OLD CS 473: Fundamental Algorithms, Spring 2015

Randomized Algorithms: QuickSort and QuickSelect

Lecture 15 March 12, 2015

March 12, 2015				
Sariel (UIUC)	OLD CS473	1	Spring 2015	1 / 36

- Let Q(A) be number of comparisons done on input array A:
 - R_{ij} : event that rank i element is compared with rank j element, for $1 \le i < j \le n$.
 - **2** X_{ij} is the indicator random variable for R_{ij} . That is, $X_{ij} = 1$ if rank *i* is compared with rank *j* element, otherwise **0**.
- $Q(A) = \sum_{1 \le i < j \le n} X_{ij}.$
- By linearity of expectation,

$$\mathsf{E}\Big[Q(\mathsf{A})\Big] = \mathsf{E}\left[\sum_{1 \leq i < j \leq n} X_{ij}\right] = \sum_{1 \leq i < j \leq n} \mathsf{E}\Big[X_{ij}\Big]$$

$$= \sum_{1 \le i < j \le n} \Pr\left[R_{ij}\right].$$

OLD CS47

Part I Slick analysis of QuickSort

<section-header><section-header><section-header><text><section-header><text><text><text><list-item><equation-block>

A Slick Analysis of **QuickSort**

Question: What is **Pr**[*R*_{*ij*}]?

 $\Pr\left[R_{ij}\right] = \frac{2}{j-i+1}$

Proof

- $a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n$: elements of A in sorted order. Let $S = \{a_i, a_{i+1}, \ldots, a_j\}$
- Observation: If pivot is chosen outside S then all of S either in left or right recursive subproblem.
- **Observation:** a_i and a_j separated when a pivot is chosen from S for the first time. Once separated never to meet again. \implies a_i and a_j will not be compared.

OLD CS47

OLD CS473

A Slick Analysis of **QuickSort**

$$\mathsf{E}\Big[Q(A)\Big] = \sum_{1 \le i < j \le n} \mathsf{E}[X_{ij}] = \sum_{1 \le i < j \le n} \mathsf{Pr}[R_{ij}].$$

Yet another analysis of QuickSort

You should never trust a man who has only one way to spell a word

- Consider element e in the array.
- S₁, S₂,..., S_k: subproblems *e* participates in during
 QuickSort execution:

³ Definition

e is lucky in the jth iteration if $|S_j| \leq (3/4) |S_{j-1}|$.

OLD CS47

- **6** Key observation: The event that *e* is lucky in *j*th iteration...
- ... is independent of the event that e is lucky in kth iteration, (If $j \neq k$)
- $X_j = 1 \iff e$ is lucky in the *j*th iteration.

Yet another analysis of QuickSort Continued...

Claim

 $\Pr[X_j = 1] = 1/2.$

Proof.

- X_j determined by j recursive subproblem.
- **2** Subproblem has $n_{j-1} = |X_{j-1}|$ elements.
- ③ *j*th pivot rank $\in [n_{j-1}/4, (3/4)n_{j-1}] \implies e$ lucky in *j*th iter.
- Prob. e is lucky $\geq |[n_{j-1}/4, (3/4)n_{j-1}]| / n_{j-1} = 1/2$.

Observation

Sariel (UIUC

If $X_1 + X_2 + \dots + X_k = \lceil \log_{4/3} n \rceil$ then *e* subproblem is of size one. Done!

Randomized Quick Selection

Input Unsorted array **A** of **n** integers

Goal Find the *j*th smallest number in *A* (*rank j* number)

Randomized Quick Selection

- Pick a pivot element uniformly at random from the array
- Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
- 3 Return pivot if rank of pivot is j.
- Otherwise recurse on one of the arrays depending on j and their sizes.

Yet another analysis of QuickSort Continued...

Observation

Probability e participates in $\geq k = 40 \lceil \log_{4/3} n \rceil$ subproblems. Is equal to

$$\Pr\left[X_1 + X_2 + \ldots + X_k \le \lceil \log_{4/3} n \rceil\right]$$

$$\le \Pr[X_1 + X_2 + \ldots + X_k \le k/4]$$

$$\le 2 \cdot 0.68^{k/4} \le 1/n^5.$$

 Conclusion

 QuickSort takes $O(n \log n)$ time with high probability.

 Sariel (UIUC)
 OLD CS473
 14
 Spring 2015
 14 / 36

Algorithm for Randomized Selection

Assume for simplicity that A has distinct elements.

QuickSelect(**A**, **j**):

Pick pivot x uniformly at random from A Partition A into A_{less} , x, and $A_{greater}$ using x as pivot if $(|A_{less}| = j - 1)$ then return x if $(|A_{less}| \ge j)$ then return QuickSelect (A_{less}, j) else return QuickSelect $(A_{greater}, j - |A_{less}| - 1)$

Spring 2015

OLD CS473

QuickSelect analysis

- S_1, S_2, \ldots, S_k be the subproblems considered by the algorithm. Here $|S_1| = n$.
- **2** S_i would be **successful** if $|S_i| \leq (3/4) |S_{i-1}|$
- Y_1 = number of recursive calls till first successful iteration. Clearly, total work till this happens is $O(Y_1n)$.
- n_i = size of the subproblem immediately after the (i 1)th successful iteration.
- Y_i = number of recursive calls after the (i 1)th successful call, till the *i*th successful iteration.

OLD CS473

• Running time is $O(\sum_i n_i Y_i)$.

QuickSelect analysis • Total work: $O(\sum_{i} n_{i} Y_{i})$. • $n_{i} \leq (3/4)n_{i-1} \leq (3/4)^{i-1}n$. • Y_{i} is a random variable with geometric distribution Probability of $Y_{i} = k$ is $1/2^{i}$. • $E[Y_{i}] = 2$. • As such, expected work is proportional to $E\left[\sum_{i} n_{i} Y_{i}\right] = \sum_{i} E\left[n_{i} Y_{i}\right] \leq \sum_{i} E\left[(3/4)^{i-1}nY_{i}\right]$ $= n \sum_{i} (3/4)^{i-1} E\left[Y_{i}\right] = n \sum_{i=1} (3/4)^{i-1} 2 \leq 8n.$

OLD CS473

QuickSelect analysis

Example

- S_i = subarray used in *i*th recursive call
- $|S_i| =$ size of this subarray

Red indicates successful iteration.

Inst'	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S 8	S_9
$ S_i $	100	70	60	50	40	30	25	5	2
Succ'	Y ₁	= 2	$Y_2 = 4$		$Y_{3} = 2$		$Y_4 = 1$		
$n_i =$	$n_1 =$	100	$n_2 = 60$		$n_3 = 25$		$n_4 = 2$		

- All the subproblems after (i 1)th successful iteration till *i*th successful iteration have size $\leq n_i$.
- **2** Total work: $O(\sum_i n_i Y_i)$.

QuickSelect analysis

Theorem

Sariel (UIUC

The expected running time of QuickSelect is O(n).

Spring 2015

17/3

19 / 36

Sariel (UIUC)

C)

Spring 2015

18 / 36

QuickSelect analysis via recurrence

Analysis via Recurrence

- Given array A of size n let Q(A) be number of comparisons of randomized selection on A for selecting rank j element.
- **2** Note that Q(A) is a random variable
- 3 Let A_{less}^{i} and $A_{greater}^{i}$ be the left and right arrays obtained if pivot is rank *i* element of *A*.
- Algorithm recurses on A_{less}^{i} if j < i and recurses on $A_{greater}^{i}$ if j > i and terminates if j = i.

$$Q(A) = n + \sum_{i=1}^{j-1} \Pr[\text{pivot has rank } i] Q(A_{\text{greater}}^{i})$$
$$+ \sum_{i=j+1}^{n} \Pr[\text{pivot has rank } i] Q(A_{\text{less}}^{i})$$

21 / 36

Analyzing the recurrence

Theorem

T(n) = O(n).

Prove by induction that $T(n) \leq \alpha n$ for some constant $\alpha \geq 1$ to be fixed later.

Base case: n = 1, we have T(1) = 0 since no comparisons needed and hence $T(1) \le \alpha$.

Induction step: Assume $T(k) \le \alpha k$ for $1 \le k < n$ and prove it for T(n). We have by the recurrence:

$$T(n) \leq n + \frac{1}{n} \left(\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j^n} T(i-1) \right)$$

$$\leq n + \frac{\alpha}{n} \left(\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^n (i-1) \right) \text{ by applying induction}$$

Satel (UUC) QLD CS473 23 Spring 2015 23 / 36

Analyzing the Recurrence

As in **QuickSort** we obtain the following recurrence where T(n) is the worst-case expected time.

$$T(n) \leq n + \frac{1}{n} (\sum_{i=1}^{j-1} T(n-i) + \sum_{i=j}^{n} T(i-1))$$

Theorem

$$T(n) = O(n).$$

 Proof.

 (Guess and) Verify by induction (see next slide).

Analyzing the recurrence

$$T(n) \leq n + \frac{\alpha}{n} (\sum_{i=1}^{j-1} (n-i) + \sum_{i=j}^{n} (i-1))$$

$$\leq n + \frac{\alpha}{n} ((j-1)(2n-j)/2 + (n-j+1)(n+j-2)/2)$$

$$\leq n + \frac{\alpha}{2n} (n^2 + 2nj - 2j^2 - 3n + 4j - 2)$$
above expression maximized when $j = (n+1)/2$: calculus
$$\leq n + \frac{\alpha}{2n} (3n^2/2 - n) \text{ substituting } (n+1)/2 \text{ for } j$$

$$\leq n + 3\alpha n/4$$

$$\leq \alpha n \text{ for any constant } \alpha \geq 4$$

Comments on analyzing the recurrence

- Algebra looks messy but intuition suggest that the median is the hardest case and hence can plug j = n/2 to simplify without calculus
- Analyzing recurrences comes with practice and after a while one can see things more intuitively

John Von Neumann:

Young man, in mathematics you don't understand things. You just get used to them.

