OLD CS 473: Fundamental Algorithms, Spring 2015

More Dynamic Programming

Lecture 10 February 19, 2015

 Sariel (UIUC)
 OLD CS473
 1
 Spring 2015
 1 / 39

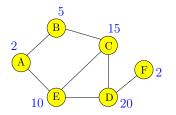
Part I

Maximum Weighted Independent Set in Trees

Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights w(v) > 0 for each $v \in V$

Goal Find maximum weight independent set in G

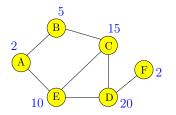


OLD CS473 Spring 2015 3 / 39

Maximum Weight Independent Set Problem

Input Graph G = (V, E) and weights w(v) > 0 for each $v \in V$

Goal Find maximum weight independent set in G



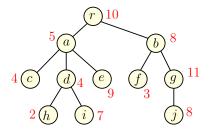
Maximum weight independent set in above graph: $\{B, D\}$

OLD CS473 Spring 2015

Maximum Weight Independent Set in a Tree

Input Tree T=(V,E) and weights $w(v)\geq 0$ for each $v\in V$

Goal Find maximum weight independent set in T



Maximum weight independent set in above tree: ??

Sariel (UIUC) OLD CS473 4 Spring 2015 4 / 39

- For an arbitrary graph G:
 - ① Number vertices as v_1, v_2, \ldots, v_n
 - **2** Find recursively optimum solutions without v_n (recurse on $G v_n$) and with v_n (recurse on $G v_n N(v_n)$ & include v_n).
 - 3 Saw that if graph *G* is arbitrary there was no good ordering that resulted in a small number of subproblems.
- What about a tree?
- 3 Natural candidate for v_n is root r of T?

- **1** For an arbitrary graph G:
 - 1 Number vertices as v_1, v_2, \ldots, v_n
 - **2** Find recursively optimum solutions without v_n (recurse on $G - v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
 - \odot Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.
- What about a tree?
- 3 Natural candidate for v_n is root r of T?

- **1** For an arbitrary graph G:
 - **1** Number vertices as v_1, v_2, \ldots, v_n
 - **2** Find recursively optimum solutions without v_n (recurse on $G - v_n$) and with v_n (recurse on $G - v_n - N(v_n)$ & include v_n).
 - \odot Saw that if graph G is arbitrary there was no good ordering that resulted in a small number of subproblems.
- What about a tree?
- Natural candidate for v_n is root r of T?

- 1 Natural candidate for v_n is root r of T?
- 2 Let $\mathcal O$ be an optimum solution to the whole problem.
 - Case $r \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
 - Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.
- 3 Subproblems?
- Subtrees of T hanging at nodes in T.

- **1** Natural candidate for v_n is root r of T?
- 2 Let \mathcal{O} be an optimum solution to the whole problem.
 - Case $r \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
 - Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.
- 3 Subproblems?
- ullet Subtrees of $oldsymbol{T}$ hanging at nodes in $oldsymbol{T}$.

- ① Natural candidate for v_n is root r of T?
- ② Let \mathcal{O} be an optimum solution to the whole problem.
 - Case $r \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
 - Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.
- 3 Subproblems?
- ullet Subtrees of $oldsymbol{T}$ hanging at nodes in $oldsymbol{T}$.

- **1** Natural candidate for v_n is root r of T?
- $oldsymbol{ iny }$ Let $oldsymbol{\mathcal{O}}$ be an optimum solution to the whole problem.
 - Case $r \not\in \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
 - Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.
- 3 Subproblems?
- ullet Subtrees of $oldsymbol{T}$ hanging at nodes in $oldsymbol{T}$.

- ① Natural candidate for v_n is root r of T?
- ② Let \mathcal{O} be an optimum solution to the whole problem.
 - Case $r \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
 - Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.
- 3 Subproblems?
- Subtrees of T hanging at nodes in T.

- ① Natural candidate for v_n is root r of T?
- extstyle ext
 - Case $r \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
 - Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.
- Subproblems?
- Subtrees of T hanging at nodes in T.

- **1** Natural candidate for v_n is root r of T?
- ② Let \mathcal{O} be an optimum solution to the whole problem.
 - Case $r \notin \mathcal{O}$: Then \mathcal{O} contains an optimum solution for each subtree of T hanging at a child of r.
 - Case $r \in \mathcal{O}$: None of the children of r can be in \mathcal{O} . $\mathcal{O} \{r\}$ contains an optimum solution for each subtree of T hanging at a grandchild of r.
- Subproblems?
- Subtrees of T hanging at nodes in T.

- 1 T(u): subtree of T hanging at node u.
- 2 OPT(u): max weighted independent set value in T(u).

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

Sariel (UIUC) OLD CS473 7 Spring 2015 7 / 39

- **1** T(u): subtree of T hanging at node u.
- 2 OPT(u): max weighted independent set value in T(u).

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

- **1** T(u): subtree of T hanging at node u.
- \bigcirc OPT(u): max weighted independent set value in T(u).

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

- **1** T(u): subtree of T hanging at node u.
- **OPT**(u): max weighted independent set value in T(u).

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

- **1** T(u): subtree of T hanging at node u.
- **②** OPT(u): max weighted independent set value in T(u).

$$OPT(u) = \max \begin{cases} \sum_{v \text{ child of } u} OPT(v), \\ w(u) + \sum_{v \text{ grandchild of } u} OPT(v) \end{cases}$$

- ① Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree T to achieve above?
- 3 Post-order traversal of a tree.

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 39

- **②** Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree T to achieve above?
- 3 Post-order traversal of a tree.

Sariel (UIUC) OLD CS473 8 Spring 2015 8 / 39

- **©** Compute OPT(u) bottom up. To evaluate OPT(u) need to have computed values of all children and grandchildren of u
- What is an ordering of nodes of a tree T to achieve above?
- Post-order traversal of a tree.

1 Code:

```
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of i = 1 to n do

M[v_i] = \max \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right)

return M[v_n] (* Note: v_n is the root of T *)
```

- 2 Space: O(n) to store the value at each node of T.
- 3 Running time:
 - Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - **2** Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 39

```
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of i = 1 to n do

M[v_i] = \max \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right)
return M[v_n] (* Note: v_n is the root of T *)
```

- 2 Space: O(n) to store the value at each node of T.
- 3 Running time:
 - Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - **2** Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

```
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of i = 1 to n do

M[v_i] = \max \left( \begin{array}{c} \sum_{v_j \text{ child of } v_i} M[v_j], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right)
return M[v_n] (* Note: v_n is the root of T *)
```

- **2** Space: O(n) to store the value at each node of T.
- 3 Running time:
 - Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - **2** Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

```
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of i = 1 to n do

M[v_i] = \max \left( \begin{array}{c} \sum_{v_i \text{ child of } v_i} M[v_i], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right)
return M[v_n] (* Note: v_n is the root of T *)
```

- **Space**: O(n) to store the value at each node of T.
- 3 Running time:
 - Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - **2** Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

```
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of i = 1 to n do

M[v_i] = \max \left( \begin{array}{c} \sum_{v_i \text{ child of } v_i} M[v_i], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right)
return M[v_n] (* Note: v_n is the root of T *)
```

- **2** Space: O(n) to store the value at each node of T.
- Running time:
 - Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - **2** Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

Code:

```
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of i = 1 to n do

M[v_i] = \max \left( \begin{array}{c} \sum_{v_i \text{ child of } v_i} M[v_i], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right)
return M[v_n] (* Note: v_n is the root of T *)
```

- **2** Space: O(n) to store the value at each node of T.
- Running time:
 - Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - **2** Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 39

Code:

```
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of i = 1 to n do

M[v_i] = \max \left( \begin{array}{c} \sum_{v_i \text{ child of } v_i} M[v_i], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right)
return M[v_n] (* Note: v_n is the root of T *)
```

- **2** Space: O(n) to store the value at each node of T.
- Running time:
 - Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - **2** Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

Sariel (UIUC) OLD CS473 9 Spring 2015 9 / 39

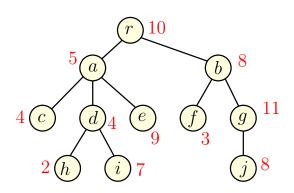
```
MIS-Tree(T):

Let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of i = 1 to n do

M[v_i] = \max \left( \begin{array}{c} \sum_{v_i \text{ child of } v_i} M[v_i], \\ w(v_i) + \sum_{v_j \text{ grandchild of } v_i} M[v_j] \end{array} \right)
return M[v_n] (* Note: v_n is the root of T *)
```

- **2** Space: O(n) to store the value at each node of T.
- Running time:
 - Naive bound: $O(n^2)$ since each $M[v_i]$ evaluation may take O(n) time and there are n evaluations.
 - **a** Better bound: O(n). A value $M[v_j]$ is accessed only by its parent and grand parent.

Example

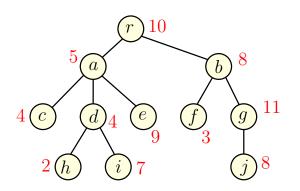


Sariel (UIUC) OLD CS473 10 Spring 2015 10 / 39

Dominating set

Definition

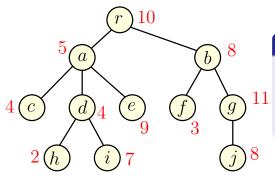
G = (V, E). The set $X \subseteq V$ is a **dominating set**, if any vertex $v \in V$ is either in X or is adjacent to a vertex in X.



Dominating set

Definition

G = (V, E). The set $X \subseteq V$ is a **dominating set**, if any vertex $v \in V$ is either in X or is adjacent to a vertex in X.



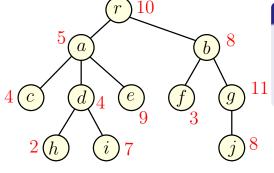
Problem

Given weights on vertices, compute the minimum weight dominating set in G.

Dominating set

Definition

G = (V, E). The set $X \subseteq V$ is a **dominating set**, if any vertex $v \in V$ is either in X or is adjacent to a vertex in X.



Problem

Given weights on vertices, compute the **minimum** weight dominating set in G.

Dominating Set is NP-Hard!

Part II

DAGs and Dynamic Programming

Observation

- Create directed graph G(I) as follows...
- For each sub-problem in the execution of A on I create a node.
- 3 If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph.
- G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

Observation

- ① Create directed graph G(I) as follows...
- For each sub-problem in the execution of A on I create a node.
- 3 If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph.
- G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

Observation

- ① Create directed graph G(I) as follows...
- For each sub-problem in the execution of A on I create a node.
- 3 If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph.
- G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

Observation

- ① Create directed graph G(I) as follows...
- For each sub-problem in the execution of A on I create a node.
- If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph.
- G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

Observation

- **①** Create directed graph G(I) as follows...
- For each sub-problem in the execution of A on I create a node.
- If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph.
- **4** G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

Observation

- ① Create directed graph G(I) as follows...
- For each sub-problem in the execution of A on I create a node.
- If sub-problem v depends on or recursively calls sub-problem u add directed edge (u, v) to graph.
- **4** G(I) is a DAG. Why? If G(I) has a cycle then A will not terminate on I.

Dynamic Programming and DAGs

Observation

An iterative algorithm B obtained from a recursive algorithm A for a problem Π does the following:

For each instance I of Π , it computes a topological sort of G(I) and evaluates sub-problems according to the topological ordering.

- 1 Sometimes the DAG G(I) can be obtained directly without thinking about the recursive algorithm A
- 2 In some cases (not all) the computation of an optimal solution reduces to a shortest/longest path in DAG G(I)
- 3 Topological sort based shortest/longest path computation is dynamic programming!

Dynamic Programming and DAGs

Observation

An iterative algorithm ${\bf B}$ obtained from a recursive algorithm ${\bf A}$ for a problem ${\bf \Pi}$ does the following:

For each instance I of Π , it computes a topological sort of G(I) and evaluates sub-problems according to the topological ordering.

- **9** Sometimes the DAG G(I) can be obtained directly without thinking about the recursive algorithm A
- 2 In some cases (not all) the computation of an optimal solution reduces to a shortest/longest path in DAG G(I)
- 3 Topological sort based shortest/longest path computation is dynamic programming!

Dynamic Programming and DAGs

Observation

An iterative algorithm ${\pmb B}$ obtained from a recursive algorithm ${\pmb A}$ for a problem ${\pmb \Pi}$ does the following:

For each instance I of Π , it computes a topological sort of G(I) and evaluates sub-problems according to the topological ordering.

- ullet Sometimes the DAG G(I) can be obtained directly without thinking about the recursive algorithm A
- ② In some cases (not all) the computation of an optimal solution reduces to a shortest/longest path in DAG G(I)
- 3 Topological sort based shortest/longest path computation is dynamic programming!

Dynamic Programming and DAGs

Observation

An iterative algorithm ${\pmb B}$ obtained from a recursive algorithm ${\pmb A}$ for a problem ${\pmb \Pi}$ does the following:

For each instance I of Π , it computes a topological sort of G(I) and evaluates sub-problems according to the topological ordering.

- ullet Sometimes the DAG G(I) can be obtained directly without thinking about the recursive algorithm A
- ② In some cases (not all) the computation of an optimal solution reduces to a shortest/longest path in DAG G(I)
- Topological sort based shortest/longest path computation is dynamic programming!

A quick reminder...

A Recursive Algorithm for weighted interval scheduling

Let O_i be value of an optimal schedule for the first i jobs.

```
\begin{aligned} & \text{Schedule}(n): \\ & \text{if } n = 0 \text{ then return } 0 \\ & \text{if } n = 1 \text{ then return } w(v_1) \\ & O_{p(n)} \leftarrow & \text{Schedule}(p(n)) \\ & O_{n-1} \leftarrow & \text{Schedule}(n-1) \\ & \text{if } (O_{p(n)} + w(v_n) < O_{n-1}) \text{ then } \\ & O_n = O_{n-1} \\ & \text{else} \\ & O_n = O_{p(n)} + w(v_n) \\ & \text{return } O_n \end{aligned}
```

Longest Path in a DAG

Given intervals, create a DAG as follows:

- Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a dummy source node s.
- 2 For each interval i add edge (i, p(i)) of the length/weight of v_i .
- 3 Add an edge from s to n of length 0.
- For each interval i add edge (i, i 1) of length 0.

Longest Path in a DAG

Given intervals, create a DAG as follows:

- Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a dummy source node s.
- 2 For each interval i add edge (i, p(i)) of the length/weight of v_i .
- 3 Add an edge from s to n of length 0.
- For each interval i add edge (i, i 1) of length 0.

Longest Path in a DAG

Given intervals, create a DAG as follows:

- Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a dummy source node s.
- ② For each interval i add edge (i, p(i)) of the length/weight of v_i .
- 3 Add an edge from s to n of length 0.
- For each interval i add edge (i, i 1) of length 0.

Longest Path in a DAG

Given intervals, create a DAG as follows:

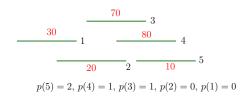
- Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a dummy source node s.
- ② For each interval i add edge (i, p(i)) of the length/weight of v_i .
- 3 Add an edge from s to n of length 0.
- For each interval i add edge (i, i 1) of length 0.

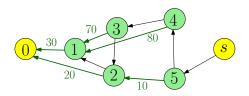
Longest Path in a DAG

Given intervals, create a DAG as follows:

- Create one node for each interval, plus a dummy sink node 0 for interval 0, plus a dummy source node s.
- ② For each interval i add edge (i, p(i)) of the length/weight of v_i .
- 3 Add an edge from s to n of length 0.
- **4** For each interval i add edge (i, i 1) of length 0.

Example





- ① Given interval problem instance I let G(I) denote the DAG constructed as described.
- 2 We have...

Claim

Optimum solution to weighted interval scheduling instance $m{l}$ is given by longest path from $m{s}$ to $m{0}$ in $m{G(I)}$.

- Assuming claim is true,
 - If I has n intervals, DAG G(I) has n+2 nodes and O(n) edges. Creating G(I) takes $O(n \log n)$ time: to find p(i) for each i. How?
 - 2 Longest path can be computed in O(n) time recall O(m+n) algorithm for shortest/longest paths in DAGs.

- Given interval problem instance I let G(I) denote the DAG constructed as described.
- 2 We have...

Claim

Optimum solution to weighted interval scheduling instance I is given by longest path from s to 0 in G(I).

- Assuming claim is true,
 - If I has n intervals, DAG G(I) has n+2 nodes and O(n) edges. Creating G(I) takes $O(n \log n)$ time: to find p(i) for each i. How?
 - 2 Longest path can be computed in O(n) time recall O(m+n) algorithm for shortest/longest paths in DAGs.

- Given interval problem instance I let G(I) denote the DAG constructed as described.
- We have...

Claim

- Assuming claim is true,
 - ① If I has n intervals, DAG G(I) has n+2 nodes and O(n) edges. Creating G(I) takes $O(n \log n)$ time: to find p(i) for each i. How?
 - 2 Longest path can be computed in O(n) time recall O(m+n) algorithm for shortest/longest paths in DAGs.

- Given interval problem instance I let G(I) denote the DAG constructed as described.
- We have...

Claim

- Assuming claim is true,
 - ① If I has n intervals, DAG G(I) has n+2 nodes and O(n) edges. Creating G(I) takes $O(n \log n)$ time: to find p(i) for each i. How?
 - 2 Longest path can be computed in O(n) time recall O(m+n) algorithm for shortest/longest paths in DAGs.

- Given interval problem instance I let G(I) denote the DAG constructed as described.
- We have...

Claim

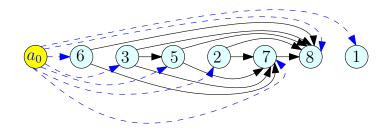
- Assuming claim is true,
 - If I has n intervals, \overline{DAG} G(I) has n+2 nodes and O(n) edges. Creating G(I) takes $O(n \log n)$ time: to find p(i) for each i. How?
 - 2 Longest path can be computed in O(n) time recall O(m+n) algorithm for shortest/longest paths in DAGs.

- **9** Given interval problem instance I let G(I) denote the DAG constructed as described.
- We have...

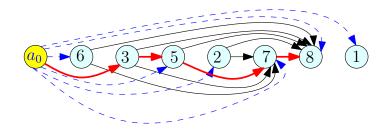
Claim

- Assuming claim is true,
 - If I has n intervals, \overline{DAG} G(I) has n+2 nodes and O(n) edges. Creating G(I) takes $O(n \log n)$ time: to find p(i) for each i. How?
 - Longest path can be computed in O(n) time recall O(m+n) algorithm for shortest/longest paths in DAGs.

- ① add sentinel a_0 to sequence where a_0 is less than smallest element in sequence
- 2 for each i there is a node v_i
- lacksquare if i < j and $a_i < a_j$ add an edge (v_i, v_j)
- 4 find longest path from v_0



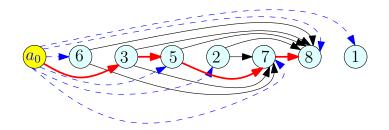
- 2 for each i there is a node v_i
- $\mathbf{3}$ if i < j and $a_i < a_j$ add an edge (v_i, v_j)
- 4 find longest path from v_0



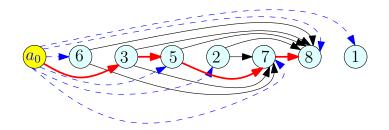
- ② for each i there is a node v_i
- $\mathbf{3}$ if i < j and $a_i < a_j$ add an edge (v_i, v_j)
- 4 find longest path from v_0



- ① add sentinel a_0 to sequence where a_0 is less than smallest element in sequence
- ② for each i there is a node v_i
- \bullet if i < j and $a_i < a_j$ add an edge (v_i, v_j)
- 4 find longest path from v_0



- lacktriangled add sentinel a_0 to sequence where a_0 is less than smallest element in sequence
- 2 for each i there is a node v_i
- \bullet if i < j and $a_i < a_j$ add an edge (v_i, v_j)
- **4** find longest path from v_0



Part III

Edit Distance and Sequence Alignment

- 1 Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a *nearby* string?
- 2) What does nearness mean?
- **Question:** Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a *distance* between them?
- Edit Distance: minimum number of "edits" to transform x into y.

- Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?
- 2 What does nearness mean?
- **Question:** Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a *distance* between them?
- Edit Distance: minimum number of "edits" to transform x into y.

- Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?
- What does nearness mean?
- **Question:** Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a *distance* between them?
- Edit Distance: minimum number of "edits" to transform x into y.

- Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?
- What does nearness mean?
- **Question:** Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a *distance* between them?
- Edit Distance: minimum number of "edits" to transform x into y.

- Given a string "exponen" that is not in the dictionary, how should a spell checker suggest a nearby string?
- What does nearness mean?
- **Question:** Given two strings $x_1x_2...x_n$ and $y_1y_2...y_m$ what is a *distance* between them?
- Edit Distance: minimum number of "edits" to transform x into y.

Edit Distance

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4

 $\underline{FOOD} \to \underline{MOOD} \to \underline{MONOD} \to \underline{MONED} \to \underline{MONEY}$

Edit Distance

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4:

 $\underline{FOOD} \rightarrow \mathrm{MOOD} \rightarrow \mathrm{MONED} \rightarrow \mathrm{MONED} \rightarrow \mathrm{MONEY}$

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4:

 $\underline{FOOD} \to MO\underline{OD} \to MON\underline{OD} \to MON\underline{ED} \to MON\underline{EY}$

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4:

 $\underline{FOOD} \rightarrow MO\underline{OD} \rightarrow MON\underline{OD} \rightarrow MON\underline{ED} \rightarrow MONEY$

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4:

 $\underline{F}OOD \to MO\underline{O}D \to MON\underline{O}D \to MONE\underline{D} \to MONEY$

Definition

Edit distance between two words X and Y is the number of letter insertions, letter deletions and letter substitutions required to obtain Y from X.

Example

The edit distance between FOOD and MONEY is at most 4:

 $\underline{F}OOD \to MO\underline{O}D \to MON\underline{O}D \to MONE\underline{D} \to MONEY$

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

F O O D M O N E Y

Formally, an alignment is a set M of pairs (i,j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1,1), (2,2), (3,3), (4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set M of pairs (i,j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1,1),(2,2),(3,3),(4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance: Alternate View

Alignment

Place words one on top of the other, with gaps in the first word indicating insertions, and gaps in the second word indicating deletions.

Formally, an alignment is a set M of pairs (i,j) such that each index appears at most once, and there is no "crossing": i < i' and i is matched to j implies i' is matched to j' > j. In the above example, this is $M = \{(1,1), (2,2), (3,3), (4,5)\}$. Cost of an alignment is the number of mismatched columns plus number of unmatched indices in both strings.

Edit Distance Problem

Problem

Given two words, find the edit distance between them, i.e., an alignment of smallest cost.

Applications |

- Spell-checkers and Dictionaries
- Unix diff
- ONA sequence alignment ... but, we need a new metric

Sariel (UIUC) OLD CS473 25 Spring 2015 25 / 39

Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is

- lacksquare [Gap penalty] For each gap in the alignment, we incur a cost δ .
- **2** [Mismatch cost] For each pair p and q that have been matched in M, we incur cost α_{pq} ; typically $\alpha_{pp} = 0$.

Edit distance is special case when $\delta = \alpha_{pq} = 1$.

Similarity Metric

Definition

For two strings X and Y, the cost of alignment M is

- lacksquare [Gap penalty] For each gap in the alignment, we incur a cost δ .
- **2** [Mismatch cost] For each pair p and q that have been matched in M, we incur cost α_{pq} ; typically $\alpha_{pp} = 0$.

Edit distance is special case when $\delta = \alpha_{pq} = 1$.

An Example

Example

Alternative:

Or a really stupid solution (delete string, insert other string):

 $\mathsf{Cost} = \mathbf{19} \delta$.

Sequence Alignment

Input Given two words $m{X}$ and $m{Y}$, and gap penalty $m{\delta}$ and mismatch costs $m{lpha_{pq}}$

Goal Find alignment of minimum cost

Basic observation

- **1** Let $X = \alpha x$ and $Y = \beta y$.
- (2) α, β : strings.x and y single characters.
- Optimal edit distance between X and Y as alignment. Consider last column of alignment of the two strings:

α	X
β	y

or

α	X
βy	

or

αx	
$oldsymbol{eta}$	У

Observation

Prefixes must have optimal alignment!

Basic observation

- ① Let $X = \alpha x$ and $Y = \beta y$.
- (2) α, β : strings.x and y single characters.
- Optimal edit distance between X and Y as alignment. Consider last column of alignment of the two strings:

lpha	X
β	V

or

α	X
βy	

or

αx	
$oldsymbol{eta}$	У

Observation

Prefixes must have optimal alignment!

Basic observation

- ① Let $X = \alpha x$ and $Y = \beta y$.
- Optimal edit distance between X and Y as alignment. Consider last column of alignment of the two strings:

α	X
В	W

or

α	X
βy	

or

αx	
β	У

Observation

Prefixes must have optimal alignment!

Basic observation

- ① Let $X = \alpha x$ and $Y = \beta y$.
- \bigcirc α, β : strings.x and y single characters.
- Optimal edit distance between X and Y as alignment. Consider last column of alignment of the two strings:

α	X
В	V

or

α	X
β y	

or

αx	
$oldsymbol{eta}$	У

Observation

Prefixes must have optimal alignment!

Basic observation

- ① Let $X = \alpha x$ and $Y = \beta y$.
- \bigcirc α, β : strings.x and y single characters.
- Optimal edit distance between X and Y as alignment. Consider last column of alignment of the two strings:

α	X
$oldsymbol{eta}$	y

or

α	X
βy	

or

αx	
$oldsymbol{eta}$	y

Observation

Prefixes must have optimal alignment!

Basic observation

- **1** Let $X = \alpha x$ and $Y = \beta y$.
- \bigcirc α, β : strings.x and y single characters.
- Optimal edit distance between X and Y as alignment. Consider last column of alignment of the two strings:

α	x	
$oldsymbol{eta}$	y	

or

α	X
βy	

or

αx	
$oldsymbol{eta}$	y

Observation

Prefixes must have optimal alignment!

Observation

- **1** Case x_m and y_n are matched.
 - Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- 2 Case x_m is unmatched.
 - **1** Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- 3 Case y_n is unmatched.
 - lacktriangle Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Observation

- **①** Case x_m and y_n are matched.
 - 1) Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- 2 Case x_m is unmatched.
 - $lackbox{1}$ Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- 3 Case y_n is unmatched.
 - lacktriangle Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Observation

- **①** Case x_m and y_n are matched.
 - **1** Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- 2 Case x_m is unmatched.
 - $lackbox{1}$ Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- 3 Case y_n is unmatched.
 - lacktriangle Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Observation

- ① Case x_m and y_n are matched.
 - **a** Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- \bigcirc Case x_m is unmatched.
 - $lackbox{1}$ Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- 3 Case y_n is unmatched.
 - ① Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Observation

- **①** Case x_m and y_n are matched.
 - **1** Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- 2 Case x_m is unmatched.
 - **1** Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- 3 Case y_n is unmatched.
 - lacktriangledown Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Observation

Let $X = x_1 x_2 \cdots x_m$ and $Y = y_1 y_2 \cdots y_n$. If (m, n) are not matched then either the mth position of X remains unmatched or the nth position of Y remains unmatched.

- ① Case x_m and y_n are matched.
 - **a** Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- 2 Case x_m is unmatched.
 - **1** Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- 3 Case y_n is unmatched.
 - Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Sariel (UIUC) OLD CS473 30 Spring 2015 30 / 39

Observation

- ① Case x_m and y_n are matched.
 - **1** Pay mismatch cost $\alpha_{x_m y_n}$ plus cost of aligning strings $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_{n-1}$
- 2 Case x_m is unmatched.
 - **1** Pay gap penalty plus cost of aligning $x_1 \cdots x_{m-1}$ and $y_1 \cdots y_n$
- **3** Case y_n is unmatched.
 - **1** Pay gap penalty plus cost of aligning $x_1 \cdots x_m$ and $y_1 \cdots y_{n-1}$

Subproblems and Recurrence

Optimal Costs

Let Opt(i,j) be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$. Then

$$\operatorname{Opt}(i,j) = \min \begin{cases} \alpha_{x_i y_j} + \operatorname{Opt}(i-1,j-1), \\ \delta + \operatorname{Opt}(i-1,j), \\ \delta + \operatorname{Opt}(i,j-1) \end{cases}$$

Base Cases: $\mathrm{Opt}(i,0) = \delta \cdot i$ and $\mathrm{Opt}(0,j) = \delta \cdot j$

Subproblems and Recurrence

Optimal Costs

Let Opt(i,j) be optimal cost of aligning $x_1 \cdots x_i$ and $y_1 \cdots y_j$. Then

$$\operatorname{Opt}(i,j) = \min \begin{cases} \alpha_{x_i y_j} + \operatorname{Opt}(i-1,j-1), \\ \delta + \operatorname{Opt}(i-1,j), \\ \delta + \operatorname{Opt}(i,j-1) \end{cases}$$

Base Cases: $\mathrm{Opt}(i,0) = \delta \cdot i$ and $\mathrm{Opt}(0,j) = \delta \cdot j$

Dynamic Programming Solution

```
\begin{aligned} &\text{for all } i \text{ do } M[i,0] = i\delta \\ &\text{for all } j \text{ do } M[0,j] = j\delta \end{aligned} \\ &\text{for } i = 1 \text{ to } m \text{ do} \\ &\text{for } j = 1 \text{ to } n \text{ do} \\ &M[i,j] = \min \begin{cases} \alpha_{x_iy_j} + M[i-1,j-1], \\ \delta + M[i-1,j], \\ \delta + M[i,j-1] \end{cases} \end{aligned}
```

Analysis

• Running time is O(mn).

Dynamic Programming Solution

```
\begin{aligned} &\text{for all } i \text{ do } M[i,0] = i\delta \\ &\text{for all } j \text{ do } M[0,j] = j\delta \end{aligned} \\ &\text{for } i = 1 \text{ to } m \text{ do} \\ &\text{for } j = 1 \text{ to } n \text{ do} \\ &M[i,j] = \min \begin{cases} \alpha_{x_iy_j} + M[i-1,j-1], \\ \delta + M[i-1,j], \\ \delta + M[i,j-1] \end{cases} \end{aligned}
```

Analysis

1 Running time is O(mn).

Dynamic Programming Solution

```
for all i do M[i,0] = i\delta
for all j do M[0,j] = j\delta
for i = 1 to m do
      for j = 1 to n do
             M[i,j] = \min \begin{cases} \alpha_{x_i y_j} + M[i-1,j-1], \\ \delta + M[i-1,j], \\ \delta + M[i,j-1] \end{cases}
```

Analysis

- Running time is O(mn).
- 2 Space used is O(mn).

Matrix and DAG of Computation

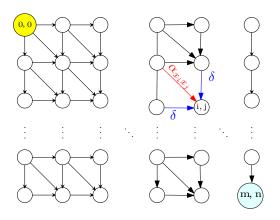


Figure: Iterative algorithm in previous slide computes values in row order. Optimal value is a shortest path from (0,0) to (m,n) in

Sariel (UIUC) OLD CS473 33 Spring 2015 33 / 39

Sequence Alignment in Practice

- Typically the DNA sequences that are aligned are about 10⁵ letters long!
- The killer is the 10GB storage
- Oan we reduce space requirements?

Optimizing Space

Recall

$$M(i,j) = \min egin{cases} lpha_{x_iy_j} + M(i-1,j-1), \ \delta + M(i-1,j), \ \delta + M(i,j-1) \end{cases}$$

- 2 Entries in jth column only depend on (j-1)st column and earlier entries in jth column
- 3 Only store the current column and the previous column reusing space; N(i,0) stores M(i,j-1) and N(i,1) stores M(i,j)

Optimizing Space

Recall

$$M(i,j) = \min egin{cases} lpha_{\mathsf{x}_i \mathsf{y}_j} + M(i-1,j-1), \ \delta + M(i-1,j), \ \delta + M(i,j-1) \end{cases}$$

- 2 Entries in jth column only depend on (j-1)st column and earlier entries in jth column
- 3 Only store the current column and the previous column reusing space; N(i,0) stores M(i,j-1) and N(i,1) stores M(i,j)

Optimizing Space

Recall

$$M(i,j) = \min egin{cases} lpha_{x_iy_j} + M(i-1,j-1), \ \delta + M(i-1,j), \ \delta + M(i,j-1) \end{cases}$$

- **2** Entries in jth column only depend on (j-1)st column and earlier entries in jth column
- 3 Only store the current column and the previous column reusing space; N(i,0) stores M(i,j-1) and N(i,1) stores M(i,j)

Optimizing Space

Recall

$$M(i,j) = \min egin{cases} lpha_{\mathsf{x}_i \mathsf{y}_j} + M(i-1,j-1), \ \delta + M(i-1,j), \ \delta + M(i,j-1) \end{cases}$$

- **2** Entries in jth column only depend on (j-1)st column and earlier entries in jth column
- **3** Only store the current column and the previous column reusing space; N(i,0) stores M(i,j-1) and N(i,1) stores M(i,j)

Computing in column order to save space

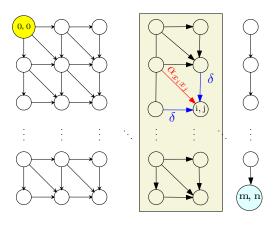


Figure: M(i,j) only depends on previous column values. Keep only two columns and compute in column order.

OLD CS473 36 Spring 2015 36 / 39

Space Efficient Algorithm

```
for all i do N[i, 0] = i\delta
for j = 1 to n do
      N[0,1] = j\delta (* corresponds to M(0,j) *)
      for i = 1 to m do
           N[i,1] = \min egin{cases} lpha_{x_iy_j} + N[i-1,0] \ \delta + N[i-1,1] \ \delta + N[i,0] \end{cases}
      for i = 1 to m do
            Copy N[i,0] = N[i,1]
```

Analysis

Running time is O(mn) and space used is O(2m) = O(m)

OLD CS473 Spring 2015 37 / 39

- 1 From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm see text book.

- **9** From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm see text book.

- **9** From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm see text book.

- **9** From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm see text book.

- **9** From the $m \times n$ matrix M we can construct the actual alignment (exercise)
- Matrix N computes cost of optimal alignment but no way to construct the actual alignment
- Space efficient computation of alignment? More complicated algorithm — see text book.

Takeaway Points

- Oynamic programming is based on finding a recursive way to solve the problem. Need a recursion that generates a small number of subproblems.
- Question of the Golden of the Subproblems of the Subproblems that are generated for given instance; this is the dependency graph. An iterative algorithm simply evaluates the subproblems in some topological sort of this DAG.
- The space required to evaluate the answer can be reduced in some cases by a careful examination of that dependency DAG of the subproblems and keeping only a subset of the DAG at any time.

Sariel (UIUC) OLD CS473 40 Spring 2015 40 / 39

Sariel (UIUC) OLD CS473 41 Spring 2015 41 / 39

Sariel (UIUC) OLD CS473 42 Spring 2015 42 / 39

Sariel (UIUC) OLD CS473 43 Spring 2015 43 / 39