(3/4)^{i-1} n Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i} n_{i} Y_{i}\right] = \sum_{i} \mathsf{E}\left[n_{i} Y_{i}\right] \leq \sum_{i} \mathsf{E}\left[(3/4)^{i-1} n Y_{i}\right]$$
$$= n \sum_{i} (3/4)^{i-1} \mathsf{E}\left[Y_{i}\right]$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i} n_{i} Y_{i}\right] = \sum_{i} \mathsf{E}\left[n_{i} Y_{i}\right] \leq \sum_{i} \mathsf{E}\left[(3/4)^{i-1} n Y_{i}\right]$$
$$= n \sum_{i} (3/4)^{i-1} \mathsf{E}\left[Y_{i}\right] = n \sum_{i=1} (3/4)^{i-1} 2$$

- **1** Total work: $O(\sum_i n_i Y_i)$.
- **2** $n_i \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n_i$
- (a) Y_i is a random variable with geometric distribution Probability of $Y_i = k$ is $1/2^i$.
- As such, expected work is proportional to

$$\mathsf{E}\left[\sum_{i} n_{i} Y_{i}\right] = \sum_{i} \mathsf{E}\left[n_{i} Y_{i}\right] \leq \sum_{i} \mathsf{E}\left[(3/4)^{i-1} n Y_{i}\right]$$
$$= n \sum_{i} (3/4)^{i-1} \mathsf{E}\left[Y_{i}\right] = n \sum_{i=1} (3/4)^{i-1} 2 \leq 8n.$$

Theorem

The expected running time of QuickSelect is O(n).

QuickSelect analysis via recurrence

Analysis via Recurrence

- Given array A of size n let Q(A) be number of comparisons of randomized selection on A for selecting rank j element.
- **2** Note that Q(A) is a random variable
- 3 Let Aⁱ_{less} and Aⁱ_{greater} be the left and right arrays obtained if pivot is rank *i* element of *A*.
- Algorithm recurses on A_{less}^i if j < i and recurses on $A_{greater}^i$ if j > i and terminates if j = i.

$$Q(A) = n + \sum_{i=1}^{j-1} \Pr[\text{pivot has rank } i] Q(A_{\text{greater}}^{i}) + \sum_{i=j+1}^{n} \Pr[\text{pivot has rank } i] Q(A_{\text{less}}^{i})$$

QuickSelect analysis via recurrence

Analysis via Recurrence

- Given array A of size n let Q(A) be number of comparisons of randomized selection on A for selecting rank j element.
- **2** Note that Q(A) is a random variable
- 3 Let Aⁱ_{less} and Aⁱ_{greater} be the left and right arrays obtained if pivot is rank *i* element of *A*.
- Algorithm recurses on A_{less}^i if j < i and recurses on $A_{greater}^i$ if j > i and terminates if j = i.

$$Q(A) = n + \sum_{i=1}^{j-1} \Pr[\text{pivot has rank } i] Q(A_{\text{greater}}^{i}) + \sum_{i=j+1}^{n} \Pr[\text{pivot has rank } i] Q(A_{\text{less}}^{i})$$

Analyzing the Recurrence

As in **QuickSort** we obtain the following recurrence where T(n) is the worst-case expected time.

$$T(n) \leq n + \frac{1}{n} (\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j}^{n} T(i-1)).$$

T(n) = O(n).

Proof.

(Guess and) Verify by induction (see next slide).

24

Analyzing the recurrence

Theorem

T(n) = O(n).

Prove by induction that $T(n) \leq \alpha n$ for some constant $\alpha \geq 1$ to be fixed later.

Base case: n = 1, we have T(1) = 0 since no comparisons needed and hence $T(1) \le \alpha$.

Induction step: Assume $T(k) \le \alpha k$ for $1 \le k < n$ and prove it for T(n). We have by the recurrence:

$$T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j^n} T(i-1) \right)$$

$$\leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^{n} (i-1) \right) \text{ by applying induction}$$

Sariel (UUC) OLD CS473 25 Spring 2015 25/25

Analyzing the recurrence

$$T(n) \leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^{n} (i-1) \right)$$

$$\leq n + \frac{\alpha}{n} \left((j-1)(2n-j)/2 + (n-j+1)(n+j-2)/2 \right)$$

$$\leq n + \frac{\alpha}{2n} (n^2 + 2nj - 2j^2 - 3n + 4j - 2)$$

above expression maximized when $j = (n+1)/2$: calculus
$$\leq n + \frac{\alpha}{2n} (3n^2/2 - n) \text{ substituting } (n+1)/2 \text{ for } j$$

$$\leq n + 3\alpha n/4$$

$$\leq \alpha n \text{ for any constant } \alpha \geq 4$$

Comments on analyzing the recurrence

- Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug j = n/2 to simplify without calculus
- Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don't understand things. You just get used to them.