OLD CS 473: Fundamental Algorithms, Spring 2015

Introduction to Randomized Algorithms: QuickSort and QuickSelect

Lecture 14
March 10, 2015

Part I

Introduction to Randomized Algorithms

Randomized Algorithms

Randomized Algorithms

Example: Randomized QuickSort

QuickSort Hoare [1962]

(1) Pick a pivot element from array

2 Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
3 Recursively sort the subarrays, and concatenate them

Randomized @uickSort

1 Pick a pivot element uniformly at random from the array
2 Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Example: Randomized QuickSort

QuickSort Hoare [1962]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.

Randomized @uickSort

1 Pick a pivot element uniformly at random from the array
2 Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them

Example: Randomized QuickSort

QuickSort Hoare [1962]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

1 Pick a pivot element uniformly at random from the array
2 Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them

Example: Randomized QuickSort

QuickSort Hoare [1962]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

(1) Pick a pivot element uniformly at random from the array

2 Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them

Example: Randomized QuickSort

QuickSort Hoare [1962]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

(1) Pick a pivot element uniformly at random from the array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.

3 Recursively sort the subarrays, and concatenate them.

Example: Randomized QuickSort

QuickSort Hoare [1962]

(1) Pick a pivot element from array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

(1) Pick a pivot element uniformly at random from the array
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega\left(\boldsymbol{n}^{2}\right)$ time to sort array of size \boldsymbol{n}.

Theorem
 Randomized QuickSort sorts a given array of length \boldsymbol{n} in $O(n \log n)$ expected time.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\Omega\left(n^{2}\right)$ time with some small probability.

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega\left(n^{2}\right)$ time to sort array of size n.
Theorem
Randomized QuickSort sorts a given array of length \boldsymbol{n} in $O(n \log n)$ expected time.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\Omega\left(n^{2}\right)$ time with some small probability.

Example: Randomized Quicksort

Recall: QuickSort can take $\Omega\left(n^{2}\right)$ time to sort array of size n.
Theorem
Randomized QuickSort sorts a given array of length \boldsymbol{n} in $O(n \log n)$ expected time.

Note: On every input randomized QuickSort takes $O(n \log n)$ time in expectation. On every input it may take $\Omega\left(n^{2}\right)$ time with some small probability.

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Deterministic algorithm:

(1) Multiply A and B and check if equal to C.
${ }^{2}$ Running time? $O\left(n^{3}\right)$ by straight forward approach. $O\left(n^{2.37}\right)$ with fast matrix multiplication (complicated and impractical).

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Deterministic algorithm:
(1) Multiply A and B and check if equal to C
${ }^{2}$ Running time? $O\left(n^{3}\right)$ by straight forward approach. $O\left(n^{2.37}\right)$ with fast matrix multiplication (complicated and impractical).

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Deterministic algorithm:
(1) Multiply A and B and check if equal to C.
${ }^{2}$ Running time? $O\left(n^{3}\right)$ by straight forward approach. $O\left(n^{2.37}\right)$
with fast matrix multiplication (complicated and impractical).

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Deterministic algorithm:
(1) Multiply A and B and check if equal to C.
(2) Running time? $O\left(n^{3}\right)$ by straight forward approach. $O\left(n^{2.37}\right)$ with fast matrix multiplication (complicated and impractical).

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Deterministic algorithm:
(1) Multiply A and B and check if equal to C.
(2) Running time? $O\left(n^{3}\right)$ by straight forward approach. $O\left(n^{2.37}\right)$ with fast matrix multiplication (complicated and impractical).

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Randomized algorithm:
1 Pick a random $n \times 1$ vector r
2 Return the answer of the equality $\mathrm{ABr}=\mathrm{Cr}$ 3 Running time? $O\left(n^{2}\right)$!

Theorem

If $A B=C$ then the algorithm will always say YES. If $A B \neq C$ then the algorithm will say YES with probability at most 1/2. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1 / 2^{100}$

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Randomized algorithm:
(1) Pick a random $n \times 1$ vector r.

2 Return the answer of the equality $\mathrm{ABr}=\mathrm{Cr}$
(3) Running time? $O\left(n^{2}\right)$!

Theorem

If $A B=C$ then the algorithm will always say $Y E S$. If $A B \neq C$ then the algorithm will say YES with probability at most $\mathbf{1 / 2}$. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1 / 2^{100}$

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Randomized algorithm:
(1) Pick a random $\boldsymbol{n} \times \mathbf{1}$ vector r.
2) Return the answer of the equality $\mathrm{ABr}=\mathrm{Cr}$
${ }^{3}$ Running time? $O\left(n^{2}\right)$!

Theorem

If $A B=C$ then the algorithm will always say $Y E S$. If $A B \neq C$ then the algorithm will say YES with probability at most $\mathbf{1 / 2}$. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1 / 2^{100}$

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Randomized algorithm:
(1) Pick a random $\boldsymbol{n} \times \mathbf{1}$ vector r.
(2) Return the answer of the equality $\mathrm{ABr}=\mathrm{Cr}$.

3 Running time?
If $A B=C$ then the algorithm will always say $Y E S$. If $A B \neq C$ then the algorithm will say YES with probability at most $\mathbf{1 / 2}$. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1 / 2^{100}$

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Randomized algorithm:
(1) Pick a random $\boldsymbol{n} \times \mathbf{1}$ vector r.
(2) Return the answer of the equality $\mathrm{ABr}=\mathrm{Cr}$.
(3) Running time?

Theorem

If $A B=C$ then the algorithm will always say $Y E S$. If $A B \neq C$ then the algorithm will say YES with probability at most $\mathbf{1 / 2}$. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1 / 2^{100}$

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Randomized algorithm:
(1) Pick a random $\boldsymbol{n} \times \mathbf{1}$ vector r.
(2) Return the answer of the equality $\mathrm{ABr}=\mathrm{Cr}$.
(3) Running time? $O\left(n^{2}\right)$!

Theorem

If $A B=C$ then the algorithm will always say $Y E S$. If $A B \neq C$ then the algorithm will say YES with probability at most $\mathbf{1 / 2}$. Can repeat the algorithm 100 times independently to reduce the probability of a false positive to $1 / 2^{100}$

Example: Verifying Matrix Multiplication

Problem

Given three $n \times n$ matrices A, B, C is $A B=C$?

Randomized algorithm:
(1) Pick a random $\boldsymbol{n} \times \mathbf{1}$ vector r.
(2) Return the answer of the equality $\mathrm{ABr}=\mathrm{Cr}$.
(3) Running time? $O\left(n^{2}\right)$!

Theorem

If $A B=C$ then the algorithm will always say $Y E S$. If $A B \neq C$ then the algorithm will say YES with probability at most $\mathbf{1 / 2}$. Can repeat the algorithm $\mathbf{1 0 0}$ times independently to reduce the probability of a false positive to $\mathbf{1} / \mathbf{2}^{100}$.

Why randomized algorithms?

(1) Many applications: algorithms, data structures and CS.
(2) In some cases only known algorithms are randomized or randomness is provably necessary.
(3) Often randomized algorithms are (much) simpler and/or more efficient.

4 Several deep connections to mathematics, physics etc.

Why randomized algorithms?

(1) Many applications: algorithms, data structures and CS.
(2) In some cases only known algorithms are randomized or randomness is provably necessary.
3. Often randomized algorithms are (much) simpler and/or more efficient.
4 Several deep connections to mathematics, physics etc.

Why randomized algorithms?

(1) Many applications: algorithms, data structures and CS.
(2) In some cases only known algorithms are randomized or randomness is provably necessary.
(3) Often randomized algorithms are (much) simpler and/or more efficient.
4. Several deep connections to mathematics, physics etc.

Why randomized algorithms?

(1) Many applications: algorithms, data structures and CS.
(2) In some cases only known algorithms are randomized or randomness is provably necessary.
(3) Often randomized algorithms are (much) simpler and/or more efficient.
(1) Several deep connections to mathematics, physics etc.

Why randomized algorithms?

(1) Many applications: algorithms, data structures and CS.
(2) In some cases only known algorithms are randomized or randomness is provably necessary.
(3) Often randomized algorithms are (much) simpler and/or more efficient.
(1) Several deep connections to mathematics, physics etc.
(5) ...

6 Lots of fun!

Why randomized algorithms?

(1) Many applications: algorithms, data structures and CS.
(2) In some cases only known algorithms are randomized or randomness is provably necessary.
(3) Often randomized algorithms are (much) simpler and/or more efficient.
(1) Several deep connections to mathematics, physics etc.
(0) ...
© Lots of fun!

Where do I get random bits?

Question: Are true random bits available in practice?
${ }^{1}$ Buy them!
2 CPUs use physical phenomena to generate random bits.
3 Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
4. In practice pseudo-random generators work quite well in many applications.
5 The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can derandomize randomized algorithms to obtain deterministic algorithms.

Where do I get random bits?

Question: Are true random bits available in practice?
(1) Buy them!

2 CPUs use physical phenomena to generate random bits.
3 Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
4 In practice pseudo-random generators work quite well in many applications.
5 The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can derandomize randomized algorithms to obtain deterministic algorithms.

Where do I get random bits?

Question: Are true random bits available in practice?
(1) Buy them!
(2) CPUs use physical phenomena to generate random bits.

3 Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.

4 In practice pseudo-random generators work quite well in many applications.

5 The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can derandomize randomized algorithms to obtain deterministic algorithms.

Where do I get random bits?

Question: Are true random bits available in practice?
(1) Buy them!
(2) CPUs use physical phenomena to generate random bits.
(3) Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
${ }^{4}$ In practice pseudo-random generators work quite well in many
applications.
5. The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can derandomize randomized algorithms to obtain deterministic algorithms

Where do I get random bits?

Question: Are true random bits available in practice?
(1) Buy them!
(2) CPUs use physical phenomena to generate random bits.
(3) Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
(1) In practice pseudo-random generators work quite well in many applications.
The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can derandomize randomized algorithms to obtain deterministic algorithms

Where do I get random bits?

Question: Are true random bits available in practice?
(1) Buy them!
(2) CPUs use physical phenomena to generate random bits.
(3) Can use pseudo-random bits or semi-random bits from nature. Several fundamental unresolved questions in complexity theory on this topic. Beyond the scope of this course.
(1) In practice pseudo-random generators work quite well in many applications.
(0. The model is interesting to think in the abstract and is very useful even as a theoretical construct. One can derandomize randomized algorithms to obtain deterministic algorithms.

Average case analysis vs Randomized algorithms

Average case analysis:
1 Fix a deterministic algorithm.
2 Assume inputs comes from a probability distribution.
3 Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

1 Algorithm uses random bits in addition to input.
2 Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses.

3 On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.

Average case analysis vs Randomized algorithms

Average case analysis:
(1) Fix a deterministic algorithm.
2) Assume inputs comes from a probability distribution.
3. Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

(1) Algorithm uses random bits in addition to input.

2 Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses.

3 On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.

Average case analysis vs Randomized algorithms

Average case analysis:
(1) Fix a deterministic algorithm.
(3) Assume inputs comes from a probability distribution.

3 Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

(1) Algorithm uses random bits in addition to input.

2 Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses. On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.

Average case analysis vs Randomized algorithms

Average case analysis:
(1) Fix a deterministic algorithm.
(3) Assume inputs comes from a probability distribution.
(3) Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

2 Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses. On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.

Average case analysis vs Randomized algorithms

Average case analysis:
(1) Fix a deterministic algorithm.
(2) Assume inputs comes from a probability distribution.
(3) Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

(1) Algorithm uses random bits in addition to input.

2 Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses.

Average case analysis vs Randomized algorithms

Average case analysis:

(1) Fix a deterministic algorithm.
(2) Assume inputs comes from a probability distribution.
(3) Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

(1) Algorithm uses random bits in addition to input.
(3) Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses.

Average case analysis vs Randomized algorithms

Average case analysis:

(1) Fix a deterministic algorithm.
(3) Assume inputs comes from a probability distribution.
(3) Analyze the algorithm's average performance over the distribution over inputs.

Randomized algorithms:

(1) Algorithm uses random bits in addition to input.
(3) Analyze algorithms average performance over the given input where the average is over the random bits that the algorithm uses.
(3) On each input behaviour of algorithm is random. Analyze worst-case over all inputs of the (average) performance.

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair $(\Omega, \operatorname{Pr})$ consists of finite set Ω of elementary events and function $p: \Omega \rightarrow[0,1]$ which assigns a probability $\operatorname{Pr}[\omega]$ for each $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$.

Discrete Probability

We restrict attention to finite probability spaces.

Definition

A discrete probability space is a pair $(\Omega, \operatorname{Pr})$ consists of finite set Ω of elementary events and function $p: \Omega \rightarrow[0,1]$ which assigns a probability $\operatorname{Pr}[\omega]$ for each $\omega \in \Omega$ such that $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$.

Example

An unbiased coin. $\Omega=\{H, T\}$ and $\operatorname{Pr}[H]=\operatorname{Pr}[T]=1 / 2$.

Example

A 6 -sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\operatorname{Pr}[i]=1 / 6$ for $1 \leq i \leq 6$.

Discrete Probability

And more examples

Example

A biased coin. $\Omega=\{H, T\}$ and $\operatorname{Pr}[H]=2 / 3, \operatorname{Pr}[T]=1 / 3$.

Example

Two independent unbiased coins. $\Omega=\{H H, T T, H T, T H\}$ and $\operatorname{Pr}[H H]=\operatorname{Pr}[T T]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=1 / 4$.

Example

A pair of (highly) correlated dice.
$\Omega=\{(i, j) \mid 1 \leq i \leq 6,1 \leq j \leq 6\}$.
$\operatorname{Pr}[i, i]=1 / 6$ for $1 \leq i \leq 6$ and $\operatorname{Pr}[i, j]=0$ if $i \neq j$.

Events

Definition

Given a probability space $(\Omega, \operatorname{Pr})$ an event is a subset of Ω. In other words an event is a collection of elementary events. The probability of an event \boldsymbol{A}, denoted by $\operatorname{Pr}[A]$, is $\sum_{\omega \in A} \operatorname{Pr}[\omega]$.

Definition
 The complement event of an event $A \subseteq \Omega$ is the event $\Omega \backslash A$ frequently denoted by \bar{A}.

Events

Definition

Given a probability space $(\Omega, \operatorname{Pr})$ an event is a subset of Ω. In other words an event is a collection of elementary events. The probability of an event \boldsymbol{A}, denoted by $\operatorname{Pr}[A]$, is $\sum_{\omega \in A} \operatorname{Pr}[\omega]$.

Definition

The complement event of an event $\boldsymbol{A} \subseteq \Omega$ is the event $\boldsymbol{\Omega} \backslash \boldsymbol{A}$ frequently denoted by $\overline{\boldsymbol{A}}$.

Events

Examples

Example

A pair of independent dice. $\Omega=\{(\mathbf{i}, \boldsymbol{j}) \mid \mathbf{1} \leq \boldsymbol{i} \leq \mathbf{6}, \mathbf{1} \leq j \leq \mathbf{6}\}$.
1 Let A be the event that the sum of the two numbers on the dice is even.
Then $A=\{(i, j) \in \Omega \mid(i+j)$ is even $\}$
$\operatorname{Pr}[A]=|A| / 36=1 / 2$.
2 Let B be the event that the first die has 1 . Then $B=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)\}$ $\operatorname{Pr}[B]=6 / 36=1 / 6$.

Events

Examples

Example

A pair of independent dice. $\Omega=\{(\mathbf{i}, \boldsymbol{j}) \mid \mathbf{1} \leq i \leq \mathbf{6}, \mathbf{1} \leq \boldsymbol{j} \leq \mathbf{6}\}$.
(1) Let \boldsymbol{A} be the event that the sum of the two numbers on the dice is even.

$$
\begin{aligned}
& \text { Then } A=\{(i, j) \in \Omega \mid(i+j) \text { is even }\} \\
& \operatorname{Pr}[A]=|A| / 36=1 / 2
\end{aligned}
$$

${ }^{2}$ Let B be the event that the first die has 1 . Then

$\operatorname{Pr}[B]=6 / 36=1 / 6$.

Events

Examples

Example

A pair of independent dice. $\Omega=\{(\mathbf{i}, \boldsymbol{j}) \mid \mathbf{1} \leq \boldsymbol{i} \leq \mathbf{6}, \mathbf{1} \leq j \leq \mathbf{6}\}$.
(1) Let \boldsymbol{A} be the event that the sum of the two numbers on the dice is even.

$$
\begin{aligned}
& \text { Then } A=\{(i, j) \in \Omega \mid(i+j) \text { is even }\} \text {. } \\
& \operatorname{Pr}[A]=|A| / \mathbf{3 6}=\mathbf{1 / 2} .
\end{aligned}
$$

(2) Let B be the event that the first die has $\mathbf{1}$. Then

$$
\begin{aligned}
& B=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)\} . \\
& \operatorname{Pr}[B]=6 / 36=1 / 6 .
\end{aligned}
$$

Independent Events

Definition

Given a probability space $(\Omega, \operatorname{Pr})$ and two events A, B are independent if and only if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. Otherwise they are dependent. In other words A, B independent implies one does not affect the other.

(1) A is the event that the first coin is heads and B is the event that second coin is tails. A, B are independent.
(2) A is the event that the two coins are different. B is the event that the second coin is heads. A, B independent.

Independent Events

Definition

Given a probability space $(\Omega, \operatorname{Pr})$ and two events A, B are independent if and only if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. Otherwise they are dependent. In other words A, B independent implies one does not affect the other.

Example

Two coins. $\Omega=\{H H, T T, H T, T H\}$ and
$\operatorname{Pr}[H H]=\operatorname{Pr}[T T]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=1 / 4$.
1 A is the event that the first coin is heads and B is the event that second coin is tails. A, B are independent.
$2 A$ is the event that the two coins are different. B is the event that the second coin is heads. A, B independent.

Independent Events

Definition

Given a probability space $(\Omega, \operatorname{Pr})$ and two events A, B are independent if and only if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. Otherwise they are dependent. In other words A, B independent implies one does not affect the other.

Example

> Two coins. $\Omega=\{H H, T T, H T, T H\}$ and $\operatorname{Pr}[H H]=\operatorname{Pr}[T T]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=1 / 4$
(1) \boldsymbol{A} is the event that the first coin is heads and \boldsymbol{B} is the event that second coin is tails. A, B are independent.
$2 A$ is the event that the two coins are different. B is the event that the second coin is heads. A, B independent.

Independent Events

Definition

Given a probability space $(\Omega, \operatorname{Pr})$ and two events A, B are independent if and only if $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \operatorname{Pr}[B]$. Otherwise they are dependent. In other words A, B independent implies one does not affect the other.

Example

Two coins. $\Omega=\{H H, T T, H T, T H\}$ and $\operatorname{Pr}[H H]=\operatorname{Pr}[T T]=\operatorname{Pr}[H T]=\operatorname{Pr}[T H]=1 / 4$.
(1) \boldsymbol{A} is the event that the first coin is heads and B is the event that second coin is tails. $\boldsymbol{A}, \boldsymbol{B}$ are independent.
(2) \boldsymbol{A} is the event that the two coins are different. \boldsymbol{B} is the event that the second coin is heads. A, B independent.

Independent Events

Examples

Example

A is the event that both are not tails and B is event that second coin is heads. A, B are dependent.

Union bound

The probability of the union of two events, is \leq the probability of the sum of their probabilities.

Lemma

For any two events \mathcal{E} and \mathcal{F}, we have that $\operatorname{Pr}[\mathcal{E} \cup \mathcal{F}] \leq \operatorname{Pr}[\mathcal{E}]+\operatorname{Pr}[\mathcal{F}]$.

Proof.

Consider \mathcal{E} and \mathcal{F} to be a collection of elmentery events (which they are). We have

$$
\begin{aligned}
\operatorname{Pr}[\mathcal{E} \cup \mathcal{F}] & =\sum_{x \in \mathcal{E} \cup \mathcal{F}} \operatorname{Pr}[x] \\
& \leq \sum_{x \in \mathcal{E}} \operatorname{Pr}[x]+\sum_{x \in \mathcal{F}} \operatorname{Pr}[x]=\operatorname{Pr}[\mathcal{E}]+\operatorname{Pr}[\mathcal{F}] .
\end{aligned}
$$

Random Variables

Definition

Given a probability space ($\Omega, \operatorname{Pr}$) a (real-valued) random variable \boldsymbol{X} over Ω is a function that maps each elementary event to a real number. In other words $X: \Omega \rightarrow \mathbb{R}$.

```
Example
A 6-sided unbiased die. }\Omega={1,2,3,4,5,6} and Pr[i]=1/6 for
1<i<6
(1)}X:\Omega->\mathbb{R}\mathrm{ where X(i)=i mod 2.
2 }Y:\Omega->\mathbb{R}\mathrm{ where }Y(i)=\mp@subsup{i}{}{2
```


Definition

A hinary random variable is one that takes on values in $\{0,1\}$

Random Variables

Definition

Given a probability space ($\Omega, \operatorname{Pr}$) a (real-valued) random variable \boldsymbol{X} over Ω is a function that maps each elementary event to a real number. In other words $X: \Omega \rightarrow \mathbb{R}$.

Example

A 6 -sided unbiased die. $\Omega=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\}$ and $\operatorname{Pr}[i]=\mathbf{1} / 6$ for $\mathbf{1} \leq \boldsymbol{i} \leq \mathbf{6}$. ${ }^{1} X: \Omega \rightarrow \mathbb{R}$ where $X(i)=i \bmod 2$. $2 Y: \Omega \rightarrow \mathbb{R}$ where $Y(i)=i^{2}$

Definition

A binary random variable is one that takes on values in $\{0,1\}$

Random Variables

Definition

Given a probability space ($\Omega, \operatorname{Pr}$) a (real-valued) random variable \boldsymbol{X} over Ω is a function that maps each elementary event to a real number. In other words $X: \Omega \rightarrow \mathbb{R}$.

Example

A 6 -sided unbiased die. $\Omega=\{\mathbf{1 , 2 , 3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\}$ and $\operatorname{Pr}[i]=\mathbf{1} / \mathbf{6}$ for $1 \leq i \leq 6$.
(1) $X: \Omega \rightarrow \mathbb{R}$ where $X(i)=i \bmod 2$.
${ }^{2} Y: \Omega \rightarrow \mathbb{R}$ where $Y(i)=i^{2}$

Definition

A binary random variable is one that takes on values in $\{0,1\}$

Random Variables

Definition

Given a probability space ($\Omega, \operatorname{Pr}$) a (real-valued) random variable \boldsymbol{X} over Ω is a function that maps each elementary event to a real number. In other words $X: \Omega \rightarrow \mathbb{R}$.

Example

A 6 -sided unbiased die. $\Omega=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\}$ and $\operatorname{Pr}[i]=\mathbf{1} / 6$ for $1 \leq i \leq 6$.
(1) $X: \Omega \rightarrow \mathbb{R}$ where $X(i)=i \bmod 2$.
(2) $Y: \Omega \rightarrow \mathbb{R}$ where $Y(i)=i^{2}$.

Definition

A binary random variable is one that takes on values in $\{0,1\}$

Random Variables

Definition

Given a probability space ($\Omega, \operatorname{Pr}$) a (real-valued) random variable \boldsymbol{X} over Ω is a function that maps each elementary event to a real number. In other words $X: \Omega \rightarrow \mathbb{R}$.

Example

A 6 -sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\operatorname{Pr}[i]=1 / 6$ for $\mathbf{1} \leq \boldsymbol{i} \leq \mathbf{6}$.
(1) $X: \Omega \rightarrow \mathbb{R}$ where $X(i)=i \bmod 2$.
(2) $Y: \Omega \rightarrow \mathbb{R}$ where $Y(i)=i^{2}$.

Definition

A binary random variable is one that takes on values in $\{\mathbf{0}, \mathbf{1}\}$.

Indicator Random Variables

Special type of random variables that are quite useful.

Definition

Given a probability space $(\Omega, \operatorname{Pr})$ and an event $A \subseteq \Omega$ the indicator random variable X_{A} is a binary random variable where $X_{A}(\omega)=\mathbf{1}$ if $\omega \in A$ and $X_{A}(\omega)=0$ if $\omega \notin A$.

Indicator Random Variables

Special type of random variables that are quite useful.

Definition

Given a probability space $(\Omega, \operatorname{Pr})$ and an event $A \subseteq \Omega$ the indicator random variable X_{A} is a binary random variable where $X_{A}(\omega)=\mathbf{1}$ if $\omega \in A$ and $X_{A}(\omega)=0$ if $\omega \notin A$.

Example

A 6 -sided unbiased die. $\Omega=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\}$ and $\operatorname{Pr}[i]=\mathbf{1} / 6$ for $\mathbf{1} \leq \boldsymbol{i} \leq \mathbf{6}$. Let \boldsymbol{A} be the even that \boldsymbol{i} is divisible by $\mathbf{3}$. Then $X_{A}(i)=1$ if $i=3,6$ and 0 otherwise.

Expectation

Definition

For a random variable X over a probability space $(\Omega, \operatorname{Pr})$ the expectation of X is defined as $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\operatorname{Pr}[\cdot]$.

Expectation

Definition

For a random variable X over a probability space $(\Omega, \operatorname{Pr})$ the expectation of X is defined as $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] X(\omega)$. In other words, the expectation is the average value of \boldsymbol{X} according to the probabilities given by $\operatorname{Pr}[\cdot]$.

Example

A 6 -sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\operatorname{Pr}[i]=1 / 6$ for $\mathbf{1} \leq \mathbf{i} \leq \mathbf{6}$.
 ${ }^{2} Y: \Omega \rightarrow \mathbb{R}$ where $Y(i)=\boldsymbol{i}^{2}$. Then

Expectation

Definition

For a random variable X over a probability space $(\Omega, \operatorname{Pr})$ the expectation of X is defined as $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\operatorname{Pr}[\cdot]$.

Example

A 6 -sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\operatorname{Pr}[i]=1 / 6$ for $1 \leq i \leq 6$.
(1) $X: \Omega \rightarrow \mathbb{R}$ where $X(i)=i \bmod 2$. Then $\mathrm{E}[X]=1 / 2$.
${ }^{2} Y: \Omega \rightarrow \mathbb{R}$ where $Y(i)=i^{2}$. Then
$\mathrm{E}[Y]=\sum_{i=1}^{6} \frac{1}{6} \cdot i^{2}=91 / 6$.

Expectation

Definition

For a random variable X over a probability space $(\Omega, \operatorname{Pr})$ the expectation of X is defined as $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] X(\omega)$. In other words, the expectation is the average value of X according to the probabilities given by $\operatorname{Pr}[\cdot]$.

Example

A 6 -sided unbiased die. $\Omega=\{1,2,3,4,5,6\}$ and $\operatorname{Pr}[i]=1 / 6$ for $1 \leq i \leq 6$.
(1) $X: \Omega \rightarrow \mathbb{R}$ where $X(i)=i \bmod 2$. Then $\mathrm{E}[X]=1 / 2$.
(2) $Y: \Omega \rightarrow \mathbb{R}$ where $Y(i)=i^{2}$. Then
$E[Y]=\sum_{i=1}^{6} \frac{1}{6} \cdot i^{2}=91 / 6$.

Expectation

Proposition

For an indicator variable $X_{A}, E\left[X_{A}\right]=\operatorname{Pr}[A]$.

Proof.

$$
\begin{aligned}
\mathrm{E}\left[X_{A}\right] & =\sum_{y \in \Omega} X_{A}(y) \operatorname{Pr}[y] \\
& =\sum_{y \in A} 1 \cdot \operatorname{Pr}[y]+\sum_{y \in \Omega \backslash A} 0 \cdot \operatorname{Pr}[y] \\
& =\sum_{y \in A} \operatorname{Pr}[y] \\
& =\operatorname{Pr}[A] .
\end{aligned}
$$

Linearity of Expectation

Lemma

Let $\boldsymbol{X}, \boldsymbol{Y}$ be two random variables (not necessarily independent) over a probability space $(\Omega, \operatorname{Pr})$. Then $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$.

Proof.

$$
\mathrm{E}[X+Y]=\sum_{\omega \in \Omega} \operatorname{Pr}[\omega](X(\omega)+Y(\omega))
$$

$$
=\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] X(\omega)+\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] Y(\omega)=\mathrm{E}[X]+\mathrm{E}[Y] .
$$

Linearity of Expectation

Lemma

Let $\boldsymbol{X}, \boldsymbol{Y}$ be two random variables (not necessarily independent) over a probability space $(\Omega, \operatorname{Pr})$. Then $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$.

Proof.

$$
\mathrm{E}[X+Y]=\sum_{\omega \in \Omega} \operatorname{Pr}[\omega](X(\omega)+Y(\omega))
$$

$$
=\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] X(\omega)+\sum_{\omega \in \Omega} \operatorname{Pr}[\omega] Y(\omega)=\mathrm{E}[X]+\mathrm{E}[Y] .
$$

Corollary

$\mathrm{E}\left[a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}\right]=\sum_{i=1}^{n} a_{i} \mathrm{E}\left[X_{i}\right]$.

Types of Randomized Algorithms

Typically one encounters the following types:
${ }^{1}$ Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.
2) Monte Carlo randomized algorithms: for a given input x the running time is deterministic but the output is random; correct with some probability. In this case we are interested in analyzing the probability of the correct output (and also the running time).
3 Algorithms whose running time and output may both be random variables.

Types of Randomized Algorithms

Typically one encounters the following types:
(1) Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.

$$
\begin{aligned}
& \text { Monte Carlo randomized algorithms: for a given input } x \text { the } \\
& \text { running time is deterministic but the output is random; correct } \\
& \text { with some probability. In this case we are interested in analyzing } \\
& \text { the probability of the correct output (and also the running time). }
\end{aligned}
$$

3 Algorithms whose running time and output may both be random variables.

Types of Randomized Algorithms

Typically one encounters the following types:
(1) Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.
(2) Monte Carlo randomized algorithms: for a given input x the running time is deterministic but the output is random; correct with some probability. In this case we are interested in analyzing the probability of the correct output (and also the running time).

3 Algorithms whose running time and output may both be random variables.

Types of Randomized Algorithms

Typically one encounters the following types:
(1) Las Vegas randomized algorithms: for a given input x output of algorithm is always correct but the running time is a random variable. In this case we are interested in analyzing the expected running time.
(2) Monte Carlo randomized algorithms: for a given input x the running time is deterministic but the output is random; correct with some probability. In this case we are interested in analyzing the probability of the correct output (and also the running time).
(3) Algorithms whose running time and output may both be random variables.

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem $\boldsymbol{\Pi}$:
${ }^{1}$ Let $Q(x)$ be the time for Q to run on input x of length $|x|$
(2) Worst-case analysis: run time on worst input for a given size n.

$$
T_{w c}(n)=\max _{x:|x|=n} Q(x)
$$

Randomized algorithm R for a problem Π :
(1) Let $R(x)$ be the time for Q to run on input x of length $|x|$
${ }^{2} R(x)$ is a random variable: depends on random bits used by R
(3) $E[R(x)]$ is the expected running time for R on x
4. Worst-case analysis: expected time on worst input of size n

$$
T_{r a n d-w c}(n)=\max _{x:|x|=n} E[Q(x)]
$$

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :
(1) Let $Q(x)$ be the time for Q to run on input x of length $|x|$.

2 Worst-case analysis: run time on worst input for a given size n.

$$
T_{w c}(n)=\max _{x:|x|=n} Q(x)
$$

Randomized algorithm R for a problem Π :
(1) Let $R(x)$ be the time for Q to run on input x of length $|x|$
${ }^{2} R(x)$ is a random variable: depends on random bits used by R
(3) $E[R(x)]$ is the expected running time for R on x

4 Worst-case analysis: expected time on worst input of size n

$$
T_{\text {rand-wc }}(n)=\max _{x:|x|=n} \mathrm{E}[Q(x)]
$$

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :
(1) Let $Q(x)$ be the time for Q to run on input x of length $|x|$.
(2) Worst-case analysis: run time on worst input for a given size \boldsymbol{n}.

$$
T_{w c}(n)=\max _{x:|x|=n} Q(x) .
$$

Randomized algorithm R for a problem Π
(1) Let $R(x)$ be the time for Q to run on input x of length $|x|$
${ }^{2} R(x)$ is a random variable: depends on random bits used by R
${ }^{3} \mathrm{E}[R(x)]$ is the expected running time for R on x
4 Worst-case analysis: expected time on worst input of size n

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :
(1) Let $Q(x)$ be the time for Q to run on input x of length $|x|$.
(2) Worst-case analysis: run time on worst input for a given size \boldsymbol{n}.

$$
T_{w c}(n)=\max _{x:|x|=n} Q(x) .
$$

Randomized algorithm R for a problem Π :
${ }^{1}$ Let $R(x)$ be the time for Q to run on input x of length $|x|$
${ }^{2} R(x)$ is a random variable: depends on random bits used by R
(3) $E[R(x)]$ is the expected running time for R on x

4 Worst-case analysis: expected time on worst input of size n

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :
(1) Let $Q(x)$ be the time for Q to run on input x of length $|x|$.
(2) Worst-case analysis: run time on worst input for a given size \boldsymbol{n}.

$$
T_{w c}(n)=\max _{x:|x|=n} Q(x) .
$$

Randomized algorithm R for a problem Π :
(1) Let $R(x)$ be the time for Q to run on input x of length $|x|$.
${ }^{3} \mathrm{E}[R(\mathrm{x})]$ is the expected running time for R on x
4 Worst-case analysis: expected time on worst input of size n

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :
(1) Let $Q(x)$ be the time for Q to run on input x of length $|x|$.
(2) Worst-case analysis: run time on worst input for a given size \boldsymbol{n}.

$$
T_{w c}(n)=\max _{x:|x|=n} Q(x) .
$$

Randomized algorithm R for a problem $\boldsymbol{\Pi}$:
(1) Let $R(x)$ be the time for Q to run on input x of length $|x|$.
(2) $R(x)$ is a random variable: depends on random bits used by R.
${ }^{3} \mathrm{E}[R(x)]$ is the expected running time for R on x
4. Worst-case analysis: expected time on worst input of size n

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :
(1) Let $Q(x)$ be the time for Q to run on input x of length $|x|$.
(2) Worst-case analysis: run time on worst input for a given size \boldsymbol{n}.

$$
T_{w c}(n)=\max _{x:|x|=n} Q(x) .
$$

Randomized algorithm R for a problem $\boldsymbol{\Pi}$:
(1) Let $R(x)$ be the time for Q to run on input x of length $|x|$.
(2) $R(x)$ is a random variable: depends on random bits used by R.
(3) $\mathrm{E}[R(x)]$ is the expected running time for R on x

4
4 Worst-case analysis: expected time on worst input of size n

Analyzing Las Vegas Algorithms

Deterministic algorithm Q for a problem Π :
(1) Let $Q(x)$ be the time for Q to run on input x of length $|x|$.
(2) Worst-case analysis: run time on worst input for a given size \boldsymbol{n}.

$$
T_{w c}(n)=\max _{x:|x|=n} Q(x) .
$$

Randomized algorithm R for a problem $\boldsymbol{\Pi}$:
(1) Let $R(x)$ be the time for Q to run on input x of length $|x|$.
(2) $R(x)$ is a random variable: depends on random bits used by R.
(3) $\mathrm{E}[R(x)]$ is the expected running time for R on x
(1) Worst-case analysis: expected time on worst input of size n

$$
T_{\text {rand }-w c}(n)=\max _{x:|x|=n} \mathrm{E}[Q(x)] .
$$

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem $\boldsymbol{\Pi}$:
${ }^{1}$ Let $M(x)$ be the time for M to run on input x of length $|x|$. For Monte Carlo, assumption is that run time is deterministic.

2 Let $\operatorname{Pr}[x]$ be the probability that M is correct on x.
${ }^{3} \operatorname{Pr}[x]$ is a random variable: depends on random bits used by M
(4) Worst-case analysis: success probability on worst input

$$
P_{r a n d-w c}(n)=\min _{x:|x|=n} \operatorname{Pr}[x] .
$$

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem $\boldsymbol{\Pi}$:
(1) Let $M(x)$ be the time for M to run on input x of length $|x|$. For Monte Carlo, assumption is that run time is deterministic.
${ }^{2}$ Let $\operatorname{Pr}[x]$ be the probability that M is correct on x.
${ }^{3} \operatorname{Pr}[x]$ is a random variable: depends on random bits used by M
4 Worst-case analysis: success probability on worst input

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem $\boldsymbol{\Pi}$:
(1) Let $M(x)$ be the time for M to run on input x of length $|x|$. For Monte Carlo, assumption is that run time is deterministic.
(2) Let $\operatorname{Pr}[x]$ be the probability that M is correct on \boldsymbol{x}.
${ }^{3} \operatorname{Pr}[x]$ is a random variable: depends on random bits used by
4 Worst-case analysis: success probability on worst input

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem $\boldsymbol{\Pi}$:
(1) Let $M(x)$ be the time for M to run on input x of length $|x|$. For Monte Carlo, assumption is that run time is deterministic.
(2) Let $\operatorname{Pr}[x]$ be the probability that M is correct on x.
(3) $\operatorname{Pr}[x]$ is a random variable: depends on random bits used by M.

4 Worst-case analysis: success probability on worst input

Analyzing Monte Carlo Algorithms

Randomized algorithm M for a problem $\boldsymbol{\Pi}$:
(1) Let $M(x)$ be the time for M to run on input x of length $|x|$. For Monte Carlo, assumption is that run time is deterministic.
(2) Let $\operatorname{Pr}[x]$ be the probability that M is correct on x.
(3) $\operatorname{Pr}[x]$ is a random variable: depends on random bits used by M.
(1) Worst-case analysis: success probability on worst input

$$
P_{\text {rand }-w c}(n)=\min _{x:|x|=n} \operatorname{Pr}[x] .
$$

Part II

Why does randomization help?

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given $\mathbf{1}$, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given $\mathbf{1}$, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given $\mathbf{1}$, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

Consider flipping a fair coin \boldsymbol{n} times independently, head given 1, tail gives zero. How many heads? ...we get a binomial distribution.

Massive randomness.. Is not that random.

This is known as concentration of mass.
This is a very special case of the law of large numbers.

Side note...

Law of large numbers (weakest form)...

Informal statement of law of large numbers

For \boldsymbol{n} large enough, the middle portion of the binomial distribution looks like (converges to) the normal/Gaussian distribution.

Massive randomness.. Is not that random.

Intuitive conclusion

Randomized algorithm are unpredictable in the tactical level, but very predictable in the strategic level.

Binomial distribution

$\boldsymbol{X}_{\boldsymbol{n}}=$ numbers of heads when flipping a coin \boldsymbol{n} times.

Claim

$\operatorname{Pr}\left[X_{n}=i\right]=\frac{\binom{n}{i}}{2^{n}}$.
Where: $\binom{n}{k}=\frac{n!}{(n-k)!k!}$.
Indeed, $\binom{\boldsymbol{n}}{\boldsymbol{i}}$ is the number of ways to choose \boldsymbol{i} elements out of \boldsymbol{n} elements (i.e., pick which i coin flip come up heads).
Each specific such possibility (say $\mathbf{0 1 0 0 0 1 0} \ldots$) had probability $\mathbf{1 / 2 n}$. We are interested in the bad event $\operatorname{Pr}\left[X_{n} \leq n / 4\right]$ (way too few heads). We are going to prove this probability is tiny.

Binomial distribution

Playing around with binomial coefficients

Lemma

$n!\geq(n / e)^{n}$.

Proof.

$$
\frac{n^{n}}{n!} \leq \sum_{i=0}^{\infty} \frac{n^{i}}{i!}=e^{n}
$$

by the Taylor expansion of $e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!}$. This implies that $(n / e)^{n} \leq n!$, as required.

Binomial distribution

Playing around with binomial coefficients

Lemma

For any $k \leq n$, we have $\binom{n}{k} \leq\left(\frac{n e}{k}\right)^{k}$.

Proof.

$$
\begin{aligned}
\binom{n}{k} & =\frac{n!}{(n-k)!k!}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} \\
& \leq \frac{n^{k}}{k!} \leq \frac{n^{k}}{\left(\frac{k}{e}\right)^{k}}=\left(\frac{n e}{k}\right)^{k}
\end{aligned}
$$

since $k!\geq(k / e)^{k}$ (by previous lemma).

Binomial distribution

Playing around with binomial coefficients

$$
\operatorname{Pr}\left[\boldsymbol{X}_{\boldsymbol{n}} \leq \frac{\boldsymbol{n}}{\mathbf{4}}\right]=\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{n} / \boldsymbol{4}} \frac{\mathbf{1}}{\mathbf{2}^{\boldsymbol{n}}}\binom{\boldsymbol{n}}{\boldsymbol{k}}=\frac{1}{2^{n}} \sum_{k=0}^{n / 4}\binom{n}{k} \leq \frac{1}{2^{n}} 2 \cdot\binom{n}{n / 4}
$$

For $k \leq n / 4$ the above sequence behave like a geometric variable.

Binomial distribution

Playing around with binomial coefficients

$$
\operatorname{Pr}\left[X_{\boldsymbol{n}} \leq \frac{\boldsymbol{n}}{\mathbf{4}}\right]=\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{n} / 4} \frac{\mathbf{1}}{\mathbf{2}^{\boldsymbol{n}}}\binom{\boldsymbol{n}}{\boldsymbol{k}}=\frac{\mathbf{1}}{\mathbf{2}^{\boldsymbol{n}}} \sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{n} / \mathbf{4}}\binom{\boldsymbol{n}}{\boldsymbol{k}} \leq \frac{1}{2^{n}} 2 \cdot\binom{n}{n / 4}
$$

For $k \leq n / 4$ the above sequence behave like a geometric variable.

Binomial distribution

Playing around with binomial coefficients

$$
\operatorname{Pr}\left[X_{n} \leq \frac{n}{4}\right]=\sum_{k=0}^{n / 4} \frac{1}{2^{n}}\binom{n}{k}=\frac{1}{2^{n}} \sum_{k=0}^{n / 4}\binom{n}{k} \leq \frac{1}{2^{n}} 2 \cdot\binom{n}{n / 4}
$$

For $k \leq n / 4$ the above sequence behave like a geometric variable.

Binomial distribution

Playing around with binomial coefficients

$$
\operatorname{Pr}\left[X_{n} \leq \frac{n}{4}\right]=\sum_{k=0}^{n / 4} \frac{1}{2^{n}}\binom{n}{k}=\frac{1}{2^{n}} \sum_{k=0}^{n / 4}\binom{n}{k} \leq \frac{1}{2^{n}} 2 \cdot\binom{n}{n / 4}
$$

For $k \leq n / 4$ the above sequence behave like a geometric variable.

$$
\begin{aligned}
\binom{n}{k+1} /\binom{n}{k} & =\frac{n!}{(k+1)!(n-k-1)!} / \frac{n!}{(k)!(n-k)!} \\
& =\frac{n-k}{k+1} \geq \frac{(3 / 4) n}{n / 4+1} \geq 2
\end{aligned}
$$

Binomial distribution

Playing around with binomial coefficients

$$
\begin{aligned}
\operatorname{Pr}\left[X_{n} \leq \frac{n}{4}\right] & \leq \frac{1}{2^{n}} 2 \cdot\binom{n}{n / 4} \leq \frac{1}{2^{n}} 2 \cdot\left(\frac{n e}{n / 4}\right)^{n / 4} \leq 2 \cdot\left(\frac{4 e}{2^{4}}\right)^{n / 4} \\
& \leq 2 \cdot 0.68^{n / 4}
\end{aligned}
$$

We just proved the following theorem.

Theorem

Let X_{n} be the random variable which is the number of heads when flipping an unbiased coin independently n times. Then

Binomial distribution

Playing around with binomial coefficients

$$
\begin{aligned}
\operatorname{Pr}\left[X_{n} \leq \frac{n}{4}\right] & \leq \frac{1}{2^{n}} 2 \cdot\binom{n}{n / 4} \leq \frac{1}{2^{n}} 2 \cdot\left(\frac{n e}{n / 4}\right)^{n / 4} \leq 2 \cdot\left(\frac{4 e}{2^{4}}\right)^{n / 4} \\
& \leq 2 \cdot 0.68^{n / 4}
\end{aligned}
$$

We just proved the following theorem.

Theorem

Let $X_{\boldsymbol{n}}$ be the random variable which is the number of heads when flipping an unbiased coin independently \boldsymbol{n} times. Then

$$
\operatorname{Pr}\left[X_{n} \leq \frac{n}{4}\right] \leq 2 \cdot 0.68^{n / 4} \text { and } \operatorname{Pr}\left[X_{n} \geq \frac{3 n}{4}\right] \leq 2 \cdot 0.68^{n / 4}
$$

Part III

Randomized Quick Sort and Selection

Randomized QuickSort

Randomized QuickSort

1 Pick a pivot element uniformly at random from the array.
2 Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
3 Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

Randomized QuickSort

(1) Pick a pivot element uniformly at random from the array. Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
3 Recursively sort the subarrays, and concatenate them.

Randomized QuickSort

Randomized QuickSort

(1) Pick a pivot element uniformly at random from the array.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.

Randomized QuickSort

Randomized QuickSort

(1) Pick a pivot element uniformly at random from the array.
(2) Split array into 3 subarrays: those smaller than pivot, those larger than pivot, and the pivot itself.
(3) Recursively sort the subarrays, and concatenate them.

Example

(1) array: $16,12,14,20,5,3,18,19,1$

Example

(1) array: $16,12,14,20,5,3,18,19,1$

Analysis via Recurrence

(1) Given array A of size n, let $Q(A)$ be number of comparisons of randomized QuickSort on A.
2 Note that $Q(A)$ is a random variable.
(3) Let $A_{\text {left }}^{i}$ and $A_{\text {right }}^{i}$ be the left and right arrays obtained if:

$$
\text { pivot is of rank } i \text { in } A \text {. }
$$

$Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[$ pivot has rank $i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)$.
Since each element of \boldsymbol{A} has probability exactly of $\mathbf{1} / \boldsymbol{n}$ of being chosen:

$$
Q(A)=n+\sum_{i=1}^{n} \frac{1}{n}\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)
$$

Analysis via Recurrence

(1) Given array \boldsymbol{A} of size \boldsymbol{n}, let $\boldsymbol{Q}(\boldsymbol{A})$ be number of comparisons of randomized QuickSort on \boldsymbol{A}.

(2) Note that $Q(A)$ is a random variable.

(3) Let $A_{\text {left }}^{i}$ and $A_{\text {right }}^{i}$ be the left and right arrays obtained if:

$$
\text { pivot is of rank } \boldsymbol{i} \text { in } \boldsymbol{A} \text {. }
$$

$Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[$ pivot has rank $i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)$.
Since each element of A has probability exactly of $\mathbf{1} / n$ of being chosen:

$$
Q(A)=n+\sum_{i=1}^{n} \frac{1}{n}\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right) .
$$

Analysis via Recurrence

(1) Given array \boldsymbol{A} of size \boldsymbol{n}, let $\boldsymbol{Q}(\boldsymbol{A})$ be number of comparisons of randomized QuickSort on \boldsymbol{A}.
(2) Note that $Q(A)$ is a random variable.
(3) Let $A_{\text {left }}^{i}$ and $A_{\text {right }}^{i}$ be the left and right arrays obtained if:

$$
\text { pivot is of rank } \boldsymbol{i} \text { in } \boldsymbol{A} \text {. }
$$

$Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[$ pivot has rank $i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)$.
Since each element of A has probability exactly of $\mathbf{1} / n$ of being chosen:

$$
Q(A)=n+\sum_{i=1}^{n} \frac{1}{n}\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)
$$

Analysis via Recurrence

(1) Given array \boldsymbol{A} of size \boldsymbol{n}, let $Q(\boldsymbol{A})$ be number of comparisons of randomized QuickSort on \boldsymbol{A}.
(2) Note that $Q(A)$ is a random variable.
(3) Let $\boldsymbol{A}_{\text {left }}^{i}$ and $\boldsymbol{A}_{\text {right }}^{i}$ be the left and right arrays obtained if:
pivot is of rank \boldsymbol{i} in \boldsymbol{A}.
$Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[$ pivot has rank $i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)$.
Since each element of A has probability exactly of $1 / n$ of being chosen:

Analysis via Recurrence

(1) Given array \boldsymbol{A} of size \boldsymbol{n}, let $Q(\boldsymbol{A})$ be number of comparisons of randomized QuickSort on \boldsymbol{A}.
(2) Note that $Q(A)$ is a random variable.
(3) Let $\boldsymbol{A}_{\text {left }}^{i}$ and $\boldsymbol{A}_{\text {right }}^{i}$ be the left and right arrays obtained if: pivot is of rank \boldsymbol{i} in \boldsymbol{A}.

$$
Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[\text { pivot has rank } i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right) .
$$

Since each element of \boldsymbol{A} has probability exactly of $\mathbf{1} / \boldsymbol{n}$ of being chosen:

$$
Q(A)=n+\sum_{i=1}^{n} \frac{1}{n}\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)
$$

Analysis via Recurrence

Let $T(n)=\max _{A:|A|=\boldsymbol{n}} \mathrm{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size \boldsymbol{n}.

We have, for any \boldsymbol{A} :
$Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[$ pivot has rank $i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)$
Therefore, by linearity of expectation:
$E[Q(A)]=n+\sum_{i=1}^{n} \operatorname{pr}\left[\begin{array}{l}\text { pivot is } \\ \text { of rank } i\end{array}\right]\left(E\left[Q\left(A_{i}^{i}\right)\right]+E\left[Q\left(A_{i(A)}^{i}\right)\right]\right)$

Analysis via Recurrence

Let $T(n)=\max _{A:|A|=n} \mathrm{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size \boldsymbol{n}.

We have, for any \boldsymbol{A} :

$$
Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[\text { pivot has rank } i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)
$$

Therefore, by linearity of expectation:
$\mathrm{E}[Q(A)]=n+\sum_{i=1}^{n} \operatorname{Pr}\left[\begin{array}{c}\text { pivot is } \\ \text { of rank } i\end{array}\right]\left(\mathrm{E}\left[Q\left(A_{\text {left }}^{i}\right)\right]+\mathrm{E}\left[Q\left(A_{\text {ighth }}^{i}\right)\right]\right)$

Analysis via Recurrence

Let $T(n)=\max _{A:|A|=n} \mathrm{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size \boldsymbol{n}.

We have, for any \boldsymbol{A} :

$$
Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[\text { pivot has rank } i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)
$$

Therefore, by linearity of expectation:
$E[Q(A)]=n+\sum_{i=1}^{n} \operatorname{Pr}\left[\begin{array}{c}\text { pivot is } \\ \text { of rank } i\end{array}\right]\left(E\left[Q\left(A_{\text {left }}^{i}\right)\right]+E\left[Q\left(A_{\text {right }}^{i}\right)\right]\right)$.

Analysis via Recurrence

Let $T(n)=\max _{A:|A|=n} \mathrm{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size \boldsymbol{n}.

We have, for any \boldsymbol{A} :

$$
Q(A)=n+\sum_{i=1}^{n} \operatorname{Pr}[\text { pivot has rank } i]\left(Q\left(A_{\text {left }}^{i}\right)+Q\left(A_{\text {right }}^{i}\right)\right)
$$

Therefore, by linearity of expectation:
$E[Q(A)]=n+\sum_{i=1}^{n} \operatorname{Pr}\left[\begin{array}{c}\text { pivot is } \\ \text { of rank } i\end{array}\right]\left(E\left[Q\left(A_{\text {left }}^{i}\right)\right]+E\left[Q\left(A_{\text {right }}^{i}\right)\right]\right)$.

$$
\Rightarrow \quad \mathrm{E}[Q(A)] \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i)) .
$$

Analysis via Recurrence

Let $T(n)=\max _{A:|A|=n} \mathrm{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size \boldsymbol{n}.

Note that above holds for any \boldsymbol{A} of size \boldsymbol{n}. Therefore

Analysis via Recurrence

Let $T(n)=\max _{A:|A|=n} \mathrm{E}[Q(A)]$ be the worst-case expected running time of randomized QuickSort on arrays of size \boldsymbol{n}.
We derived:

$$
\mathrm{E}[Q(A)] \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
$$

Note that above holds for any \boldsymbol{A} of size \boldsymbol{n}. Therefore

$$
\max _{A:|A|=n} \mathrm{E}[Q(A)]=T(n) \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i)) .
$$

Solving the Recurrence

$$
T(n) \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
$$

with base case $\boldsymbol{T}(\mathbf{1})=0$.

Lemma

$T(n)=O(n \log n)$.

Proof.

(Guess and) Verify by induction.

Solving the Recurrence

$$
T(n) \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
$$

with base case $\boldsymbol{T}(\mathbf{1})=0$.

Lemma

$$
T(n)=O(n \log n) .
$$

Proof.

(Guess and) Verify by induction.

Solving the Recurrence

$$
T(n) \leq n+\sum_{i=1}^{n} \frac{1}{n}(T(i-1)+T(n-i))
$$

with base case $T(1)=0$.
Lemma

$$
T(n)=O(n \log n) .
$$

Proof.

(Guess and) Verify by induction.

Notes

Notes

Notes

Notes

Hoare, C. A. R. (1962). Quicksort. Comput. J., 5(1):10-15.

