Chapter 12

Greedy Algorithms

OLD CS 473: Fundamental Algorithms, Spring 2015
March 3, 2015

12.1 Problems and Terminology

12.2 Problem Types

12.2.0.1 Problem Types

(A) Decision Problem: Is the input a YES or NO input?

Example: Given graph G, nodes s, t, is there a path from s to t in G ?
(B) Search Problem: Find a solution if input is a YES input.

Example: Given graph G, nodes s, t, find an s - t path.
(C) Optimization Problem: Find a best solution among all solutions for the input.

Example: Given graph G, nodes s, t, find a shortest s - t path.

12.2.0.2 Terminology

(A) A problem Π consists of an infinite collection of inputs $\left\{I_{1}, I_{2}, \ldots,\right\}$. Each input is referred to as an instance.
(B) The size of an instance I is the number of bits in its representation.
(C) I : instance. $\operatorname{sol}(I)$: set of feasible solutions to I.
(D) Implicit assumption: given $I, y \in \Sigma^{*}$, one can check (efficiently!) if $y \in \operatorname{sol}(I)$.
(E) \Longrightarrow Problem is in NP. (More on this later in the course.)
(F) Optimization problems:
\forall solution $s \in \operatorname{sol}(I)$ has associated value.
(G) Implicit assumption: given s, can compute value efficiently.

12.2.0.3 Problem Types

Given instance I...
(A) Decision Problem: Output whether $\operatorname{sol}(I)=\emptyset$ or not.
(B) Search Problem: Compute solution $s \in \operatorname{sol}(I)$ if $\operatorname{sol}(I) \neq \emptyset$.
(C) Optimization Problem: Given I,
(A) Minimization problem. Find solution $s \in \operatorname{sol}(I)$ of min value.
(B) Maximization problem. Find solution $s \in \operatorname{sol}(I)$ of max value.
(C) Notation: $\operatorname{opt}(I)$: denote the value of an optimum solution or some fixed optimum solution.

12.3 Greedy Algorithms: Tools and Techniques
 12.3.0.4 What is a Greedy Algorithm?

No real consensus on a universal definition.
Greedy algorithms:
(A) Do the right thing. Locally.
(B) Make decisions incrementally in small steps no backtracking.
(C) Decision at each step based on improving local or current state in myopic fashion. ... without considering the global situation.
(D) myopia: lack of understanding or foresight.
(E) Decisions often based on some fixed and simple priority rules.

12.3.0.5 Pros and Cons of Greedy Algorithms

Pros:
(A) Usually (too) easy to design greedy algorithms
(B) Easy to implement and often run fast since they are simple
(C) Several important cases where they are effective/optimal
(D) Lead to first-cut heuristic when problem not well understood Cons:
(A) Very often greedy algorithms don't work.
(B) Easy to lull oneself into believing they work
(C) Many greedy algorithms possible for a problem and no structured way to find effective ones.
CS 473: Every greedy algorithm needs a proof of correctness

12.3.0.6 Greedy Algorithm Types

(A) Crude classification:
(A) Non-adaptive: fix ordering of decisions a priori and stick with it.
(B) Adaptive: make decisions adaptively but greedily/locally at each step.
(B) Plan:
(A) See several examples
(B) Pick up some proof techniques

12.3.0.7 Vertex Cover

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a set of vertices S is:
(A) A vertex cover if every $e \in E$ has at least one endpoint in S.

Natural algorithms for computing vertex cover?

12.4 Interval Scheduling

12.4.0.8 Interval Scheduling

Problem 12.4.1 (Interval Scheduling).
Input: A set of jobs with start and finish times to be scheduled on a resource (example: classes and class rooms).
Goal: Schedule as many jobs as possible
(A) Two jobs with overlapping intervals cannot both be scheduled!

12.4.1 The Algorithm

12.4.1.1 Greedy Template

```
R is the set of all requests
X is empty (* X will store all the jobs that will be scheduled *)
while R is not empty do
    <2->choose i
    add i to }
    remove from R all requests that overlap with i
    return the set X
```

Main task: Decide the order in which to process requests in R

12.4.1.2 Earliest Start Time

Process jobs in the order of their starting times, beginning with those that start earliest.

Figure 12.1: Counter example for earliest start time
\qquad

12.4.1.3 Smallest Processing Time

Process jobs in the order of processing time, starting with jobs that require the shortest processing.

12.4.1.4 Fewest Conflicts

Process jobs in that have the fewest "conflicts" first.
\qquad
\qquad

Figure 12.2: Counter example for smallest processing time

Figure 12.3: Counter example for fewest conflicts

12.4.1.5 Earliest Finish Time

Process jobs in the order of their finishing times, beginning with those that finish earliest.

12.4.2 Correctness

12.4.2.1 Optimal Greedy Algorithm

```
R is the set of all requests
X is empty (* X will store all the jobs that will be scheduled *)
while R is not empty
        choose i\inR such that finishing time of i is least
        add i to }
        remove from R all requests that overlap with i
return }
```

Theorem 12.4.2. The greedy algorithm that picks jobs in the order of their finishing times is optimal.

12.4.2.2 Proving Optimality

(A) Correctness: Clearly the algorithm returns a set of jobs that does not have any conflicts
(B) For a set of requests R, let O be an optimal set and let X be the set returned by the greedy algorithm. Then $O=X$? Not likely! Instead we will show that $|O|=|X|$

Figure 12.4: Since i_{1} has the earliest finish time, any interval that conflicts with it does so at $f\left(i_{1}\right)$. This implies j_{1} and j_{2} conflict.

12.4.2.3 Proof of Optimality: Key Lemma

Lemma 12.4.3. Let i_{1} be first interval picked by Greedy. There exists an optimum solution that contains i_{1}.

Proof: Let O be an arbitrary optimum solution. If $i_{1} \in O$ we are done.
Claim: If $i_{1} \notin O$ then there is exactly one interval $j_{1} \in O$ that conflicts with i_{1}. (proof later)
(A) Form a new set O^{\prime} by removing j_{1} from O and adding i_{1}, that is $O^{\prime}=\left(O-\left\{j_{1}\right\}\right) \cup\left\{i_{1}\right\}$.
(B) From claim, O^{\prime} is a feasible solution (no conflicts).
(C) Since $\left|O^{\prime}\right|=|O|, O^{\prime}$ is also an optimum solution and it contains i_{1}.

12.4.2.4 Proof of Claim

Claim 12.4.4. If $i_{1} \notin O$ then there is exactly one interval $j_{1} \in O$ that conflicts with i_{1}.
Proof:
(A) Suppose $j_{1}, j_{2} \in O$ such that $j_{1} \neq j_{2}$ and both j_{1} and j_{2} conflict with i_{1}.
(B) Since i_{1} has earliest finish time, j_{1} and i_{1} overlap at $f\left(i_{1}\right)$.
(C) For same reason j_{2} also overlaps with i_{1} at $f\left(i_{1}\right)$.
(D) Implies that j_{1}, j_{2} overlap at $f\left(i_{1}\right)$ contradicting the feasibility of O.

See figure in next slide.

12.4.2.5 Figure for proof of Claim

12.4.2.6 Proof of Optimality of Earliest Finish Time First

Proof:[Proof by Induction on number of intervals] Base Case: $n=1$. Trivial since Greedy picks one interval.
Induction Step: Assume theorem holds for $i<n$.

Let I be an instance with n intervals
$I^{\prime}: I$ with i_{1} and all intervals that overlap with i_{1} removed $G(I), G\left(I^{\prime}\right)$: Solution produced by Greedy on I and I^{\prime}
From Lemma, there is an optimum solution O to I and $i_{1} \in O$.
Let $O^{\prime}=O-\left\{i_{1}\right\} . O^{\prime}$ is a solution to I^{\prime}.

$$
\begin{aligned}
|G(I)| & =1+\left|G\left(I^{\prime}\right)\right| \quad \text { (from Greedy description) } \\
& \leq 1+\left|O^{\prime}\right| \quad\left(\text { By induction, } G\left(I^{\prime}\right) \text { is optimum for } I^{\prime}\right) \\
& =|O|
\end{aligned}
$$

12.4.3 Running Time

12.4.3.1 Implementation and Running Time

```
Initially R is the set of all requests
X is empty (* X will store all the jobs that will be scheduled *)
while R is not empty
    <3>choose i\inR such that finishing time of i is least
    <4>if i does not overlap with requests in X
        add i to }
    <5>remove i from R
return the set X
```

(A) Presort all requests based on finishing time. $O(n \log n)$ time
(B) Now choosing least finishing time is $O(1)$
(C) Keep track of the finishing time of the last request added to A. Then check if starting time of i later than that
(D) Thus, checking non-overlapping is $O(1)$
(E) Total time $O(n \log n+n)=O(n \log n)$

12.4.4 Extensions and Comments

12.4.4.1 Comments

(A) Interesting Exercise: smallest interval first picks at least half the optimum number of intervals.
(B) All requests need not be known at the beginning. Such online algorithms are a subject of research.

12.4.5 Interval Partitioning

12.4.6 The Problem
 12.4.6.1 Scheduling all Requests

Input A set of lectures, with start and end times

Goal Find the minimum number of classrooms, needed to schedule all the lectures such two lectures do not occur at the same time in the same room.

Figure 12.5: A schedule requiring 4 classrooms

Figure 12.6: A schedule requiring 3 classrooms

12.4.7 The Algorithm

12.4.7.1 Greedy Algorithm

```
Initially R is the set of all requests
d=0 (* number of classrooms *)
while R is not empty do
        choose i\inR such that start time of i is earliest
        if i can be scheduled in some class-room k\leqd
        schedule lecture i in class-room k
        else
        allocate a new class-room d+1
            and schedule lecture i in d+1
        d=d+1
```

What order should we process requests in? According to start times (breaking ties arbitrarily)

12.4.8 Example of algorithm execution

12.4.8.1 "Few things are harder to put up with than a good example." - Mark Twain

\qquad

12.4.9 Correctness

12.4.9.1 Depth of Lectures

Definition 12.4.5. (A) For a set of lectures R, k are said to be in conflict if there is some time t such that there are k lectures going on at time t.
(B) The depth of a set of lectures R is the maximum number of lectures in conflict at any time.

12.4.9.2 Depth and Number of Class-rooms

Lemma 12.4.6. For any set R of lectures, the number of class-rooms required is at least the depth of R.

Proof: All lectures that are in conflict must be scheduled in different rooms.

12.4.9.3 Number of Class-rooms used by Greedy Algorithm

Lemma 12.4.7. Let d be the depth of the set of lectures R. The number of class-rooms used by the greedy algorithm is d.

Proof:
(A) Suppose the greedy algorithm uses more that d rooms. Let j be the first lecture that is scheduled in room $d+1$.
(B) Since we process lectures according to start times, there are d lectures that start (at or) before j and which conflict with j.
(C) Thus, at the start time of j, there are at least $d+1$ lectures in conflict, which contradicts the fact that the depth is d.

12.4.9.4 Figure

12.4.9.5 Correctness

Observation 12.4.8. The greedy algorithm does not schedule two overlapping lectures in the same room.

Theorem 12.4.9. The greedy algorithm is correct and uses the optimal number of classrooms.

	1	2	3	4	5	6
t_{i}	3	2	1	4	3	2
d_{i}	6	8	9	9	14	15

12.4.10 Running Time

12.4.10.1 Implementation and Running Time

```
Initially R is the set of all requests
d=0 (* number of classrooms *)
while R is not empty
    <1-2>choose i\inR such that start time of i is earliest
    <3->if i can be scheduled in some class-room k\leqd
        schedule lecture i in class-room k
    else
        allocate a new class-room d+1 and schedule lecture i in d+1
        d=d+1
```

(A) Presort according to start times. Picking lecture with earliest start time can be done in $O(1)$ time.
(B) Keep track of the finish time of last lecture in each room.
(C) $i_{¿}$ ¿Checking conflict takes $O(d)$ time. $\mathrm{j}_{¿}$ ¿With priority queues, checking conflict takes $O(\log d)$ time.
(D) Total time $\dot{j}^{4} \dot{i}=O(n \log n+n d) ;{ }_{i} \dot{i}=O(n \log n+n \log d)=O(n \log n)$

12.5 Scheduling to Minimize Lateness

12.5.1 The Problem

12.5.1.1 Scheduling to Minimize Lateness

(A) Given jobs with deadlines and processing times to be scheduled on a single resource.
(B) If a job i starts at time s_{i} then it will finish at time $f_{i}=s_{i}+t_{i}$, where t_{i} is its processing time. d_{i} : deadline.
(C) The lateness of a job is $l_{i}=\max \left(0, f_{i}-d_{i}\right)$.
(D) Schedule all jobs such that $L=\max l_{i}$ is minimized.

12.5.1.2 A Simpler Feasibility Problem

(A) Given jobs with deadlines and processing times to be scheduled on a single resource.
(B) If a job i starts at time s_{i} then it will finish at time $f_{i}=s_{i}+t_{i}$, where t_{i} is its processing time.
(C) Schedule all jobs such that each of them completes before its deadline (in other words $L=\max _{i} l_{i}=0$).

Definition 12.5.1. A schedule is feasible if all jobs finish before their deadline.

12.5.2 The Algorithm

12.5.2.1 Greedy Template

```
Initially R is the set of all requests
curr_time =0
while R is not empty do
        <2->choose i\inR
        curr_time = curr_time + t ti
        if (curr_time > di}\mp@subsup{|}{i}{}\mathrm{ ) then
        return ''no feasible schedule')
return ''found feasible schedule''
```

Main task: Decide the order in which to process jobs in R

12.5.2.2 Three Algorithms

(A) Shortest job first - sort according to t_{i}.
(B) Shortest slack first - sort according to $d_{i}-t_{i}$.
(C) $\mathrm{EDF}=$ Earliest deadline first - sort according to d_{i}.

Counter examples for first two: exercise

12.5.2.3 Earliest Deadline First

Theorem 12.5.2. Greedy with EDF rule for picking requests correctly decides if there is a feasible schedule.

Proof via an exchange argument.
Idle time: time during which machine is not working.
Lemma 12.5.3. If there is a feasible schedule then there is one with no idle time before all jobs are finished.

12.5.2.4 Inversions

Definition 12.5.4. A schedule S is said to have an inversion if there are jobs i and j such that S schedules i before j, but $d_{i}>d_{j}$.

Claim 12.5.5. If a schedule S has an inversion then there is an inversion between two adjacently scheduled jobs.

Proof: exercise.

12.5.2.5 Main Lemma

Lemma 12.5.6. If there is a feasible schedule, then there is one with no inversions.

Proof:[Proof Sketch] Let S be a schedule with minimum number of inversions.
(A) If S has 0 inversions, done.
(B) Suppose S has one or more inversions. By claim there are two adjacent jobs i and j that define an inversion.
(C) Swap positions of i and j.
(D) New schedule is still feasible. (Why?)
(E) New schedule has one fewer inversion - contradiction!

12.5.2.6 Back to Minimizing Lateness

Goal: schedule to minimize $L=\max _{i} l_{i}$.
How can we use algorithm for simpler feasibility problem?
Given a lateness bound L, can we check if there is a schedule such that $\max _{i} l_{i} \leq L$?
Yes! Set $d_{i}^{\prime}=d_{i}+L$ for each job i. Use feasibility algorithm with new deadlines.
How can we find minimum L? Binary search!

12.5.2.7 Binary search for finding minimum lateness

```
\(L=L_{\text {min }}=0\)
\(L_{\max }=\sum_{i} t_{i} / /\) why is this sufficient?
While \(L_{\text {min }}<L_{\text {max }}\) do
    \(L=\left\lfloor\left(L_{\text {max }}+L_{\text {min }}\right) / 2\right\rfloor\)
    check if there is a feasible schedule with lateness \(L\)
    if ' yes ') then \(L_{\text {max }}=L\)
    else \(L_{\text {min }}=L+1\)
end while
return \(L\)
```

Running time: $O(n \log n \cdot \log T)$ where $T=\sum_{i} t_{i}$
(A) $O(n \log n)$ for feasibility test (sort by deadlines)
(B) $O(\log T)$ calls to feasibility test in binary search

12.5.2.8 Do we need binary search?

What happens in each call?
EDF algorithm with deadlines $d_{i}^{\prime}=d_{i}+L$.
Greedy with EDF schedules the jobs in the same order for all $L!!!$
Maybe there is a direct greedy algorithm for minimizing maximum lateness?

12.5.2.9 Greedy Algorithm for Minimizing Lateness

```
Initially \(R\) is the set of all requests
curr_time \(=0\)
curr_late \(=0\)
while \(R\) is not empty
    choose \(i \in R\) with earliest deadline
    curr_time \(=\) curr_time \(+t_{i}\)
    late \(=\) curr_time \(-d_{i}\)
    curr_late \(=\max (l a t e\), curr_late \()\)
return curr_late
```

Exercise: argue directly that above algorithm is correct
Can be easily implemented in $O(n \log n)$ time after sorting jobs.

12.5.2.10 Greedy Analysis: Overview

(A) Greedy's first step leads to an optimum solution. Show that there is an optimum solution leading from the first step of Greedy and then use induction. Example, Interval Scheduling.
(B) Greedy algorithm stays ahead. Show that after each step the solution of the greedy algorithm is at least as good as the solution of any other algorithm. Example, Interval scheduling.
(C) Structural property of solution. Observe some structural bound of every solution to the problem, and show that greedy algorithm achieves this bound. Example, Interval Partitioning.
(D) Exchange argument. Gradually transform any optimal solution to the one produced by the greedy algorithm, without hurting its optimality. Example, Minimizing lateness.

12.5.2.11 Takeaway Points

(A) Greedy algorithms come naturally but often are incorrect. A proof of correctness is an absolute necessity.
(B) Exchange arguments are often the key proof ingredient. Focus on why the first step of the algorithm is correct: need to show that there is an optimum/correct solution with the first step of the algorithm.
(C) Thinking about correctness is also a good way to figure out which of the many greedy strategies is likely to work.

Bibliography

