
Chapter 13

Greedy Algorithms for Minimum
Spanning Trees

OLD CS 473: Fundamental Algorithms, Spring 2015
March 5, 2015

13.1 Greedy Algorithms: Minimum Spanning Tree

13.2 Minimum Spanning Tree

13.2.1 The Problem
13.2.1.1 Minimum Spanning Tree

Input Connected graph G = (V,E) with edge costs

Goal Find T ⊆ E such that (V, T ) is connected and total cost of all edges in T is smallest

(A) T is the minimum spanning tree (MST) of G
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13.2.1.2 Applications

(A) Network Design
(A) Designing networks with minimum cost but maximum connectivity

(B) Approximation algorithms
(A) Can be used to bound the optimality of algorithms to approximate Traveling Sales-

man Problem, Steiner Trees, etc.
(C) Cluster Analysis

13.2.2 The Algorithms

13.2.2.1 Greedy Template

Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
choose i ∈ E
if (i satisfies condition)

add i to T
return the set T

Main Task: In what order should edges be processed? When should we add edge to
spanning tree?

13.2.2.2 Kruskal’s Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T as long
as they don’t form a cycle.
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13.2.2.3 Prim’s Algorithm

T maintained by algorithm will be a tree. Start with a node in T . In each iteration, pick
edge with least attachment cost to T .
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Order of edges considered:
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MST generated:
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13.2.2.4 Reverse Delete Algorithm

Initially E is the set of all edges in G
T is E (* T will store edges of a MST *)

while E is not empty do
choose i ∈ E of largest cost

if removing i does not disconnect T then
remove i from T

return the set T

Returns a minimum spanning tree.

13.2.3 Correctness
13.2.3.1 Correctness of MST Algorithms

(A) Many different MST algorithms
(B) All of them rely on some basic properties of MSTs, in particular the Cut Property

to be seen shortly.

13.2.4 Assumption

13.2.4.1 And for now . . .

Assumption 13.2.1. Edge costs are distinct, that is no two edge costs are equal.

13.2.4.2 Cuts

Definition 13.2.2. (A) G = (V,E): graph. A cut is a partition of the vertices of the graph
into two sets (S, V \ S).

(B) Edges having an endpoint on both sides are the edges of the cut.
(C) A cut edge is crossing the cut.

S V \ S S V \ S
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13.2.4.3 Safe and Unsafe Edges

Definition 13.2.3. An edge e = (u, v) is a safe edge if there is some partition of V into S
and V \S and e is the unique minimum cost edge crossing S (one end in S and the other in
V \ S).

Definition 13.2.4. An edge e = (u, v) is an unsafe edge if there is some cycle C such that
e is the unique maximum cost edge in C.

Proposition 13.2.5. If edge costs are distinct then every edge is either safe or unsafe.

Proof : Exercise.

13.2.5 Safe edge

13.2.5.1 Example...

(A) Every cut identifies one safe edge...

S V \ S
13

7

3

5

11

S V \ S
13

7

3

5

11

Safe edge in the cut (S, V \ S)

(B) ...the cheapest edge in the cut.
(C) Note: An edge e may be a safe edge for many cuts!

13.2.6 Unsafe edge

13.2.6.1 Example...

(A) Every cycle identifies one unsafe edge...
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(B) ...the most expensive edge in the cycle.

13.2.6.2 Example

And all safe edges are in the MST in this case...
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Figure 13.1: Graph with unique edge costs. Safe edges are red, rest are unsafe.

13.2.6.3 Key Observation: Cut Property

Lemma 13.2.6. If e is a safe edge then every minimum spanning tree contains e.

Proof :

(A) Suppose (for contradiction) e is not in MST T .
(B) Since e is safe there is an S ⊂ V such that e is the unique min cost edge crossing S.
(C) Since T is connected, there must be some edge f with one end in S and the other in

V \ S
(D) Since cf > ce, T

′ = (T \ {f}) ∪ {e} is a spanning tree of lower cost!
(E) Error: T ′ may not be a spanning tree!!

13.2.7 Error in Proof: Example

13.2.7.1 Problematic example. S = {1, 2, 7}, e = (7, 3), f = (1, 6). T − f + e is not
a spanning tree.
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(D)
(A) (A) Consider adding the edge f .
(B) (B) It is safe because it is the cheapest edge in the cut.
(C) (C) Lets throw out the edge e currently in the spanning tree which is more expensive

than f and is in the same cut. Put it f instead...
(D) (D) New graph of selected edges is not a tree anymore. BUG.

13.2.7.2 Proof of Cut Property

Proof :
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(A) Suppose e = (v, w) is not in MST T and e is min weight edge in cut (S, V \S). Assume
v ∈ S.

(B) T is spanning tree: there is a unique path P from v to w in T
(C) 4- Let w′ be the first vertex in P belonging to V \ S; let v′ be the vertex just before it

on P , and let e′ = (v′, w′)
(D) T ′ = (T \ {e′}) ∪ {e} is spanning tree of lower cost. (Why?)
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13.2.7.3 Proof of Cut Property (contd)

Observation 13.2.7. T ′ = (T \ {e′}) ∪ {e} is a spanning tree.

Proof : T ′ is connected.

Removed e′ = (v′, w′) from T but v′ and w′ are connected by the path P − f + e in T ′.
Hence T ′ is connected if T is.

T ′ is a tree

T ′ is connected and has n− 1 edges (since T had n− 1 edges) and hence T ′ is a tree

13.2.7.4 Safe Edges form a Tree

Lemma 13.2.8. Let G be a connected graph with distinct edge costs, then the set of safe
edges form a connected graph.

Proof :

(A) Suppose not. Let S be a connected component in the graph induced by the safe edges.
(B) Consider the edges crossing S, there must be a safe edge among them since edge costs

are distinct and so we must have picked it.

13.2.7.5 Safe Edges form an MST

Corollary 13.2.9. Let G be a connected graph with distinct edge costs, then set of safe edges
form the unique MST of G.

Consequence: Every correct MST algorithm when G has unique edge costs includes
exactly the safe edges.

13.2.7.6 Cycle Property

Lemma 13.2.10. If e is an unsafe edge then no MST of G contains e.

Proof : Exercise. See text book.

Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe
definitions do not rely on distinct cost assumption.
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13.2.7.7 Correctness of Prim’s Algorithm

Prim’s Algorithm Pick edge with minimum attachment cost to current tree, and add to
current tree.

Proof :[Proof of correctness]
(A) If e is added to tree, then e is safe and belongs to every MST.

(A) Let S be the vertices connected by edges in T when e is added.
(B) e is edge of lowest cost with one end in S and the other in V \ S and hence e is

safe.
(B) Set of edges output is a spanning tree

(A) Set of edges output forms a connected graph: by induction, S is connected in each
iteration and eventually S = V .

(B) Only safe edges added and they do not have a cycle

13.2.7.8 Correctness of Kruskal’s Algorithm

Kruskal’s Algorithm Pick edge of lowest cost and add if it does not form a cycle with existing
edges.

Proof :[Proof of correctness]
(A) If e = (u, v) is added to tree, then e is safe

(A) When algorithm adds e let S and S’ be the connected components containing u
and v respectively

(B) e is the lowest cost edge crossing S (and also S’).
(C) If there is an edge e′ crossing S and has lower cost than e, then e′ would come

before e in the sorted order and would be added by the algorithm to T
(B) Set of edges output is a spanning tree : exercise

13.2.7.9 Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm Consider edges in decreasing cost and remove an edge if it does
not disconnect the graph

Proof :[Proof of correctness] Argue that only unsafe edges are removed (see text book).

13.2.7.10 When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost
to each edge
Formal argument: Order edges lexicographically to break ties
(A) ei ≺ ej if either c(ei) < c(ej) or (c(ei) = c(ej) and i < j)
(B) Lexicographic ordering extends to sets of edges. If A,B ⊆ E, A ̸= B then A ≺ B if

either c(A) < c(B) or (c(A) = c(B) and A \B has a lower indexed edge than B \ A)

11



(C) Can order all spanning trees according to lexicographic order of their edge sets. Hence
there is a unique MST.

Prim’s, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic
ordering.

13.2.7.11 Edge Costs: Positive and Negative

(A) Algorithms and proofs don’t assume that edge costs are non-negative! MST algorithms
work for arbitrary edge costs.

(B) Another way to see this: make edge costs non-negative by adding to each edge a large
enough positive number. Why does this work for MSTs but not for shortest paths?

(C) Can computemaximum weight spanning tree by negating edge costs and then computing
an MST.

13.3 Data Structures for MST: Priority Queues and

Union-Find

13.4 Data Structures

13.4.1 Implementing Prim’s Algorithm

13.4.2 Implementing Prim’s Algorithm

13.4.2.1 Implementing Prim’s Algorithm

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

<2>while S ̸= V do
<3>pick e = (v, w) ∈ E such that

v ∈ S and w ∈ V − S
e has minimum cost

T = T ∪ e
S = S ∪ w

return the set T

Analysis

(A) Number of iterations = O(n), where n is number of vertices
(B) Picking e is O(m) where m is the number of edges
(C) Total time O(nm)

12



13.4.3 Implementing Prim’s Algorithm

13.4.3.1 More Efficient Implementation

Prim ComputeMST
E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v ̸∈ S, a(v) = minw∈S c(w, v)
for v ̸∈ S, e(v) = w such that w ∈ S and c(w, v) is minimum

while S ̸= V do
pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v).

13.4.4 Priority Queues
13.4.4.1 Priority Queues

Data structure to store a set S of n elements where each element v ∈ S has an associated
real/integer key k(v) such that the following operations
(A) makeQ: create an empty queue
(B) findMin: find the minimum key in S
(C) extractMin: Remove v ∈ S with smallest key and return it
(D) add(v, k(v)): Add new element v with key k(v) to S
(E) Delete(v): Remove element v from S
(F) decreaseKey (v, k′(v)): decrease key of v from k(v) (current key) to k′(v) (new key).

Assumption: k′(v) ≤ k(v)
(G) meld: merge two separate priority queues into one

13.4.4.2 Prim’s using priority queues

E is the set of all edges in G
S = {1}
T is empty (* T will store edges of a MST *)

for v ̸∈ S, a(v) = minw∈S c(w, v)
for v ̸∈ S, e(v) = w such that w ∈ S and c(w, v) is minimum

while S ̸= V do
<2>pick v with minimum a(v)
T = T ∪ {(e(v), v)}
S = S ∪ {v}
<3>update arrays a and e

return the set T

Maintain vertices in V \ S in a priority queue with key a(v)

13



(A) Requires O(n) extractMin operations
(B) Requires O(m) decreaseKey operations

13.4.4.3 Running time of Prim’s Algorithm

O(n) extractMin operations and O(m) decreaseKey operations
(A) Using standard Heaps, extractMin and decreaseKey take O(log n) time. Total:

O((m+ n) log n)
(B) Using Fibonacci Heaps, O(log n) for extractMin andO(1) (amortized) for decreaseKey.

Total: O(n log n+m).
Prim’s algorithm and Dijkstra’s algorithms are similar. Where is the difference?

13.4.5 Implementing Kruskal’s Algorithm
13.4.5.1 Kruskal’s Algorithm

Kruskal ComputeMST
Initially E is the set of all edges in G
T is empty (* T will store edges of a MST *)

while E is not empty do
<2-3>choose e ∈ E of minimum cost

<4-5>if (T ∪ {e} does not have cycles)

add e to T
return the set T

(A) Presort edges based on cost. Choosing minimum can be done in O(1) time
(B) Do BFS/DFS on T ∪ {e}. Takes O(n) time
(C) Total time O(m logm) +O(mn) = O(mn)

13.4.5.2 Implementing Kruskal’s Algorithm Efficiently

Kruskal ComputeMST
Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do
pick e = (u, v) ∈ E of minimum cost

<2->if u and v belong to different sets

add e to T
<2->merge the sets containing u and v

return the set T

Need a data structure to check if two elements belong to same set and to merge two sets.

13.4.6 Union-Find Data Structure
13.4.6.1 Union-Find Data Structure

Data Structure Store disjoint sets of elements that supports the following operations

14



(A) makeUnionFind(S) returns a data structure where each element of S is in a separate
set

(B) find(u) returns the name of set containing element u. Thus, u and v belong to the same
set if and only if find(u) = find(v)

(C) union(A,B) merges two sets A and B. Here A and B are the names of the sets.
Typically the name of a set is some element in the set.

13.4.6.2 Implementing Union-Find using Arrays and Lists

Using lists
(A) Each set stored as list with a name associated with the list.
(B) For each element u ∈ S a pointer to the its set. Array for pointers: component[u] is

pointer for u.
(C) makeUnionFind (S) takes O(n) time and space.

13.4.6.3 Example
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13.4.6.4 Implementing Union-Find using Arrays and Lists

(A) find(u) reads the entry component[u]: O(1) time
(B) union(A,B) involves updating the entries component[u] for all elements u in A and B:

O(|A|+ |B|) which is O(n)
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13.4.6.5 Improving the List Implementation for Union

New Implementation As before use component[u] to store set of u.
Change to union(A,B):
(A) with each set, keep track of its size
(B) assume |A| ≤ |B| for now
(C) Merge the list of A into that of B: O(1) time (linked lists)
(D) Update component[u] only for elements in the smaller set A
(E) Total O(|A|) time. Worst case is still O(n).
find still takes O(1) time

13.4.6.6 Example

s

t

u

v
w

x
y
z

s t

u w y

v x

z

Union(find(u), find(v))

s

t

u

v
w

x
y
z

s t

z

v xu w y

The smaller set (list) is appended to the largest set (list)

13.4.6.7 Improving the List Implementation for Union

Question Is the improved implementation provably better or is it simply a nice heuristic?

Theorem 13.4.1. Any sequence of k union operations, starting from makeUnionFind(S)
on set S of size n, takes at most O(k log k).

Corollary 13.4.2. Kruskal’s algorithm can be implemented in O(m logm) time.

Sorting takesO(m logm) time, O(m) finds takeO(m) time andO(n) unions takeO(n log n)
time.

13.4.6.8 Amortized Analysis

Why does theorem work?
Key Observation union(A,B) takes O(|A|) time where |A| ≤ |B|. Size of new set is

≥ 2|A|. Cannot double too many times.

13.4.6.9 Proof of Theorem

Proof :
(A) Any union operation involves at most 2 of the original one-element sets; thus at least

n− 2k elements have never been involved in a union
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(B) Also, maximum size of any set (after k unions) is 2k
(C) union(A,B) takes O(|A|) time where |A| ≤ |B|.
(D) Charge each element in A constant time to pay for O(|A|) time.
(E) How much does any element get charged?
(F) If component[v] is updated, set containing v doubles in size
(G) component[v] is updated at most log 2k times
(H) Total number of updates is 2k log 2k = O(k log k)

13.4.6.10 Improving Worst Case Time

Better data structure Maintain elements in a forest of in-trees; all elements in one tree belong
to a set with root’s name.
(A) find(u): Traverse from u to the root
(B) union(A,B): Make root of A (smaller set) point to root of B. Takes O(1) time.

13.4.6.11 Details of Implementation

Each element u ∈ S has a pointer parent(u) to its ancestor.

makeUnionFind(S)
for each u in S do

parent(u) = u

find(u)
while (parent(u) ̸= u) do

u = parent(u)
return u

union(component(u), component(v))

(* parent(u) = u & parent(v) = v *)

if (|component(u)| ≤ |component(v)|) then
parent(u) = v

else
parent(v) = u

set new component size to |component(u)|+ |component(v)|

13.4.6.12 Analysis

Theorem 13.4.3. The forest based implementation for a set of size n, has the following
complexity for the various operations: makeUnionFind takes O(n), union takes O(1),
and find takes O(log n).

Proof :
(A) find(u) depends on the height of tree containing u.
(B) Height of u increases by at most 1 only when the set containing u changes its name.
(C) If height of u increases then size of the set containing u (at least) doubles.
(D) Maximum set size is n; so height of any tree is at most O(log n).
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13.4.6.13 Further Improvements: Path Compression

Observation 13.4.4. Consecutive calls of find(u) take O(log n) time each, but they traverse
the same sequence of pointers.

Idea: Path Compression Make all nodes encountered in the find(u) point to root.

13.4.6.14 Path Compression: Example

r

v

w

u
after find(u)

r

v

w

uu u

13.4.6.15 Path Compression

find(u):
if (parent(u) ̸= u) then

parent(u) = find(parent(u))
return parent(u)

Question Does Path Compression help?
Yes!

Theorem 13.4.5. With Path Compression, k operations (find and/or union) take O(kα(k,min{k, n}))
time where α is the inverse Ackermann function.

13.4.6.16 Ackermann and Inverse Ackermann Functions

Ackermann function A(m,n) defined for m,n ≥ 0 recursively

A(m,n) =


n+ 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) if m > 0 and n > 0

A(3, n) = 2n+3 − 3
A(4, 3) = 265536 − 3

α(m,n) is inverse Ackermann function defined as

α(m,n) = min{i | A(i, ⌊m/n⌋) ≥ log2 n}

For all practical purposes α(m,n) ≤ 5
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13.4.6.17 Lower Bound for Union-Find Data Structure

Amazing result:

Theorem 13.4.6 (Tarjan). For Union-Find, any data structure in the pointer model
requires Ω(mα(m,n)) time for m operations.

13.4.6.18 Running time of Kruskal’s Algorithm

Using Union-Find data structure:
(A) O(m) find operations (two for each edge)
(B) O(n) union operations (one for each edge added to T )
(C) Total time: O(m logm) for sorting plus O(mα(n)) for union-find operations. Thus

O(m logm) time despite the improved Union-Find data structure.

13.4.6.19 Best Known Asymptotic Running Times for MST

Prim’s algorithm using Fibonacci heaps: O(n log n+m).
If m is O(n) then running time is Ω(n log n).

Question Is there a linear time (O(m+ n) time) algorithm for MST?
(A) O(m log∗m) time Fredman and Tarjan [1987].
(B) O(m+ n) time using bit operations in RAM model Fredman and Willard [1994].
(C) O(m+ n) expected time (randomized algorithm) Karger et al. [1995].
(D) O((n+m)α(m,n)) time Chazelle [2000].
(E) Still open: Is there an O(n+m) time deterministic algorithm in the comparison model?
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