Chapter 10

More Dynamic Programming

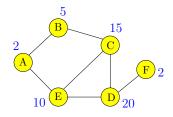
OLD CS 473: Fundamental Algorithms, Spring 2015 February 19, 2015

10.1 Maximum Weighted Independent Set in Trees

10.1.0.1 Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights $w(v) \ge 0$ for each $v \in V$

Goal Find maximum weight independent set in G



Maximum weight independent set in above graph: $\{B, D\}$

10.1.0.2 Maximum Weight Independent Set in a Tree

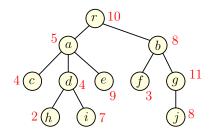
Input Tree T = (V, E) and weights $w(v) \ge 0$ for each $v \in V$

Goal Find maximum weight independent set in T

Maximum weight independent set in above tree: ??

10.1.0.3 Towards a Recursive Solution

- (A) For an arbitrary graph G:
 - (A) Number vertices as v_1, v_2, \ldots, v_n
 - (B) Find recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G v_n N(v_n)$ & include v_n).



- (C) Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.
- (B) What about a tree?
- (C) Natural candidate for v_n is root r of T?

10.1.0.4 Towards a Recursive Solution

- (A) Natural candidate for v_n is root r of T?
- (B) Let \mathcal{O} be an optimum solution to the whole problem.

Case $r \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.

Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} - \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.

- (C) Subproblems?
- (D) Subtrees of T hanging at nodes in T.

10.1.0.5 A Recursive Solution

- (A) T(u): subtree of T hanging at node u.
- (B) OPT(u): max weighted independent set value in T(u).

(C)
$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

10.1.0.6 Iterative Algorithm

- (A) Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- (B) What is an ordering of nodes of a tree T to achieve above?
- (C) Post-order traversal of a tree.

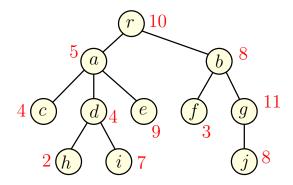
10.1.0.7 Iterative Algorithm

(A) Code:

$$\begin{aligned} \textbf{MIS-Tree}(T): \\ & \text{Let } v_1, v_2, \dots, v_n \text{ be a post-order traversal of nodes of T} \\ & \textbf{for } i = 1 \text{ to } n \text{ do} \\ & M[v_i] = \max \left(\begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right) \\ & \textbf{return } M[v_n] \text{ (* Note: } v_n \text{ is the root of } T \text{ *)} \end{aligned}$$

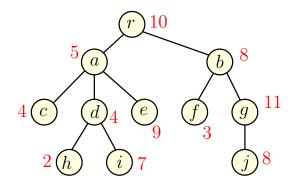
- (B) **Space:** O(n) to store the value at each node of T.
- (C) Running time:
 - (A) Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - (B) Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

10.1.0.8 Example



10.1.0.9 Dominating set

Definition 10.1.1. G = (V, E). The set $X \subseteq V$ is a dominating set, if any vertex $v \in V$ is either in X or is adjacent to a vertex in X.



Problem 10.1.2. Given weights on vertices, compute the minimum weight dominating set in G.

Dominating Set is NP-Hard!

10.2 DAGs and Dynamic Programming

10.2.0.10 Recursion and DAGs

Observation 10.2.1. Let A be a recursive algorithm for problem Π . For each instance I of Π there is an associated DAG G(I).

- (A) Create directed graph G(I) as follows...
- (B) For each sub-problem in the execution of A on I create a node.
- (C) If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph.
- (D) G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

10.2.1 Iterative Algorithm for...

10.2.1.1 Dynamic Programming and DAGs

Observation 10.2.2. An iterative algorithm B obtained from a recursive algorithm A for a problem Π does the following:

For each instance I of Π , it computes a topological sort of G(I) and evaluates sub-problems according to the topological ordering.

- (A) Sometimes the DAG G(I) can be obtained directly without thinking about the recursive algorithm A
- (B) In some cases (**not all**) the computation of an optimal solution reduces to a shortest/longest path in DAG G(I)
- (C) Topological sort based shortest/longest path computation is dynamic programming!

10.2.2 A quick reminder...

10.2.2.1 A Recursive Algorithm for weighted interval scheduling

Let O_i be value of an optimal schedule for the first i jobs.

```
 \begin{aligned} & \textbf{Schedule}(n): \\ & \textbf{if } n = 0 \textbf{ then return } 0 \\ & \textbf{if } n = 1 \textbf{ then return } w(v_1) \\ & O_{p(n)} \leftarrow \textbf{Schedule}(p(n)) \\ & O_{n-1} \leftarrow \textbf{Schedule}(n-1) \\ & \textbf{if } (O_{p(n)} + w(v_n) < O_{n-1}) \textbf{ then } \\ & O_n = O_{n-1} \\ & \textbf{else} \\ & O_n = O_{p(n)} + w(v_n) \\ & \textbf{return } O_n \end{aligned}
```

10.2.3 Weighted Interval Scheduling via...

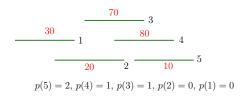
10.2.3.1 Longest Path in a DAG

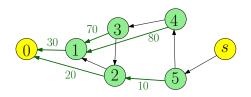
Given intervals, create a DAG as follows:

(A) Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a dummy source node s.

- (B) For each interval i add edge (i, p(i)) of the length/weight of v_i .
- (C) Add an edge from s to n of length 0.
- (D) For each interval i add edge (i, i-1) of length 0.

10.2.3.2 Example





10.2.3.3 Relating Optimum Solution

- (A) Given interval problem instance I let G(I) denote the DAG constructed as described.
- (B) We have...

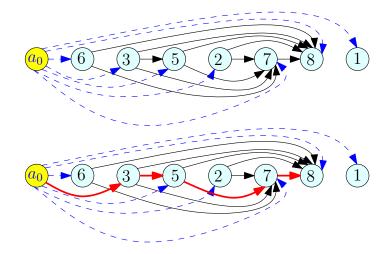
Claim 10.2.3. Optimum solution to weighted interval scheduling instance I is given by longest path from s to 0 in G(I).

- (C) Assuming claim is true,
 - (A) If I has n intervals, DAG G(I) has n+2 nodes and O(n) edges. Creating G(I) takes $O(n \log n)$ time: to find p(i) for each i. How?
 - (B) Longest path can be computed in O(n) time recall O(m+n) algorithm for shortest/longest paths in DAGs.

10.2.3.4 DAG for Longest Increasing Sequence

Given sequence a_1, a_2, \ldots, a_n create DAG as follows:

- (A) add sentinel a_0 to sequence where a_0 is less than smallest element in sequence
- (B) for each i there is a node v_i
- (C) if i < j and $a_i < a_j$ add an edge (v_i, v_j)
- (D) find longest path from v_0



10.3 Edit Distance and Sequence Alignment

10.3.0.5 Spell Checking Problem

- (A) Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a *nearby* string?
- (B) What does nearness mean?
- (C) **Question:** Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a *distance* between them?
- (D) Edit Distance: minimum number of "edits" to transform x into y.

10.3.0.6 Edit Distance

Definition 10.3.1. *Edit distance* between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example 10.3.2. The edit distance between FOOD and MONEY is at most 4:

$$\mathrm{FOOD} \to \mathrm{MOOD} \to \mathrm{MONED} \to \mathrm{MONEY}$$

10.3.0.7 Edit Distance: Alternate View

Alignment Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an **alignment** is a set M of pairs (i, j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1, 1), (2, 2), (3, 3), (4, 5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

10.3.0.8 Edit Distance Problem

Problem Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

10.3.0.9 Applications

- (A) Spell-checkers and Dictionaries
- (B) Unix diff
- (C) DNA sequence alignment ... but, we need a new metric

10.3.0.10 Similarity Metric

Definition 10.3.3. For two strings X and Y, the cost of alignment M is

- (A) [Gap penalty] For each gap in the alignment, we incur a cost δ .
- (B) [Mismatch cost] For each pair p and q that have been matched in M, we incur cost α_{pq} ; typically $\alpha_{pp} = 0$.

Edit distance is special case when $\delta = \alpha_{pq} = 1$.

10.3.0.11 An Example

Example 10.3.4.

Alternative:

Or a really stupid solution (delete string, insert other string):

 $Cost = 19\delta$.

10.3.0.12 Sequence Alignment

Input Given two words X and Y, and gap penalty δ and mismatch costs α_{pq}

Goal Find alignment of minimum cost

10.3.1 Edit distance

10.3.1.1 Basic observation

- (A) Let $X = \alpha x$ and $Y = \beta y$.
- (B) α, β : strings.x and y single characters.
- (C) Optimal edit distance between X and Y as alignment. Consider last column of alignment of the two strings:

α	x	or	α	x	or	αx	
β	y		βy			β	y

(D) Observation 10.3.5. Prefixes must have optimal alignment!

10.3.1.2 Problem Structure

Observation 10.3.6. Let $X = x_1x_2 \cdots x_m$ and $Y = y_1y_2 \cdots y_n$. If (m, n) are not matched then either the mth position of X remains unmatched or the nth position of Y remains unmatched.

- (A) Case x_m and y_n are matched.
 - (A) Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- (B) Case x_m is unmatched.
 - (A) Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- (C) Case y_n is unmatched.
 - (A) Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

10.3.1.3 Subproblems and Recurrence

Optimal Costs Let $\mathrm{Opt}(i,j)$ be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$. Then

$$Opt(i, j) = \min \begin{cases} \alpha_{x_i y_j} + Opt(i - 1, j - 1), \\ \delta + Opt(i - 1, j), \\ \delta + Opt(i, j - 1) \end{cases}$$

Base Cases: $\operatorname{Opt}(i,0) = \delta \cdot i$ and $\operatorname{Opt}(0,j) = \delta \cdot j$

10.3.1.4 Dynamic Programming Solution

$$\begin{aligned} &\textbf{for all } i \ \textbf{do} \ M[i,0] = i\delta \\ &\textbf{for all } j \ \textbf{do} \ M[0,j] = j\delta \end{aligned} \\ &\textbf{for } i = 1 \ \textbf{to} \ m \ \textbf{do} \\ &\textbf{for } j = 1 \ \textbf{to} \ n \ \textbf{do} \\ &M[i,j] = \min \begin{cases} \alpha_{x_iy_j} + M[i-1,j-1], \\ \delta + M[i-1,j], \\ \delta + M[i,j-1] \end{cases} \end{aligned}$$

Analysis

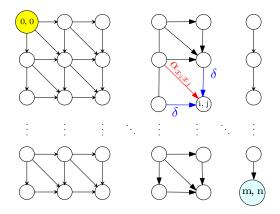


Figure 10.1: Iterative algorithm in previous slide computes values in row order. Optimal value is a shortest path from (0,0) to (m,n) in DAG.

- (A) Running time is O(mn).
- (B) Space used is O(mn).

10.3.1.5 Matrix and DAG of Computation

10.3.1.6 Sequence Alignment in Practice

- (A) Typically the DNA sequences that are aligned are about 10⁵ letters long!
- (B) So about 10^{10} operations and 10^{10} bytes needed
- (C) The killer is the $10\mathrm{GB}$ storage
- (D) Can we reduce space requirements?

10.3.1.7 Optimizing Space

(A) Recall

$$M(i,j) = \min \begin{cases} \alpha_{x_i y_j} + M(i-1, j-1), \\ \delta + M(i-1, j), \\ \delta + M(i, j-1) \end{cases}$$

- (B) Entries in jth column only depend on (j-1)st column and earlier entries in jth column
- (C) Only store the current column and the previous column reusing space; N(i,0) stores M(i,j-1) and N(i,1) stores M(i,j)

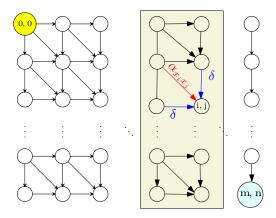


Figure 10.2: M(i, j) only depends on previous column values. Keep only two columns and compute in column order.

10.3.1.8 Computing in column order to save space

10.3.1.9 Space Efficient Algorithm

$$\begin{aligned} & \textbf{for all } i \ \textbf{do} \ N[i,0] = i\delta \\ & \textbf{for } j = 1 \ \textbf{to} \ n \ \textbf{do} \\ & N[0,1] = j\delta \ (* \ \text{corresponds to} \ M(0,j) \ *) \\ & \textbf{for } i = 1 \ \textbf{to} \ m \ \textbf{do} \\ & N[i,1] = \min \begin{cases} \alpha_{x_iy_j} + N[i-1,0] \\ \delta + N[i-1,1] \\ \delta + N[i,0] \end{cases} \\ & \textbf{for } i = 1 \ \textbf{to} \ m \ \textbf{do} \\ & \text{Copy } N[i,0] = N[i,1] \end{aligned}$$

Analysis Running time is O(mn) and space used is O(2m) = O(m)

10.3.1.10 Analyzing Space Efficiency

- (A) From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- (B) Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- (C) Space efficient computation of alignment? More complicated algorithm see text book.

10.3.1.11 Takeaway Points

- (A) Dynamic programming is based on finding a recursive way to solve the problem. Need a recursion that generates a small number of subproblems.
- (B) Given a recursive algorithm there is a natural DAG associated with the subproblems that are generated for given instance; this is the dependency graph. An iterative algorithm simply evaluates the subproblems in some topological sort of this DAG.
- (C) The space required to evaluate the answer can be reduced in some cases by a careful examination of that dependency DAG of the subproblems and keeping only a subset of

the DAG at any time.

Bibliography