# Chapter 13

# Greedy Algorithms for Minimum Spanning Trees

OLD CS 473: Fundamental Algorithms, Spring 2015 March 5, 2015

## 13.1 Greedy Algorithms: Minimum Spanning Tree

## 13.2 Minimum Spanning Tree

13.2.1 The Problem

### 13.2.1.1 Minimum Spanning Tree

**Input** Connected graph G = (V, E) with edge costs

**Goal** Find  $T \subseteq E$  such that (V, T) is connected and total cost of all edges in T is smallest

(A) T is the minimum spanning tree (MST) of G



### 13.2.1.2 Applications

- (A) Network Design
  - (A) Designing networks with minimum cost but maximum connectivity
- (B) Approximation algorithms
  - (A) Can be used to bound the optimality of algorithms to approximate Traveling Salesman Problem, Steiner Trees, etc.
- (C) Cluster Analysis

## 13.2.2 The Algorithms

13.2.2.1 Greedy Template

```
Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do

choose i \in E

if (i satisfies condition)

add i to T

return the set T
```

**Main Task:** In what order should edges be processed? When should we add edge to spanning tree?

### 13.2.2.2 Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T as long as they don't form a cycle.







13.2.2.3 Prim's Algorithm

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T.



 $\implies$ 



### 13.2.2.4 Reverse Delete Algorithm

```
Initially E is the set of all edges in G

T is E (* T will store edges of a MST *)

while E is not empty do

choose i \in E of largest cost

if removing i does not disconnect T then

remove i from T

return the set T
```

Returns a minimum spanning tree.

### 13.2.3 Correctness

### 13.2.3.1 Correctness of MST Algorithms

- (A) Many different MST algorithms
- (B) All of them rely on some basic properties of MSTs, in particular the *Cut Property* to be seen shortly.

## 13.2.4 Assumption

13.2.4.1 And for now ...

Assumption 13.2.1. Edge costs are distinct, that is no two edge costs are equal.

### 13.2.4.2 Cuts

**Definition 13.2.2.** (A) G = (V, E): graph. A **cut** is a partition of the vertices of the graph into two sets  $(S, V \setminus S)$ .

(B) Edges having an endpoint on both sides are the edges of the cut.

(C) A cut edge is crossing the cut.



### 13.2.4.3 Safe and Unsafe Edges

**Definition 13.2.3.** An edge e = (u, v) is a **safe** edge if there is some partition of V into S and  $V \setminus S$  and e is the unique minimum cost edge crossing S (one end in S and the other in  $V \setminus S$ ).

**Definition 13.2.4.** An edge e = (u, v) is an **unsafe** edge if there is some cycle C such that e is the unique maximum cost edge in C.

**Proposition 13.2.5.** If edge costs are distinct then every edge is either safe or unsafe.

Proof: Exercise.

### 13.2.5 Safe edge

### 13.2.5.1 Example...

(A) Every cut identifies one safe edge...





Safe edge in the cut  $(S, V \setminus S)$ 

(B) ... the cheapest edge in the cut.

(C) Note: An edge e may be a safe edge for many cuts!

## 13.2.6 Unsafe edge

13.2.6.1 Example...



(B) ... the most expensive edge in the cycle.

### 13.2.6.2 Example

And all safe edges are in the MST in this case...



Figure 13.1: Graph with unique edge costs. Safe edges are red, rest are unsafe.

### 13.2.6.3 Key Observation: Cut Property

Lemma 13.2.6. If e is a safe edge then every minimum spanning tree contains e.

### *Proof*:

- (A) Suppose (for contradiction) e is not in MST T.
- (B) Since e is safe there is an  $S \subset V$  such that e is the unique min cost edge crossing S.
- (C) Since T is connected, there must be some edge f with one end in S and the other in  $V \setminus S$
- (D) Since  $c_f > c_e$ ,  $T' = (T \setminus \{f\}) \cup \{e\}$  is a spanning tree of lower cost!
- (E) **Error:** T' may not be a spanning tree!!

## 13.2.7 Error in Proof: Example

**13.2.7.1** Problematic example.  $S = \{1, 2, 7\}, e = (7, 3), f = (1, 6).$  T - f + e is not a spanning tree.





- (A) (A) Consider adding the edge f.
- (B) (B) It is safe because it is the cheapest edge in the cut.
- (C) (C) Lets throw out the edge e currently in the spanning tree which is more expensive than f and is in the same cut. Put it f instead...
- (D) (D) New graph of selected edges is not a tree anymore. BUG.





- (A) Suppose e = (v, w) is not in MST T and e is min weight edge in cut  $(S, V \setminus S)$ . Assume  $v \in S$ .
- (B) T is spanning tree: there is a unique path P from v to w in T
- (C) 4- Let w' be the first vertex in P belonging to  $V \setminus S$ ; let v' be the vertex just before it on P, and let e' = (v', w')
- (D)  $T' = (T \setminus \{e'\}) \cup \{e\}$  is spanning tree of lower cost. (Why?)

### 13.2.7.3 Proof of Cut Property (contd)

**Observation 13.2.7.**  $T' = (T \setminus \{e'\}) \cup \{e\}$  is a spanning tree.

*Proof*: T' is connected.

Removed e' = (v', w') from T but v' and w' are connected by the path P - f + e in T'. Hence T' is connected if T is.

 $T^\prime$  is a tree

T' is connected and has n-1 edges (since T had n-1 edges) and hence T' is a tree

#### 13.2.7.4 Safe Edges form a Tree

**Lemma 13.2.8.** Let G be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

### *Proof*:

- (A) Suppose not. Let S be a connected component in the graph induced by the safe edges.
- (B) Consider the edges crossing S, there must be a safe edge among them since edge costs are distinct and so we must have picked it.

#### 13.2.7.5 Safe Edges form an MST

**Corollary 13.2.9.** Let G be a connected graph with distinct edge costs, then set of safe edges form the **unique** MST of G.

**Consequence:** Every correct MST algorithm when G has unique edge costs includes exactly the safe edges.

### 13.2.7.6 Cycle Property

**Lemma 13.2.10.** If e is an unsafe edge then no MST of G contains e.

*Proof*: Exercise. See text book.

**Note:** Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe definitions do not rely on distinct cost assumption.

### 13.2.7.7 Correctness of Prim's Algorithm

Prim's Algorithm Pick edge with minimum attachment cost to current tree, and add to current tree.

*Proof*:[Proof of correctness]

- (A) If e is added to tree, then e is safe and belongs to every MST.
  - (A) Let S be the vertices connected by edges in T when e is added.
  - (B) e is edge of lowest cost with one end in S and the other in  $V \setminus S$  and hence e is safe.
- (B) Set of edges output is a spanning tree
  - (A) Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually S = V.
  - (B) Only safe edges added and they do not have a cycle

### 13.2.7.8 Correctness of Kruskal's Algorithm

Kruskal's Algorithm Pick edge of lowest cost and add if it does not form a cycle with existing edges.

*Proof*:[Proof of correctness]

- (A) If e = (u, v) is added to tree, then e is safe
  - (A) When algorithm adds e let S and S' be the connected components containing u and v respectively
  - (B) e is the lowest cost edge crossing S (and also S').
  - (C) If there is an edge e' crossing S and has lower cost than e, then e' would come before e in the sorted order and would be added by the algorithm to T
- (B) Set of edges output is a spanning tree : exercise

### 13.2.7.9 Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm Consider edges in decreasing cost and remove an edge if it does not disconnect the graph

*Proof*: [Proof of correctness] Argue that only unsafe edges are removed (see text book).

### 13.2.7.10 When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- (A)  $e_i \prec e_j$  if either  $c(e_i) < c(e_j)$  or  $(c(e_i) = c(e_j)$  and i < j)
- (B) Lexicographic ordering extends to sets of edges. If  $A, B \subseteq E, A \neq B$  then  $A \prec B$  if either c(A) < c(B) or (c(A) = c(B) and  $A \setminus B$  has a lower indexed edge than  $B \setminus A$ )

(C) Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

### 13.2.7.11 Edge Costs: Positive and Negative

- (A) Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
- (B) Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
- (C) Can compute *maximum* weight spanning tree by negating edge costs and then computing an MST.

## 13.3 Data Structures for MST: Priority Queues and Union-Find

- **13.4** Data Structures
- 13.4.1 Implementing Prim's Algorithm
- 13.4.2 Implementing Prim's Algorithm
- 13.4.2.1 Implementing Prim's Algorithm

```
\begin{array}{l} \textbf{Prim\_ComputeMST}\\ E \text{ is the set of all edges in } G\\ S = \{1\}\\ T \text{ is empty (* } T \text{ will store edges of a MST *)}\\ \textbf{<2>while } S \neq V \text{ do}\\ \textbf{<3>pick } e = (v,w) \in E \text{ such that}\\ v \in S \text{ and } w \in V - S\\ e \text{ has minimum cost}\\ T = T \cup e\\ S = S \cup w\\ \textbf{return the set } T\end{array}
```

### Analysis

- (A) Number of iterations = O(n), where n is number of vertices
- (B) Picking e is O(m) where m is the number of edges
- (C) Total time O(nm)

## 13.4.3 Implementing Prim's Algorithm

### 13.4.3.1 More Efficient Implementation

```
\begin{array}{l} \textbf{Prim\_ComputeMST}\\ E \text{ is the set of all edges in } G\\ S = \{1\}\\ T \text{ is empty } (* \ T \ \text{will store edges of a } \texttt{MST } *)\\ \text{for } v \not\in S, \ a(v) = \min_{w \in S} c(w,v)\\ \text{for } v \not\in S, \ e(v) = w \ \text{such that } w \in S \ \text{and } c(w,v) \ \text{is minimum}\\ \textbf{while } S \neq V \ \textbf{do}\\ \text{ pick } v \ \text{with minimum } a(v)\\ T = T \cup \{(e(v),v)\}\\ S = S \cup \{v\}\\ \text{ update arrays } a \ \text{and } e\\ \textbf{return the set } T\end{array}
```

Maintain vertices in  $V \setminus S$  in a priority queue with key a(v).

## 13.4.4 Priority Queues

### 13.4.4.1 Priority Queues

Data structure to store a set S of n elements where each element  $v \in S$  has an associated real/integer key k(v) such that the following operations

- (A) **makeQ**: create an empty queue
- (B) findMin: find the minimum key in S
- (C) **extractMin**: Remove  $v \in S$  with smallest key and return it
- (D) add(v, k(v)): Add new element v with key k(v) to S
- (E) **Delete**(v): Remove element v from S
- (F) **decreaseKey** (v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption:  $k'(v) \le k(v)$
- (G) meld: merge two separate priority queues into one

### 13.4.4.2 Prim's using priority queues

Maintain vertices in  $V \setminus S$  in a priority queue with key a(v)

- (A) Requires O(n) extract Min operations
- (B) Requires O(m) decreaseKey operations

### 13.4.4.3 Running time of Prim's Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

- (A) Using standard Heaps, **extractMin** and **decreaseKey** take  $O(\log n)$  time. Total:  $O((m+n)\log n)$
- (B) Using Fibonacci Heaps,  $O(\log n)$  for extractMin and O(1) (amortized) for decreaseKey. Total:  $O(n \log n + m)$ .

Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?

## 13.4.5 Implementing Kruskal's Algorithm

13.4.5.1 Kruskal's Algorithm

```
Kruskal_ComputeMST

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do

<2-3>choose e \in E of minimum cost

<4-5>if (T \cup \{e\} does not have cycles)

add e to T

return the set T
```

- (A) Presort edges based on cost. Choosing minimum can be done in O(1) time
- (B) Do **BFS/DFS** on  $T \cup \{e\}$ . Takes O(n) time
- (C) Total time  $O(m \log m) + O(mn) = O(mn)$

### 13.4.5.2 Implementing Kruskal's Algorithm Efficiently

```
 \begin{array}{l} \textbf{Kruskal\_ComputeMST} \\ \text{Sort edges in $E$ based on cost} \\ T \text{ is empty (* $T$ will store edges of a MST *)} \\ \text{each vertex $u$ is placed in a set by itself} \\ \textbf{while $E$ is not empty do} \\ \text{pick $e = (u, v) \in E$ of minimum cost} \\ <2-> \text{if $u$ and $v$ belong to different sets} \\ \text{add $e$ to $T$} \\ <2-> \text{merge the sets containing $u$ and $v$} \\ \textbf{return the set $T$} \end{array}
```

Need a data structure to check if two elements belong to same set and to merge two sets.

### 13.4.6 Union-Find Data Structure 13.4.6.1 Union-Find Data Structure

Data Structure Store disjoint sets of elements that supports the following operations

- (A) **makeUnionFind**(S) returns a data structure where each element of S is in a separate set
- (B) find(u) returns the *name* of set containing element u. Thus, u and v belong to the same set if and only if find(u) = find(v)
- (C) union(A, B) merges two sets A and B. Here A and B are the names of the sets. Typically the name of a set is some element in the set.

### 13.4.6.2 Implementing Union-Find using Arrays and Lists

Using lists

- (A) Each set stored as list with a name associated with the list.
- (B) For each element  $u \in S$  a pointer to the its set. Array for pointers: component[u] is pointer for u.
- (C) makeUnionFind (S) takes O(n) time and space.

### 13.4.6.3 Example



### 13.4.6.4 Implementing Union-Find using Arrays and Lists

- (A) find(u) reads the entry component[u]: O(1) time
- (B) **union**(A,B) involves updating the entries component[u] for all elements u in A and B: O(|A| + |B|) which is O(n)



### 13.4.6.5 Improving the List Implementation for Union

New Implementation As before use component[u] to store set of u. Change to union(A,B):

- (A) with each set, keep track of its size
- (B) assume  $|A| \leq |B|$  for now
- (C) Merge the list of A into that of B: O(1) time (linked lists)
- (D) Update component[u] only for elements in the smaller set A
- (E) Total O(|A|) time. Worst case is still O(n).

find still takes O(1) time

### 13.4.6.6 Example



The smaller set (list) is appended to the largest set (list)

### 13.4.6.7 Improving the List Implementation for Union

Question Is the improved implementation provably better or is it simply a nice heuristic?

**Theorem 13.4.1.** Any sequence of k union operations, starting from makeUnionFind(S) on set S of size n, takes at most  $O(k \log k)$ .

**Corollary 13.4.2.** Kruskal's algorithm can be implemented in  $O(m \log m)$  time.

Sorting takes  $O(m \log m)$  time, O(m) finds take O(m) time and O(n) unions take  $O(n \log n)$  time.

### 13.4.6.8 Amortized Analysis

Why does theorem work?

Key Observation union(A,B) takes O(|A|) time where  $|A| \leq |B|$ . Size of new set is  $\geq 2|A|$ . Cannot double too many times.

### 13.4.6.9 Proof of Theorem

*Proof*:

(A) Any union operation involves at most 2 of the original one-element sets; thus at least n - 2k elements have never been involved in a union

- (B) Also, maximum size of any set (after k unions) is 2k
- (C) union(A,B) takes O(|A|) time where  $|A| \leq |B|$ .
- (D) Charge each element in A constant time to pay for O(|A|) time.
- (E) How much does any element get charged?
- (F) If component[v] is updated, set containing v doubles in size
- (G) component[v] is updated at most  $\log 2k$  times
- (H) Total number of updates is  $2k \log 2k = O(k \log k)$

13.4.6.10 Improving Worst Case Time

Better data structure Maintain elements in a forest of *in-trees*; all elements in one tree belong to a set with root's name.

- (A) find(u): Traverse from u to the root
- (B) union(A, B): Make root of A (smaller set) point to root of B. Takes O(1) time.

### 13.4.6.11 Details of Implementation

Each element  $u \in S$  has a pointer parent(u) to its ancestor.



union(component(u), component(v))
 (\* parent(u) = u & parent(v) = v \*)
 if (|component(u)| ≤ |component(v)|) then
 parent(u) = v
 else
 parent(v) = u
 set new component size to |component(u)| + |component(v)|

### 13.4.6.12 Analysis

**Theorem 13.4.3.** The forest based implementation for a set of size n, has the following complexity for the various operations: **makeUnionFind** takes O(n), **union** takes O(1), and find takes  $O(\log n)$ .

*Proof*:

- (A) find(u) depends on the height of tree containing u.
- (B) Height of u increases by at most 1 only when the set containing u changes its name.
- (C) If height of u increases then size of the set containing u (at least) doubles.
- (D) Maximum set size is n; so height of any tree is at most  $O(\log n)$ .

### 13.4.6.13 Further Improvements: Path Compression

**Observation 13.4.4.** Consecutive calls of find(u) take  $O(\log n)$  time each, but they traverse the same sequence of pointers.

Idea: Path Compression Make all nodes encountered in the find(u) point to root.

13.4.6.14 Path Compression: Example



13.4.6.15 Path Compression

| find( $u$ ):                 |
|------------------------------|
| if $(parent(u) \neq u)$ then |
| parent(u) = find(parent(u))  |
| <b>return</b> $parent(u)$    |

Question Does Path Compression help? Yes!

**Theorem 13.4.5.** With Path Compression, k operations (find and/or union) take  $O(k\alpha(k, \min\{k, n\}))$  time where  $\alpha$  is the inverse Ackermann function.

### 13.4.6.16 Ackermann and Inverse Ackermann Functions

Ackermann function A(m, n) defined for  $m, n \ge 0$  recursively

$$A(m,n) = \begin{cases} n+1 & \text{if } m = 0\\ A(m-1,1) & \text{if } m > 0 \text{ and } n = 0\\ A(m-1,A(m,n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{cases}$$

 $A(3,n) = 2^{n+3} - 3$  $A(4,3) = 2^{65536} - 3$ 

 $\alpha(m,n)$  is inverse Ackermann function defined as

 $\alpha(m,n) = \min\{i \mid A(i, \lfloor m/n \rfloor) \ge \log_2 n\}$ 

For all practical purposes  $\alpha(m, n) \leq 5$ 

### 13.4.6.17 Lower Bound for Union-Find Data Structure

Amazing result:

**Theorem 13.4.6 (Tarjan).** For Union-Find, any data structure in the pointer model requires  $\Omega(m\alpha(m, n))$  time for m operations.

### 13.4.6.18 Running time of Kruskal's Algorithm

Using Union-Find data structure:

- (A) O(m) find operations (two for each edge)
- (B) O(n) union operations (one for each edge added to T)
- (C) Total time:  $O(m \log m)$  for sorting plus  $O(m\alpha(n))$  for union-find operations. Thus  $O(m \log m)$  time despite the improved Union-Find data structure.

### 13.4.6.19 Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps:  $O(n \log n + m)$ .

If m is O(n) then running time is  $\Omega(n \log n)$ .

- Question Is there a linear time (O(m+n) time) algorithm for MST?
- (A)  $O(m \log^* m)$  time Fredman and Tarjan [1987].
- (B) O(m+n) time using bit operations in RAM model Fredman and Willard [1994].
- (C) O(m+n) expected time (randomized algorithm) Karger et al. [1995].
- (D)  $O((n+m)\alpha(m,n))$  time Chazelle [2000].
- (E) Still open: Is there an O(n+m) time deterministic algorithm in the comparison model?

# Bibliography

- Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-ackermann type complexity. J. Assoc. Comput. Mach., 47(6):1028–1047.
- Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. J. Assoc. Comput. Mach., 34(3):596–615.
- Fredman, M. L. and Willard, D. E. (1994). Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Sys. Sci., 48(3):533–551.
- Karger, D. R., Klein, P. N., and Tarjan, R. E. (1995). A randomized linear-time algorithm to find minimum spanning trees. J. Assoc. Comput. Mach., 42(2):321–328.