Chapter 13

Greedy Algorithms for Minimum Spanning Trees

OLD CS 473: Fundamental Algorithms, Spring 2015 March 5, 2015

13.1 Greedy Algorithms: Minimum Spanning Tree

13.2 Minimum Spanning Tree

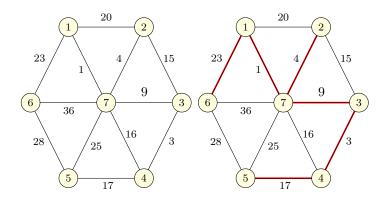
13.2.1 The Problem

13.2.1.1 Minimum Spanning Tree

Input Connected graph G = (V, E) with edge costs

Goal Find $T \subseteq E$ such that (V, T) is connected and total cost of all edges in T is smallest

(A) T is the minimum spanning tree (MST) of G



13.2.1.2 Applications

- (A) Network Design
 - (A) Designing networks with minimum cost but maximum connectivity
- (B) Approximation algorithms
 - (A) Can be used to bound the optimality of algorithms to approximate Traveling Salesman Problem, Steiner Trees, etc.
- (C) Cluster Analysis

13.2.2 The Algorithms

13.2.2.1 Greedy Template

```
Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do

choose i \in E

if (i satisfies condition)

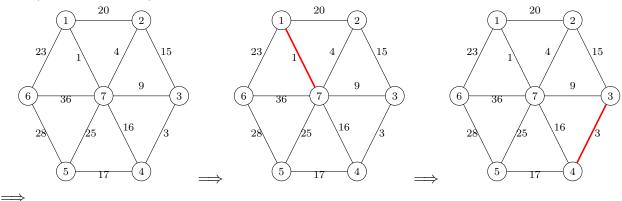
add i to T

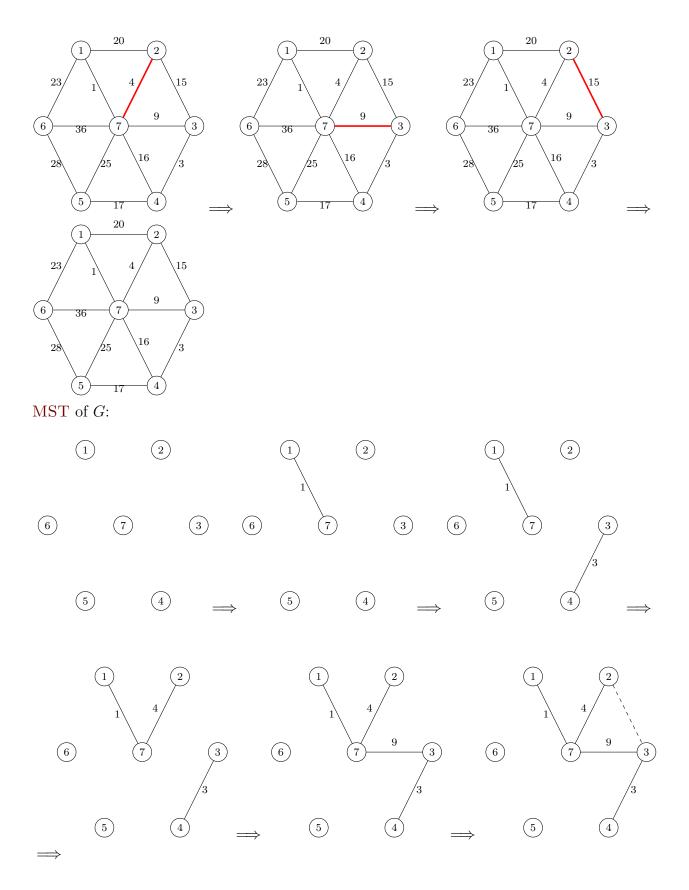
return the set T
```

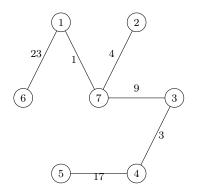
Main Task: In what order should edges be processed? When should we add edge to spanning tree?

13.2.2.2 Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T as long as they don't form a cycle.

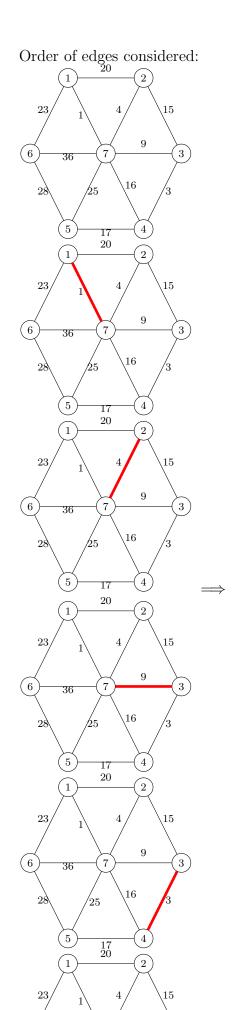




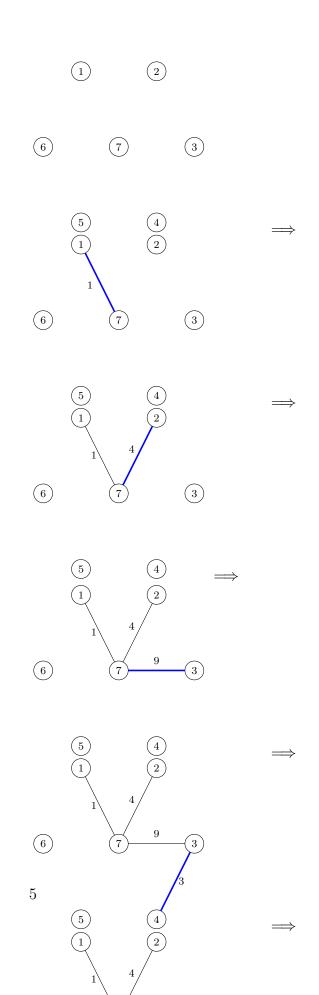


13.2.2.3 Prim's Algorithm

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T.



 \implies



13.2.2.4 Reverse Delete Algorithm

```
Initially E is the set of all edges in G

T is E (* T will store edges of a MST *)

while E is not empty do

choose i \in E of largest cost

if removing i does not disconnect T then

remove i from T

return the set T
```

Returns a minimum spanning tree.

13.2.3 Correctness

13.2.3.1 Correctness of MST Algorithms

- (A) Many different MST algorithms
- (B) All of them rely on some basic properties of MSTs, in particular the *Cut Property* to be seen shortly.

13.2.4 Assumption

13.2.4.1 And for now ...

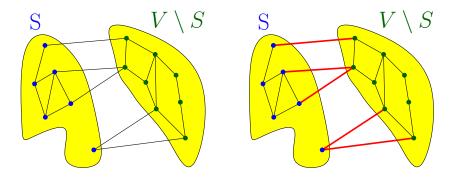
Assumption 13.2.1. Edge costs are distinct, that is no two edge costs are equal.

13.2.4.2 Cuts

Definition 13.2.2. (A) G = (V, E): graph. A **cut** is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

(B) Edges having an endpoint on both sides are the edges of the cut.

(C) A cut edge is crossing the cut.



13.2.4.3 Safe and Unsafe Edges

Definition 13.2.3. An edge e = (u, v) is a **safe** edge if there is some partition of V into S and $V \setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \setminus S$).

Definition 13.2.4. An edge e = (u, v) is an **unsafe** edge if there is some cycle C such that e is the unique maximum cost edge in C.

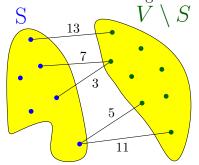
Proposition 13.2.5. If edge costs are distinct then every edge is either safe or unsafe.

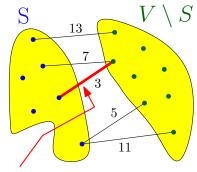
Proof: Exercise.

13.2.5 Safe edge

13.2.5.1 Example...

(A) Every cut identifies one safe edge...





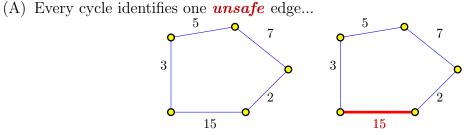
Safe edge in the cut $(S, V \setminus S)$

(B) ... the cheapest edge in the cut.

(C) Note: An edge e may be a safe edge for many cuts!

13.2.6 Unsafe edge

13.2.6.1 Example...



(B) ... the most expensive edge in the cycle.

13.2.6.2 Example

And all safe edges are in the MST in this case...

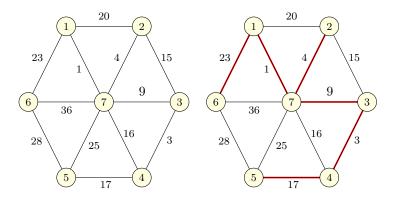


Figure 13.1: Graph with unique edge costs. Safe edges are red, rest are unsafe.

13.2.6.3 Key Observation: Cut Property

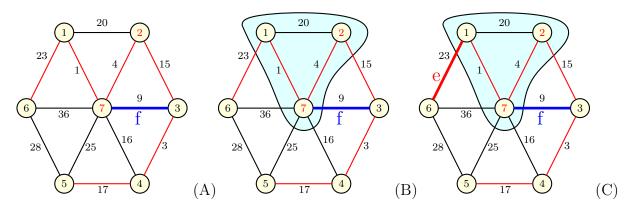
Lemma 13.2.6. If e is a safe edge then every minimum spanning tree contains e.

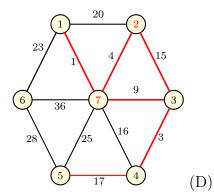
Proof:

- (A) Suppose (for contradiction) e is not in MST T.
- (B) Since e is safe there is an $S \subset V$ such that e is the unique min cost edge crossing S.
- (C) Since T is connected, there must be some edge f with one end in S and the other in $V \setminus S$
- (D) Since $c_f > c_e$, $T' = (T \setminus \{f\}) \cup \{e\}$ is a spanning tree of lower cost!
- (E) **Error:** T' may not be a spanning tree!!

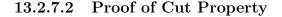
13.2.7 Error in Proof: Example

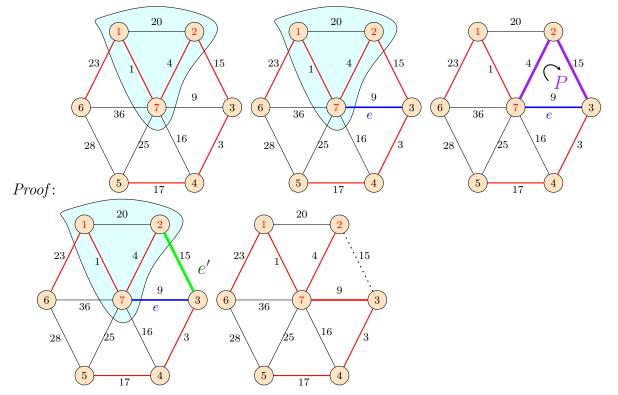
13.2.7.1 Problematic example. $S = \{1, 2, 7\}, e = (7, 3), f = (1, 6).$ T - f + e is not a spanning tree.





- (A) (A) Consider adding the edge f.
- (B) (B) It is safe because it is the cheapest edge in the cut.
- (C) (C) Lets throw out the edge e currently in the spanning tree which is more expensive than f and is in the same cut. Put it f instead...
- (D) (D) New graph of selected edges is not a tree anymore. BUG.





- (A) Suppose e = (v, w) is not in MST T and e is min weight edge in cut $(S, V \setminus S)$. Assume $v \in S$.
- (B) T is spanning tree: there is a unique path P from v to w in T
- (C) 4- Let w' be the first vertex in P belonging to $V \setminus S$; let v' be the vertex just before it on P, and let e' = (v', w')
- (D) $T' = (T \setminus \{e'\}) \cup \{e\}$ is spanning tree of lower cost. (Why?)

13.2.7.3 Proof of Cut Property (contd)

Observation 13.2.7. $T' = (T \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof: T' is connected.

Removed e' = (v', w') from T but v' and w' are connected by the path P - f + e in T'. Hence T' is connected if T is.

 T^\prime is a tree

T' is connected and has n-1 edges (since T had n-1 edges) and hence T' is a tree

13.2.7.4 Safe Edges form a Tree

Lemma 13.2.8. Let G be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

Proof:

- (A) Suppose not. Let S be a connected component in the graph induced by the safe edges.
- (B) Consider the edges crossing S, there must be a safe edge among them since edge costs are distinct and so we must have picked it.

13.2.7.5 Safe Edges form an MST

Corollary 13.2.9. Let G be a connected graph with distinct edge costs, then set of safe edges form the **unique** MST of G.

Consequence: Every correct MST algorithm when G has unique edge costs includes exactly the safe edges.

13.2.7.6 Cycle Property

Lemma 13.2.10. If e is an unsafe edge then no MST of G contains e.

Proof: Exercise. See text book.

Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe definitions do not rely on distinct cost assumption.

13.2.7.7 Correctness of Prim's Algorithm

Prim's Algorithm Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof:[Proof of correctness]

- (A) If e is added to tree, then e is safe and belongs to every MST.
 - (A) Let S be the vertices connected by edges in T when e is added.
 - (B) e is edge of lowest cost with one end in S and the other in $V \setminus S$ and hence e is safe.
- (B) Set of edges output is a spanning tree
 - (A) Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually S = V.
 - (B) Only safe edges added and they do not have a cycle

13.2.7.8 Correctness of Kruskal's Algorithm

Kruskal's Algorithm Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof:[Proof of correctness]

- (A) If e = (u, v) is added to tree, then e is safe
 - (A) When algorithm adds e let S and S' be the connected components containing u and v respectively
 - (B) e is the lowest cost edge crossing S (and also S').
 - (C) If there is an edge e' crossing S and has lower cost than e, then e' would come before e in the sorted order and would be added by the algorithm to T
- (B) Set of edges output is a spanning tree : exercise

13.2.7.9 Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm Consider edges in decreasing cost and remove an edge if it does not disconnect the graph

Proof: [Proof of correctness] Argue that only unsafe edges are removed (see text book).

13.2.7.10 When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- (A) $e_i \prec e_j$ if either $c(e_i) < c(e_j)$ or $(c(e_i) = c(e_j)$ and i < j)
- (B) Lexicographic ordering extends to sets of edges. If $A, B \subseteq E, A \neq B$ then $A \prec B$ if either c(A) < c(B) or (c(A) = c(B) and $A \setminus B$ has a lower indexed edge than $B \setminus A$)

(C) Can order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

13.2.7.11 Edge Costs: Positive and Negative

- (A) Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
- (B) Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
- (C) Can compute *maximum* weight spanning tree by negating edge costs and then computing an MST.

13.3 Data Structures for MST: Priority Queues and Union-Find

- **13.4** Data Structures
- 13.4.1 Implementing Prim's Algorithm
- 13.4.2 Implementing Prim's Algorithm
- 13.4.2.1 Implementing Prim's Algorithm

```
\begin{array}{l} \textbf{Prim\_ComputeMST}\\ E \text{ is the set of all edges in } G\\ S = \{1\}\\ T \text{ is empty (* } T \text{ will store edges of a MST *)}\\ \textbf{<2>while } S \neq V \text{ do}\\ \textbf{<3>pick } e = (v,w) \in E \text{ such that}\\ v \in S \text{ and } w \in V - S\\ e \text{ has minimum cost}\\ T = T \cup e\\ S = S \cup w\\ \textbf{return the set } T\end{array}
```

Analysis

- (A) Number of iterations = O(n), where n is number of vertices
- (B) Picking e is O(m) where m is the number of edges
- (C) Total time O(nm)

13.4.3 Implementing Prim's Algorithm

13.4.3.1 More Efficient Implementation

```
\begin{array}{l} \textbf{Prim\_ComputeMST}\\ E \text{ is the set of all edges in } G\\ S = \{1\}\\ T \text{ is empty } (* \ T \ \text{will store edges of a } \texttt{MST } *)\\ \text{for } v \not\in S, \ a(v) = \min_{w \in S} c(w,v)\\ \text{for } v \not\in S, \ e(v) = w \ \text{such that } w \in S \ \text{and } c(w,v) \ \text{is minimum}\\ \textbf{while } S \neq V \ \textbf{do}\\ \text{ pick } v \ \text{with minimum } a(v)\\ T = T \cup \{(e(v),v)\}\\ S = S \cup \{v\}\\ \text{ update arrays } a \ \text{and } e\\ \textbf{return the set } T\end{array}
```

Maintain vertices in $V \setminus S$ in a priority queue with key a(v).

13.4.4 Priority Queues

13.4.4.1 Priority Queues

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations

- (A) **makeQ**: create an empty queue
- (B) findMin: find the minimum key in S
- (C) **extractMin**: Remove $v \in S$ with smallest key and return it
- (D) add(v, k(v)): Add new element v with key k(v) to S
- (E) **Delete**(v): Remove element v from S
- (F) **decreaseKey** (v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: $k'(v) \le k(v)$
- (G) meld: merge two separate priority queues into one

13.4.4.2 Prim's using priority queues

Maintain vertices in $V \setminus S$ in a priority queue with key a(v)

- (A) Requires O(n) extract Min operations
- (B) Requires O(m) decreaseKey operations

13.4.4.3 Running time of Prim's Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

- (A) Using standard Heaps, **extractMin** and **decreaseKey** take $O(\log n)$ time. Total: $O((m+n)\log n)$
- (B) Using Fibonacci Heaps, $O(\log n)$ for extractMin and O(1) (amortized) for decreaseKey. Total: $O(n \log n + m)$.

Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?

13.4.5 Implementing Kruskal's Algorithm

13.4.5.1 Kruskal's Algorithm

```
Kruskal_ComputeMST

Initially E is the set of all edges in G

T is empty (* T will store edges of a MST *)

while E is not empty do

<2-3>choose e \in E of minimum cost

<4-5>if (T \cup \{e\} does not have cycles)

add e to T

return the set T
```

- (A) Presort edges based on cost. Choosing minimum can be done in O(1) time
- (B) Do **BFS/DFS** on $T \cup \{e\}$. Takes O(n) time
- (C) Total time $O(m \log m) + O(mn) = O(mn)$

13.4.5.2 Implementing Kruskal's Algorithm Efficiently

```
 \begin{array}{l} \textbf{Kruskal\_ComputeMST} \\ \text{Sort edges in $E$ based on cost} \\ T \text{ is empty (* $T$ will store edges of a MST *)} \\ \text{each vertex $u$ is placed in a set by itself} \\ \textbf{while $E$ is not empty do} \\ \text{pick $e = (u, v) \in E$ of minimum cost} \\ <2-> \text{if $u$ and $v$ belong to different sets} \\ \text{add $e$ to $T$} \\ <2-> \text{merge the sets containing $u$ and $v$} \\ \textbf{return the set $T$} \end{array}
```

Need a data structure to check if two elements belong to same set and to merge two sets.

13.4.6 Union-Find Data Structure 13.4.6.1 Union-Find Data Structure

Data Structure Store disjoint sets of elements that supports the following operations

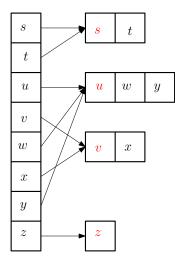
- (A) **makeUnionFind**(S) returns a data structure where each element of S is in a separate set
- (B) find(u) returns the *name* of set containing element u. Thus, u and v belong to the same set if and only if find(u) = find(v)
- (C) union(A, B) merges two sets A and B. Here A and B are the names of the sets. Typically the name of a set is some element in the set.

13.4.6.2 Implementing Union-Find using Arrays and Lists

Using lists

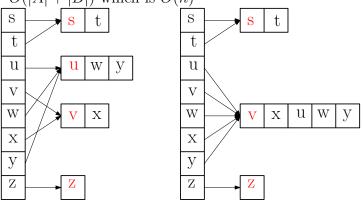
- (A) Each set stored as list with a name associated with the list.
- (B) For each element $u \in S$ a pointer to the its set. Array for pointers: component[u] is pointer for u.
- (C) makeUnionFind (S) takes O(n) time and space.

13.4.6.3 Example



13.4.6.4 Implementing Union-Find using Arrays and Lists

- (A) find(u) reads the entry component[u]: O(1) time
- (B) **union**(A,B) involves updating the entries component[u] for all elements u in A and B: O(|A| + |B|) which is O(n)



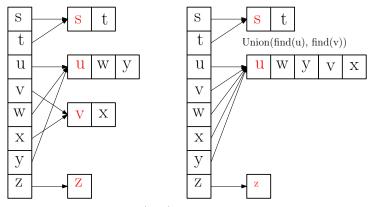
13.4.6.5 Improving the List Implementation for Union

New Implementation As before use component[u] to store set of u. Change to union(A,B):

- (A) with each set, keep track of its size
- (B) assume $|A| \leq |B|$ for now
- (C) Merge the list of A into that of B: O(1) time (linked lists)
- (D) Update component[u] only for elements in the smaller set A
- (E) Total O(|A|) time. Worst case is still O(n).

find still takes O(1) time

13.4.6.6 Example



The smaller set (list) is appended to the largest set (list)

13.4.6.7 Improving the List Implementation for Union

Question Is the improved implementation provably better or is it simply a nice heuristic?

Theorem 13.4.1. Any sequence of k union operations, starting from makeUnionFind(S) on set S of size n, takes at most $O(k \log k)$.

Corollary 13.4.2. Kruskal's algorithm can be implemented in $O(m \log m)$ time.

Sorting takes $O(m \log m)$ time, O(m) finds take O(m) time and O(n) unions take $O(n \log n)$ time.

13.4.6.8 Amortized Analysis

Why does theorem work?

Key Observation union(A,B) takes O(|A|) time where $|A| \leq |B|$. Size of new set is $\geq 2|A|$. Cannot double too many times.

13.4.6.9 Proof of Theorem

Proof:

(A) Any union operation involves at most 2 of the original one-element sets; thus at least n - 2k elements have never been involved in a union

- (B) Also, maximum size of any set (after k unions) is 2k
- (C) union(A,B) takes O(|A|) time where $|A| \leq |B|$.
- (D) Charge each element in A constant time to pay for O(|A|) time.
- (E) How much does any element get charged?
- (F) If component[v] is updated, set containing v doubles in size
- (G) component[v] is updated at most $\log 2k$ times
- (H) Total number of updates is $2k \log 2k = O(k \log k)$

13.4.6.10 Improving Worst Case Time

Better data structure Maintain elements in a forest of *in-trees*; all elements in one tree belong to a set with root's name.

- (A) find(u): Traverse from u to the root
- (B) union(A, B): Make root of A (smaller set) point to root of B. Takes O(1) time.

13.4.6.11 Details of Implementation

Each element $u \in S$ has a pointer parent(u) to its ancestor.

union(component(u), component(v))
 (* parent(u) = u & parent(v) = v *)
 if (|component(u)| ≤ |component(v)|) then
 parent(u) = v
 else
 parent(v) = u
 set new component size to |component(u)| + |component(v)|

13.4.6.12 Analysis

Theorem 13.4.3. The forest based implementation for a set of size n, has the following complexity for the various operations: **makeUnionFind** takes O(n), **union** takes O(1), and find takes $O(\log n)$.

Proof:

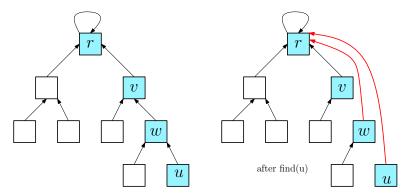
- (A) find(u) depends on the height of tree containing u.
- (B) Height of u increases by at most 1 only when the set containing u changes its name.
- (C) If height of u increases then size of the set containing u (at least) doubles.
- (D) Maximum set size is n; so height of any tree is at most $O(\log n)$.

13.4.6.13 Further Improvements: Path Compression

Observation 13.4.4. Consecutive calls of find(u) take $O(\log n)$ time each, but they traverse the same sequence of pointers.

Idea: Path Compression Make all nodes encountered in the find(u) point to root.

13.4.6.14 Path Compression: Example



13.4.6.15 Path Compression

find(u):
if $(parent(u) \neq u)$ then
parent(u) = find(parent(u))
return $parent(u)$

Question Does Path Compression help? Yes!

Theorem 13.4.5. With Path Compression, k operations (find and/or union) take $O(k\alpha(k, \min\{k, n\}))$ time where α is the inverse Ackermann function.

13.4.6.16 Ackermann and Inverse Ackermann Functions

Ackermann function A(m, n) defined for $m, n \ge 0$ recursively

$$A(m,n) = \begin{cases} n+1 & \text{if } m = 0\\ A(m-1,1) & \text{if } m > 0 \text{ and } n = 0\\ A(m-1,A(m,n-1)) & \text{if } m > 0 \text{ and } n > 0 \end{cases}$$

 $A(3,n) = 2^{n+3} - 3$ $A(4,3) = 2^{65536} - 3$

 $\alpha(m,n)$ is inverse Ackermann function defined as

 $\alpha(m,n) = \min\{i \mid A(i, \lfloor m/n \rfloor) \ge \log_2 n\}$

For all practical purposes $\alpha(m, n) \leq 5$

13.4.6.17 Lower Bound for Union-Find Data Structure

Amazing result:

Theorem 13.4.6 (Tarjan). For Union-Find, any data structure in the pointer model requires $\Omega(m\alpha(m, n))$ time for m operations.

13.4.6.18 Running time of Kruskal's Algorithm

Using Union-Find data structure:

- (A) O(m) find operations (two for each edge)
- (B) O(n) union operations (one for each edge added to T)
- (C) Total time: $O(m \log m)$ for sorting plus $O(m\alpha(n))$ for union-find operations. Thus $O(m \log m)$ time despite the improved Union-Find data structure.

13.4.6.19 Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$.

If m is O(n) then running time is $\Omega(n \log n)$.

- Question Is there a linear time (O(m+n) time) algorithm for MST?
- (A) $O(m \log^* m)$ time Fredman and Tarjan [1987].
- (B) O(m+n) time using bit operations in RAM model Fredman and Willard [1994].
- (C) O(m+n) expected time (randomized algorithm) Karger et al. [1995].
- (D) $O((n+m)\alpha(m,n))$ time Chazelle [2000].
- (E) Still open: Is there an O(n+m) time deterministic algorithm in the comparison model?

Bibliography

- Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-ackermann type complexity. J. Assoc. Comput. Mach., 47(6):1028–1047.
- Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved network optimization algorithms. J. Assoc. Comput. Mach., 34(3):596–615.
- Fredman, M. L. and Willard, D. E. (1994). Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Sys. Sci., 48(3):533–551.
- Karger, D. R., Klein, P. N., and Tarjan, R. E. (1995). A randomized linear-time algorithm to find minimum spanning trees. J. Assoc. Comput. Mach., 42(2):321–328.