Randomized Algorithms: QuickSort and QuickSelect

Lecture 15
March 12, 2015

A Slick Analysis of QuickSort

(1) Let $Q(A)$ be number of comparisons done on input array \boldsymbol{A} :
(1) $\boldsymbol{R}_{i j}$: event that rank \boldsymbol{i} element is compared with rank \boldsymbol{j} element, for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$.
(c) $X_{i j}$ is the indicator random variable for $\boldsymbol{R}_{i j}$. That is, $\boldsymbol{X}_{i j}=\mathbf{1}$ if rank \boldsymbol{i} is compared with rank \boldsymbol{j} element, otherwise $\mathbf{0}$.
(2) $Q(A)=\sum_{1 \leq i<j \leq n} X_{i j}$.
(3) By linearity of expectation,

$$
\begin{gathered}
\mathrm{E}[Q(A)]=\mathrm{E}\left[\sum_{1 \leq i<j \leq n} x_{i j}\right]=\sum_{1 \leq i<j \leq n} \mathrm{E}\left[X_{i j}\right] \\
=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right] .
\end{gathered}
$$

Part I

Slick analysis of QuickSort

A Slick Analysis of QuickSort

$$
R_{i j}=\text { rank } i \text { element is compared with rank } j \text { element. }
$$

Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?

As such, probability of comparing 5 to $\mathbf{8}$ is $\operatorname{Pr}\left[R_{4,7}\right]$.
(1) If pivot too small (say $\mathbf{3}$ [rank 2]). Partition and call recursively:

| 7 | 5 | 9 | 1 | 3 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\Longrightarrow| 1 | 3 | 7 | 5 | 9 | 4 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Decision if to compare $\mathbf{5}$ to $\mathbf{8}$ is moved to subproblem.
(2) If pivot too large (say 9 [rank 8]):

$$
\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & 8 & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 5 & 1 & 3 & 4 & 8 & 6 & 9 \\
\hline
\end{array}
$$

[^0]
A Slick Analvsis of QuickSort

paring 5 to $\mathbf{8}$ is $\operatorname{Pr}\left[R_{4,7}\right]$.

- If pivot is 5 (rank 4). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & \hline 5 & 9 & 1 & 3 & 4 & 8 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 & 5 & 7 & 9 & 8 \\
\hline
\end{array}
$$

- If pivot is $\mathbf{8}$ (rank 7). Bingo!

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 7 & 5 & 9 & 1 & 3 & 4 & \\
\hline & 6 \\
\hline
\end{array} \Longrightarrow \begin{array}{|l|l|l|l|l|l|l|l|}
\hline 7 & 5 & 1 & 3 & 4 & 6 & 8 & 9 \\
\hline
\end{array}
$$

- If pivot in between the two numbers (say 6 [rank 5]):

5 and $\mathbf{8}$ will never be compared to each other.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right]$?
(1) Choosing a pivot using priorities

- Assign every element in array is a random priority (in $[0,1]$).
(3) pivot $=$ the element with lowest priority in subproblem.
(2) $\Longrightarrow R_{i, j}$ happens if either i or j have lowest priority out of elements in rank $\boldsymbol{i} \ldots \boldsymbol{j}$,
(3) There are $k=j-i+1$ relevant elements.
($\operatorname{Pr}\left[R_{i, j}\right]=\frac{2}{k}=\frac{2}{j-i+1}$.

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[\mathrm{R}_{\mathrm{i}, \mathrm{j}}\right.$?

Conclusion:

$R_{i, j}$ happens \Longleftrightarrow :
i th or j th ranked element is the first pivot out of the elements of rank
$i, i+1, i+2, \ldots, j$

How to analyze this? Thinking acrobatics!

(1) Assign every element in array random priority (say in $[0,1]$).
(2) Choose pivot to be element with lowest priority in subproblem.
(3) Equivalent to picking pivot uniformly at random (as QuickSort do).

A Slick Analysis of QuickSort

Question: What is $\operatorname{Pr}\left[R_{i j}\right]$?

Lemma

$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

Proof

(1) $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$: elements of \boldsymbol{A} in sorted order. Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
(2) Observation: If pivot is chosen outside S then all of S either in left or right recursive subproblem.
(0) Observation: a_{i} and a_{j} separated when a pivot is chosen from S for the first time. Once separated never to meet again. \Longrightarrow a_{i} and a_{j} will not be compared.

A Slick Analysis of QuickSort

Lemma

$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

Proof.

(1) Let $a_{1}, \ldots, a_{i}, \ldots, a_{j}, \ldots, a_{n}$ be sort of \boldsymbol{A}.
(2) Let $S=\left\{a_{i}, a_{i+1}, \ldots, a_{j}\right\}$
(3) Observation: a_{i} is compared with $a_{j} \Longleftrightarrow$ either a_{i} or a_{j} is chosen as a pivot from S at separation.
(1) Observation: Given: Pivot chosen from S.

The probability that it is a_{i} or a_{j} is exactly
$2 /|S|=2 /(j-i+1)$ since the pivot is chosen uniformly at

$$
=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}
$$ random from the array.

$$
\leq 2 \sum_{i=1}^{n-1}\left(H_{n-i+1}-1\right) \leq 2 \sum_{1 \leq i<n} H_{n}
$$

A Slick Analysis of QuickSort

$$
\mathrm{E}[Q(A)]=\sum_{1 \leq i<j \leq n} \mathrm{E}\left[X_{i j}\right]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]
$$

Lemma

$\operatorname{Pr}\left[R_{i j}\right]=\frac{2}{j-i+1}$.

$$
E[Q(A)]=\sum_{1 \leq i<j \leq n} \operatorname{Pr}\left[R_{i j}\right]=\sum_{1 \leq i<j \leq n} \frac{2}{j-i+1}
$$

Yet another analysis of QuickSort

(3) Consider element \boldsymbol{e} in the array.
(2) $S_{1}, S_{2}, \ldots, S_{k}$: subproblems e participates in during QuickSort execution:
Quick sort with high probability

- Definition
e is lucky in the j th iteration if $\left|S_{j}\right| \leq(3 / 4)\left|S_{j-1}\right|$.
(0) Key observation: The event that e is lucky in j th iteration...
(0... is independent of the event that e is lucky in k th iteration, (If $j \neq k$)
($X_{j}=\mathbf{1} \Longleftrightarrow e$ is lucky in the j th iteration.

Yet another analysis of QuickSort

Claim

$\operatorname{Pr}\left[X_{j}=1\right]=1 / 2$.

Proof.

(1) X_{j} determined by j recursive subproblem.
(2) Subproblem has $n_{j-1}=\left|X_{j-1}\right|$ elements.
(3) j th pivot rank $\in\left[n_{j-1} / 4,(3 / 4) n_{j-1}\right] \Longrightarrow e$ lucky in j th iter.
(1) Prob. e is lucky $\geq\left|\left[n_{j-1} / 4,(3 / 4) n_{j-1}\right]\right| / n_{j-1}=1 / 2$.

Observation

If $X_{1}+X_{2}+\ldots X_{k}=\left\lceil\log _{4 / 3} n\right\rceil$ then e subproblem is of size one. Done!

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{1}+X_{2}+\ldots+X_{k} \leq\left\lceil\log _{4 / 3} n\right\rceil\right] \\
& \quad \leq \operatorname{Pr}\left[X_{1}+X_{2}+\ldots+X_{k} \leq k / 4\right] \\
& \quad \leq 2 \cdot 0.68^{k / 4} \leq 1 / n^{5} .
\end{aligned}
$$

Conclusion

QuickSort takes $O(n \log n)$ time with high probability.

Algorithm for Randomized Selection

Assume for simplicity that \boldsymbol{A} has distinct elements.
QuickSelect ($\boldsymbol{A}, \boldsymbol{j})$:
Pick pivot \boldsymbol{x} uniformly at random from \boldsymbol{A}
Partition \boldsymbol{A} into $\boldsymbol{A}_{\text {less }}, \boldsymbol{x}$, and $\boldsymbol{A}_{\text {greater }}$ using \boldsymbol{x} as pivot
if $\left(\left|A_{\text {less }}\right|=j-1\right)$ then

return x

if $\left(\left|A_{\text {less }}\right| \geq \boldsymbol{j}\right)$ then
return QuickSelect $\left(\boldsymbol{A}_{\text {less }}, \boldsymbol{j}\right)$
else
return QuickSelect ($\boldsymbol{A}_{\text {greater }}, j-\left|\boldsymbol{A}_{\text {less }}\right|-1$)

QuickSelect analysis

(1) $S_{1}, S_{2}, \ldots, S_{k}$ be the subproblems considered by the algorithm. Here $\left|S_{1}\right|=n$.
(2) S_{i} would be successful if $\left|S_{i}\right| \leq(3 / 4)\left|S_{i-1}\right|$
(3) $Y_{1}=$ number of recursive calls till first successful iteration. Clearly, total work till this happens is $O\left(Y_{1} n\right)$.
(1) $\boldsymbol{n}_{\boldsymbol{i}}=$ size of the subproblem immediately after the $(\boldsymbol{i}-\mathbf{1})$ th successful iteration.
(-) $\boldsymbol{Y}_{\boldsymbol{i}}=$ number of recursive calls after the $(\boldsymbol{i} \mathbf{- 1})$ th successful call, till the i th successful iteration.
(c) Running time is $O\left(\sum_{i} n_{i} Y_{i}\right)$.

QuickSelect analysis

(1) Total work: $O\left(\sum_{i} n_{i} Y_{i}\right)$.
(3) $n_{i} \leq(3 / 4) n_{i-1} \leq(3 / 4)^{i-1} n$.
(0) Y_{i} is a random variable with geometric distribution

Probability of $Y_{i}=k$ is $\mathbf{1 / 2} \mathbf{2}^{\boldsymbol{i}}$.
(- $\mathrm{E}\left[Y_{i}\right]=2$.
(0) As such, expected work is proportional to

$$
\begin{aligned}
& \mathrm{E}\left[\sum_{i} n_{i} Y_{i}\right]=\sum_{i} \mathrm{E}\left[n_{i} Y_{i}\right] \leq \sum_{i} \mathrm{E}\left[(3 / 4)^{i-1} n Y_{i}\right] \\
& =n \sum_{i}(3 / 4)^{i-1} \mathrm{E}\left[Y_{i}\right]=n \sum_{i=1}(3 / 4)^{i-1} 2 \leq 8 n
\end{aligned}
$$

QuickSelect analysis

Example

$S_{i}=$ subarray used in i th recursive call
$\left|S_{i}\right|=$ size of this subarray
Red indicates successful iteration.

Inst'	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}
$\left\|S_{i}\right\|$	100	70	60	50	40	30	25	5	2
Succ'	$Y_{1}=2$		$Y_{2}=4$				$Y_{3}=2$		$Y_{4}=1$
$n_{i}=$	$n_{1}=100$		$\mathrm{n}_{2}=60$				$n_{3}=25$		$n_{4}=2$

(1) All the subproblems after $(\boldsymbol{i}-\mathbf{1})$ th successful iteration till i th successful iteration have size $\leq \boldsymbol{n}_{\boldsymbol{i}}$.
(2) Total work: $O\left(\sum_{i} n_{i} Y_{i}\right)$.

QuickSelect analysis

Theorem

The expected running time of QuickSelect is $O(n)$.

QuickSelect analysis via recurrence

(1) Given array \boldsymbol{A} of size \boldsymbol{n} let $\boldsymbol{Q}(\boldsymbol{A})$ be number of comparisons of randomized selection on \boldsymbol{A} for selecting rank \boldsymbol{j} element.
(2) Note that $Q(A)$ is a random variable
(3) Let $\boldsymbol{A}_{\text {less }}^{i}$ and $\boldsymbol{A}_{\text {greater }}^{i}$ be the left and right arrays obtained if pivot is rank \boldsymbol{i} element of \boldsymbol{A}.

- Algorithm recurses on $\boldsymbol{A}_{\text {less }}^{i}$ if $\boldsymbol{j}<\boldsymbol{i}$ and recurses on $\boldsymbol{A}_{\text {greater }}^{i}$ if $j>i$ and terminates if $j=\boldsymbol{i}$.

$$
\begin{aligned}
Q(A)=n & +\sum_{i=1}^{j-1} \operatorname{Pr}[\text { pivot has rank } i] Q\left(A_{\text {greater }}^{i}\right) \\
& +\sum_{i=j+1}^{n} \operatorname{Pr}[\text { pivot has rank } i] Q\left(A_{\text {less }}^{i}\right)
\end{aligned}
$$

Analyzing the recurrence

$$
\begin{aligned}
T(n) \leq & n+\frac{\alpha}{n}\left(\sum_{i=1}^{j-1}(n-i)+\sum_{i=j}^{n}(i-1)\right) \\
\leq & n+\frac{\alpha}{n}((j-1)(2 n-j) / 2+(n-j+1)(n+j-2) / 2) \\
\leq & n+\frac{\alpha}{2 n}\left(n^{2}+2 n j-2 j^{2}-3 n+4 j-2\right) \\
& \text { above expression maximized when } j=(n+1) / 2: \text { calculus } \\
\leq & n+\frac{\alpha}{2 n}\left(3 n^{2} / 2-n\right) \quad \text { substituting }(n+1) / 2 \text { for } j \\
\leq & n+3 \alpha n / 4 \\
\leq & \alpha n \text { for any constant } \alpha \geq 4
\end{aligned}
$$

Comments on analyzing the recurrence

(1) Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug $j=n / 2$ to simplify without calculus
(2) Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don't understand things. You just get used to them.

[^0]: Decision if to compare 5 to $\mathbf{8}$ moved to subproblem.

